
1

When Local Becomes Global: An Application Study of
Data Consistency in a Networked World

Erik Riedel, Susan Spence, Alistair Veitch
Hewlett-Packard Laboratories

{riedel,suspence,aveitch}@hpl.hp.com

Abstract
As users and companies depend increasingly on shared,
networked information services, and as companies and cus-
tomers become more international, computer systems will
need to keep pace with a global scale. We believe that we
will continue to see growth in large data centers and service
providers as new information services arise and existing
services are consolidated on one hand (for ease of manage-
ment, outsourcing, and reduced duplication), and further
distributed on the other hand (for fault-tolerance of critical
services and to accommodate the global reach of compa-
nies and customers). This paper looks at storage systems in
such a networked, global environment, studies the charac-
teristics of applications’ demands on the storage system
and quantifies how these demands might be supported in
such an environment. Our study focusses on a collection of
traces from several large commercial workloads taken on
single, centralized servers, and explores the inherent con-
sistency and performance requirements if these same appli-
cations were moved into a networked, distributed setting.
Rather than focussing on applications or services
“designed for the Web”, we look at applications designed
to operate on local storage and examine how well or poorly
they would fare if they were migrated to a distributed set-
ting. Our results indicate that in many cases, the “inherent”
level of consistency required and the “true” amount of
sharing is sufficiently low that distribution may be feasible
with reasonable performance, and without wholesale appli-
cation changes.

1 Introduction
There is increasing demand for use of applications and
access to data across globally-distributed sites. For many
companies, this presents a challenge of how to use existing
distributed applications in a widely-distributed context,
when they were only designed for use in local area net-
works. It is an even bigger challenge to make existing, non-
distributed applications and the associated, often large,
datasets available to offices across the globe. Whatever the
location of the applications and their data, there are a range
of data access semantics that must be supported correctly:
ranging from read-mostly data analysis, to loosely-coupled
file-sharing to tightly-coupled database systems. Global
data placement services provide the storage infrastructure
to support such globally-distributed applications, including

automatic management, replication, caching, and guaran-
teed performance levels. In this paper, we examine and
assess the challenges of providing such services transpar-
ently to existing applications.

We analyze several existing applications to demonstrate the
feasibility of supporting data placement in a globally dis-
tributed context. A number of application scenarios are pre-
sented, with a description of how the application might be
distributed and consideration of what replication and con-
sistency implications this distribution requires. The replica-
tion policies include full replication of an application’s data
and partial replication of only the data that is shared across
multiple sites. The consistency requirements are influenced
by the replication used and by the requirements of the appli-
cation itself, and include cases where delayed propagation
of updates is acceptable and others where strong consis-
tency must be maintained.

We present an analysis of a number of traces taken from
applications running on a centralized server and attempt to
match these traces to the workload characteristics of the
proposed distributed scenarios. The analysis identifies the
working data sets used by different sites, distinguishes
between the total amount of data accessed and the unique
footprint of that data, and pinpoints potential data access
conflicts. We use this data to reason about what the costs of
replication and consistency maintenance might be and
whether a global data placement system could cope with
these costs and still support the necessary replication trans-
parency for applications.

2 Application scenarios
Consider the increasingly common scenario of a multi-
national company. With offices all around the world, the
company needs to access its data using a variety of applica-
tions efficiently and reliably across those globally-distrib-
uted sites. The new-world infrastructure is composed of a
number of globally-distributed data centers. Each data cen-
ter provides data storage and processors to run applications.
The centers might be connected with dedicated links, or
may use connections over the commodity Internet. We
examine the implications of supporting global use of a
range of applications which were originally intended for
use only in a localized setting.

Appears in Proceedings of the 20th IEEE Int’l Performance,Computing and Communications Conference (IPCCC 2001), April 2001.

2

2.1 How applications might become global
The manner in which data may be feasibly distributed is
largely dictated by the access semantics of applications. We
describe three example scenarios to illustrate a range of
access semantics, from read-only to multiple writers.

In the first application scenario, the company collates its
latest sales figures and other statistics centrally each night
and makes the latest statistics available to its sales offices
around the world. Once a report has been issued, the distrib-
uted offices make read-only accesses to the statistics, for
data analysis purposes.

The second application scenario addresses email. The com-
pany provides email access for each of its employees. Nor-
mally, the employees access their email at their home site.
However, when they travel, they require remote access to
their email, preferably with no performance degradation
even when they are half-way across the world. This sce-
nario involves only one or a small number of writers access-
ing the same data: the mail server writes messages to stable
storage, awaiting delivery to the user; while the user can
read and delete those messages, as well as writing new ones.

The third application scenario is concerned with the shared
inventory and product data used by the company’s sales
centers and warehouses. The company traditionally has a
single, shared store of data about customers and product
inventory. However, in order to support a 24-hour, global
distribution system, it is desirable for this data to be distrib-
uted and replicated across all the global sites for increased
reliability and availability. This data may be read and writ-
ten by multiple sites concurrently.

2.2 Use of replication and consistency
Having determined the access semantics of the applica-
tions, we can determine an appropriate placement of the
data for the applications across globally-distributed sites.

For the data analysis scenario, each site should host its own
full replica of the report on company statistics, for fast,
local, read-only access. No consistency has to be main-
tained on the distributed replicas of the report, since the
users only need read access to extract data for analysis.

For the email scenario, it is desirable to support partial rep-
lication of data to accommodate those users who travel. The
stored email for one user could be replicated so that it is
available at both the user’s home site and at an office in
another country that they visit regularly, while non-travel-
ling users only need to have their email maintained at their
home site. To generalize, the replication model is based on
the location of those that access the data. If the data is only
accessed by users at one site, it should be located at that site,
resulting in no delay in reads and writes to that data. Alter-
natively, if the data has multiple writers at different sites, it
should be replicated across the locations of those writers.

Given that both the user and the mail system may write to a
user’s stored email, it is necessary to maintain consistency
across the replicas, but delayed consistency is acceptable.

For the inventory scenario, it is desirable to support full rep-
lication of the complete data set at each site, supporting
local warehouses, as any site may access any portion of the
data. Since multiple sites may write to the store concur-
rently, it is then necessary to maintain strong consistency
between these replicas.

We believe that a successful global data placement system
will need to determine which of these mechanisms to use
dynamically and automatically as applications run.

2.3 Cost of replication and consistency
To determine the feasibility of distributing applications
across globally-distributed sites, we require some estimate
of the costs of replication and consistency.

Many approaches exist for maintaining various degrees of
consistency across replicated, distributed data. Determining
the mechanisms most appropriate for maintaining consis-
tency across globally-distributed data centers is the subject
of future work. However, we can make some provisional,
basic estimates here about how much it would cost, in terms
of number of messages sent, bandwidth used and latency
incurred. The costs are affected by the number of sites
involved and the consistency requirements of the applica-
tion. Making such estimates allows us to determine whether
the access patterns observed in our traces leave us with suf-
ficient opportunity to meet the costs of distributing the data.

We consider the following degrees of consistency for our
application scenarios:

• no consistency, where once replicas have been created,
updates are propagated only periodically (e.g. nightly);

• delayed consistency, where notification that the data has
changed must be received before the next access occurs,
although the actual update may not be complete;

• strong consistency, where the most recent version of the
data must be available before the next access occurs.

The begin to quantify the latency costs, Table 1 shows the
basic costs of communication between a machine at
Hewlett-Packard Laboratories in Palo Alto and a number of
machines around the globe. Using the ping command to
send ICMP datagrams to the destination sites gives the
round-trip time for the most basic IP message between
those sites. The table displays the average cost in millisec-
onds of a one-way message deduced from these measure-
ments, for repeated sends of 64 byte and 4 kilobyte packets,
at different times of day. The 4 KB packet size matches the
average request size seen in our traces.

While the size of the message has a minor effect on the time
taken to send the message, the latency between the sites is

3

obviously the most important factor. For instance, at 6 pm
PST it takes 28 times as long to send a 4 KB packet from
Palo Alto to Capetown as it does to send it between
machines at different sites within Palo Alto.

The significance of the cost of a single message between
sites becomes apparent when we consider the number of
messages that may need to be sent between globally-distrib-
uted data centers in order to keep replicated data consistent.

In scenario one, there is a clear benefit in replicating the
report to all the sites that require it for analysis, rather than
requiring the sites to access one centralized copy. The cost
of repeated read requests over the network to the centralized
copy is high and this cost will be significantly affected by
the latency between the sites. Directing the read requests to
a local replica avoids this cost and, in this scenario, requires
no extra overheads for maintaining consistency, since the
replicas are not being changed concurrently.

In scenario two, the partial replicas are expected to be kept
consistent with the original, with some delay in the syn-
chronization of the replicas being acceptable. Taking a sim-
ple approach, the minimum number of messages possible
for propagation of one update to R replicas is 2R, i.e. R mes-
sages resulting in R acks.

In scenario three, a number of full replicas are maintained,
with strong consistency between the replicas. Using a
worst-case two-phase commit protocol in this context
would result in 3R messages to propagate a single update to
R replicas: one commit request, one response and one sub-
sequent commit command per replica [Coulouris94].

2.4 Consistency at the storage level
There are a wide range of options for ensuring consistency
of data directly in applications - from using a database man-
agement system with strong consistency guarantees to var-
ious forms of middleware such as object-oriented
databases, distributed object systems, or simply by imple-
menting communication between distributed sites directly.
Using such mechanisms allows each individual application
to choose the semantics and performance requirements that
are most appropriate for the behavior its users expect. The

difficulty is that each individual application must be modi-
fied to operate using the common middleware platform,
which can require large amounts of coding and often whole-
sale re-design of the software - an investment that is often
difficult to make without a guarantee that it will pay off.

In most systems today, there is already a common interface
to storage - applications are written against a file open,
close, read, write interface at the file system level,
which translates into a set of lower-level block requests.
This commonality of interface makes it attractive to provide
global data placement as a service at this level. This is
already being done in two different fashions today. At the
block level, remote mirroring across disk arrays connected
by a wide-area link [EMC00] provides replication of all
write operations by applications at a primary node to a sec-
ond backup node, but only one node is active at any given
time. These systems can operate synchronously (ensuring
complete consistency of the backup), asynchronously
(delaying some operations), and variants of batch windows
(sending periodic updates), however these choices must be
made all-or-nothing for the system, and do not differentiate
between different classes of access.

The second option for higher-level access is use of a distrib-
uted file system - this layer has more information about
access patterns and types of access, but still provides a lim-
ited set of interfaces for specifying different consistency
semantics [Kistler92, Peterson97, Thekkath97, Ji00].

We believe that a successful system for global data place-
ment should operate at the lowest-level of these interfaces
in order to provide the maximum compatibility with exist-
ing applications, while at the same time taking into account
as much “higher-level” knowledge as possible. The system
should not expose additional semantics, but should observe
the behavior of applications and adapt the consistency and
distribution schemes that are most appropriate for each sub-
set of data and application behavior. The data in Table 2
shows the characteristics of several applications to illustrate
the range of observed access patterns.

If the storage system is aware of whether requests are syn-
chronous or asynchronous, and whether requests are for
data or metadata, then it can better optimize the choice of
distributed semantics. The next section will explore this in
more detail by considering concrete examples of the scenar-
ios introduced in the previous section.

3 Trace analysis
This section considers a number of traces taken on single,
centralized servers for a set of commercial workloads as
introduced in Table 2. We use a different trace to illustrate
each of the scenarios introduced in the previous section.
The intent is to consider applications that currently operate

6 pm PST 12 noon PST

destination 64B 4KB 64B 4KB
local server < 1 2 <1 2
Palo Alto, California 26 36 29 34

Glasgow, Scotland 85 94 89 95
Capetown, South Africa 346 1012 545 979
Canberra, Australia 140 148 139 148

Table 1. Cost of sending short and long one-way messages
between machine at the HP Palo Alto site and several
globally-distributed sites. All times in milliseconds.

4

on single systems with local storage, and evaluate the cost
and complexity of distributing them across global sites.

3.1 Rate of reads and updates
The first application property we must consider when mov-
ing from a local system to a global system is the amount of
data that must be transferred around the globe in a particular
scenario. This is shown in Table 3, giving the total volume
of data transferred, and the total amount of unique data (the
footprint), and the total amount of data modified in the trace
period (the write footprint).

3.1.1 TPC-H benchmark
The TPC-H benchmark models a decision support system,
with a number of query streams performing data analysis,
and a concurrent stream of updates adding and deleting
records. Decision support allows considerable flexibility in
consistency of the underlying database. For most queries,
cursor stability [Gray92] is sufficient and these systems are
often used in a batch update mode, where updates are regu-
larly propagated (e.g. nightly or weekly).

3.1.2 TPC-C benchmark
The TPC-C benchmark models an OLTP system. A number
of transaction types run against a shared database to enter
orders, deliver them, and monitor inventory. Separate
streams of read/write transactions are run in parallel. We
use the traces of three TPC-C streams to model three dis-
tributed sites running a range of transactions that read from
and write to a replicated warehouse database. Such a data-
base might be used to manage inventory in a global com-
pany with many warehouses, or might form a smaller part
of other applications such as call logs or customer data used
by a company’s global service centers or call centers.

3.1.3 Email trace
The openmail trace is taken from a centralized email server
used by a large number of users. The data is stored as a log-
ically coherent database, but is accessed largely indepen-
dently - there will be some amount of overlapping data in
maintaining the index of messages and pointers to messages
sent to different users, but the majority of the data should be
read and written by only single users.

3.1.4 File system trace
The cello trace was taken over a number of days on a server
supporting a small group of researchers. A range of appli-
cations are run on the server, including compilation, email,
web browsing and source code control. The data shown
here only considers processes run by individual users, and
not system processes such as backup and a netnews server
that also runs on the same machine. The intent is to model
a scenario with any type of data shared in different ways,
perhaps across global design centers or call centers - any
system with a shared set of data used at multiple sites, with
low day-to-day overlap of data use.

3.2 Determining what to replicate where
The data in Table 4 considers two scenarios for data shared
among a number of users that work largely independently,
but occasionally share data. We use the openmail and cello
traces and consider what happens if users are distributed
across three global sites, rather than being located at one

total metadata
synchronous

metadata
application req/s req/s % req/s %

cello/netnews 20.2 9.1 45% 3.0 15%
cello/users 17.7 9.0 51% 6.2 35%
openmail/server 17.0 8.7 51% 5.3 31%

tpc-h/update 9,120.0 1,920.0 21% 1,920.0 100%
tpc-h/throughput 2,330.0 0.5 0% 0.5 0%

tpc-c/oltp 538.0 – -

Table 2. Application access characteristics. Disk request
breakdowns for a number of traced applications. The cello trace is
from a timesharing server used by the 20 members of our research
group, a 4 processor HP-UX server with 4 GB of memory and
500 GB of storage. cello/users represents all of the user activity on
the machine, with system and server processes excluded. openmail
is a trace of 1 hour of an OpenMail server with 3,000 users in one
of HP’s data centers. The tpc-h is RF1 from the Power Test, and one
hour from the Throughput Test of a 300 GB benchmark run on an
8 processor HP N-class server. tpc-c is a 116 warehouse benchmark
run on an HP K-class server with about 50 disks.

length
total

requests
request

rate
volume of data

read/written footprint write footprint
application (000s) req/s MB MB/s MB MB/s MB MB/s

cello/users 1 hr 381 105 2,100 0.6 907 0.25 498 0.14
cello/users 24 hr 1,370 380 8,410 0.1 2,800 0.03 1,370 0.02
openmail/server 1 hr 61 17 211 0.1 75 0.02 49 0.01

tpc-h/update 5 min 2,740 9,120 10,700 36.0 329 1.1 286 1.0
tpc-h/throughput 1 hour 8,400 2,330 868,000 241.0 - - - -
tpc-c/oltp 2 hr 4,220 540 9,860 1.4 1,700 0.24 1,400 0.19

Table 3. Amount of data moved and footprints. Summary for data operations in several traces. The total number
of requests and request rates - which would have to be network messages in a distributed store. The total volume
of data transferred, and the total volumes of unique data used, as well as the amount of unique data written.

5

central site. Users are distributed by randomly assigning
them to sites, with 60% at site A, 30% at site B and 10% at
site C - e.g. modelling a company with three design centers
around the world. The tables shows the footprints at each
site, and the overlap across sites (as illustrated in Figure 1).

This data would be used to determine the distribution of
data in a system using partial replication, where the data
local to a site would be kept only at that site, and the data
that overlapped between sites might be kept fully repli-
cated. It is promising that the footprints of unique data are
significantly smaller than the total amount of data moved
(meaning that local access is beneficial) and that the size of

the overlapping footprints is small (indicating low degrees
of sharing over short time scales).

3.3 Cost of maintaining strong consistency
In order to evaluate the cost of maintaining consistency
across full replicas, we consider the cost of propagating
updates to several global sites. There are two aspects to this
cost, depending on whether a strongly consistent or a more
weakly consistent model is used. In the strongly consistent
model, the key cost is the additional latency of a write
request that must be committed to several global replicas. In
the weakly consistent model, or a model using optimistic
concurrency [Amiri00], the key metric is the potential for
conflicts given the propagation time of requests to the
remote sites. Figure 2 considers both of these factors and
shows the number of accesses in our traces that might con-
flict given the across-the-world latencies introduced in
Table 1. Again, the results are quite promising for all three
traces. Only a bit more than one percent of the write
accesses in the traces may cause a conflict, even with the
very long latency between Palo Alto and Capetown. For the
cello trace, the number of potential conflicts is nearly zero.

application length
volume of data

read/written (MB) site footprint (MB) write footprint (MB) overlap footprint (MB)

site A site B site C all A B C A B C AB AC BC ABC
cello/users 24 hr 8,400 775 614 3,160 2,800 328 178 1,370 263 119 134 48 25 23
openmail/server 1 hr 211 124 23 117 75 54 13 49 47 5 17 1.3 1.2 1.1

Table 4. Site footprints and overlap. Overall statistics for footprints in the distributed variant for two of the traces. The data shows the
total amount of data read or written at each site, the total combined footprint (unique blocks), and the footprint at each site, the write
footprint (unique blocks written) at each site, and the overlap footprints across sites.

Figure 1. Site overlap.
Individual site footprints,
and areas of overlap. Only
the shared data blocks must
be kept strongly consistent
across sites.

overlap footprint

site footprint
A

C

B

Figure 2. Potential consistency conflicts. The time between a write request to a block and the next read or write request to the
same block from a different site, for all blocks accessed at more than one site. The chart shows the cumulative percentage of
interrequest times for all of the write/access pairs in the tpc-c/oltp, openmail/server and cello/users traces. The left chart shows
up to a latency of 1 hour, and the right chart shows only the lower left corner of the first chart, up to 10 second latency. The
arrows indicate the time to send the 3 messages of a 2-phase commit to each of the locations specified. This allows us to
quantify the number of accesses that might be impacted by a strong consistency protocol requiring such messaging. These
charts are based on the number of individual pairs of accesses, so many of the accesses may be to the same blocks.

0 1,000 2,000 3,000
0

20

40

60

80

100

interrequest time (s)

pe
rc

en
t o

f s
ha

re
d

bl
oc

k-
ac

ce
ss

es

0 2 4 6 8 10
0

1

2

3

4

5

interrequest time (s)

pe
rc

en
t o

f s
ha

re
d

bl
oc

k-
ac

ce
ss

es latency to Scotland

latency to Australia

latency to Capetown

cello/users

tp
c-

c/
ol

tp
op

en
m

ai
l/s

er
ve

r

openmail/server

tpc-c/oltp

cello/users

6

4 Related Work
For consistency at the storage level, the bulk of previous
work is in the context of distributed file systems [Kistler92,
Peterson97, Thekkath97, Bolosky00, Ji00]. These use a
variety of methods for achieving consistency, many of
which are applicable to the applications presented here.
However, they each allow only a single model of consis-
tency, while we believe that the system should offer multi-
ple models, and adjust to an application’s requirements with
minimal changes to access semantics, allowing a much
wider range of applications to make use of these facilities.

OceanStore [Kubiatowicz00] proposes an architecture for a
persistent global storage system that relies on large numbers
of encrypted replicas, distributed around the world, to pro-
vide security and availability. The focus is on a very decen-
tralized system targeted at large numbers of individual
users, rather than centralized stores and processing.

Akamai has built a successful company by distributing web
content using servers at strategic points in the Internet and
intelligent distribution algorithms [Karger97]. These sys-
tems work well due to the relatively weak semantics and
low update rates of web content, leaving room for systems
that encompass a wider range of data types and semantics.

At the block level of storage access, there may be lessons in
work on distributed shared memory systems [Mosberger93,
Amza99], as well as in mechanisms developed explicitly
for storage systems such as various forms of optimistic con-
currency [Adya95, Amiri00] or specialized semantics
[Burns00, Yu00] applicable to a subset of workloads.

Various forms of concurrency control have been studied for
many years in the context of database systems [Gray92],
object-oriented databases [Butterworth91, Lamb91], and in
distributed object systems [Birman93, Liskov96, Little96].

5 Conclusions
We have considered a number of scenarios for distributing
a single data store across a number of global sites. Using
block-level traces of I/O activity for a number of applica-
tions from single server, local systems, we have proposed
scenarios for distributing the data sets used, and evaluated
the costs of maintaining consistency among these replicas.
Our initial results are promising in that the amount of data
that must be kept strongly consistent in the applications we
studied is quite low, and the cost of maintaining even strong
consistency across a number of replicas may be bearable.
Our future work will be to identify the set of consistency
schemes that can be applied in different scenarios, to deter-
mine automatic ways to identify which portions of a data set
must be strongly replicated and which can be weakly repli-
cated, and to quantify (and minimize) the impact on perfor-
mance as seen by end users.

References
[Adya95] A. Adya, R. Gruber, B. Liskov and U. Maheshwari.

Efficient optimistic concurrency control using loosely
synchronized clocks. SIGMOD, May 1995.

[Amiri00] K. Amiri, G. Gibson and R. Golding. Highly concurrent
shared storage. Intl. Conference on Distributed Computing
Systems, April 2000.

[Amza99] C. Amza, A. Cox, S. Dwarkadas, L. Jin, K. Rajamani
and W. Zwaenepoel. Adaptive protocols for software
distributed shared memory. Proc. of the IEEE 87(3),
March 1999.

[Birman93] K. Birman. The process group approach to reliable
distributed computing. CACM 36 (12), 1993.

[Bolosky00] W. Bolosky, J. Douceur, D. Ely, M. Theimer.
Feasibility of a serverless distributed file system deployed on
an existing set of desktop PCs. SIGMETICS, June 2000.

[Burns00] R. Burns, R. Rees and D. Long. Consistency and
locking for distributing updates to web servers using a file
system. Workshop on Performance and Architecture of Web
Servers, June 2000.

[Butterworth91] P. Butterworth, A. Otis and J. Stein. The
Gemstone Object Database Management System. CACM 34
(10), 1991.

[Coulouris94] G. Coulouris, J. Dollimore and T. Kindberg.
Distributed Systems: Concepts and Design. Addison-Wesley,
1994.

[EMC00] EMC Corporation. Symmetrix Remote Data Facility
(SRDF). Product Description Guide, June 2000.

[Golding99] R. Golding and E. Borowsky. Fault-tolerant
replication management in large-scale distributed storage
systems. SRDS, October 1999.

[Gray92] J. Gray and A. Reuter. Transaction Processing:
Concepts and Techniques, September 1992.

[Ji00] M. Ji, E. Felten, R.Wang and J. Singh. Archipelago: an
island-based file system for highly available and scalable
Internet services. USENIX Windows Symposium, August 2000.

[Karger97] D. Karger, E. Lehman, F. Leighton, M. Levin, D.
Lewin and R. Panigraphy. Consistent hashing and random
trees: distributed caching protocols for relieving hot spots on
the world wide web, STOC, May 1997.

[Kistler92] J. Kistler and M. Satyanarayanan. Disconnected
operation in the Code file system. ACM Trans. on Computer
Systems 10(1), 1992.

[Kubiatowicz00] J. Kubiatowicz, et al. OceanStore: an
architecture for global-scale persistent storage. ASPLOS,
December 2000.

[Lamb91] C. Lamb, G. Landis, J. Orenstein and D. Weinreb. The
ObjectStore database system. CACM 34 (10), 1991.

[Liskov96] B. Liskov, et al. Safe and efficient sharing of persistent
objects in Thor. SIGMOD, June 1996.

[Little96] M. Little and S. Shrivastava. Using application specific
knowledge for configuring object replicas. Third International
Conference on Configurable Distributed Systems, May 1996.

[Mosberger93] D. Mosberger. Memory consistency models.
Technical Report 93/11, University of Arizona, 1993.

[Peterson97] K. Petersen, M. Spreitzer, D. Terry, M. Theimer and
A. Demers. Flexible update propagation for weakly consistent
replication. SOSP, October 1997.

[Thekkath97] C. Thekkath, T. Mann and E. Lee. Frangipani: a
scalable distributed file system. SOSP, October 1997.

[Yu00] H. Yu and A. Vahdat. Design and evaluation of a
continuous consistency model for replicated services. OSDI,
October 2000.

