An implementation of the Hamlyn
sender-managed interface architecture

Greg Buzzard, David Jacobson, Milon Mackey,
Scott Marovich, and John Wilkes

Computer Systems Laboratory,
Hewlett-Packard Laboratories, Palo Alto, CA

As the latency and bandwidth of multicomputer interconnection fabrics improve, there is a growing need for an
interface between them and host processors that does not hide these gains behind software overhead. The Hamlyn
interface architecture does this. It uses sender-based memory management to eliminate receiver buffer overruns,
provides applications with direct hardware access to minimize latency, supports adaptive routing networks to allow
higher throughput, and offers full protection between applications so that it can be used in a general-purpose
computing environment. To test these claims we built a prototype Hamlyn interface for a Myrinet network connected
to a standard HP workstation and report here on its design and performance. Our interface delivers an application-to-
application round trip time of 28ps for short messages and a one way time of 17.4us + 32.6ns/byte (30.7ms/s) for
longer ones, while requiring fewer cpu cycles than an aggressive implementation of Active Messages on the cm-5.

1 Introduction « Data movement and message arrival notification are
separateData can be moved without interrupting the

Processors are rapidly getting faster, and message-passing ‘) X)
remote host if desired, which provides greater

multicomputer interconnections are doing the same, =
thanks to recent developments in Gb/s links and low- application control and lower overheads

latency packet switches. But the cost of passing messages [Thekkath94].

between applications also includes the overhead of The original Hamlyn design [Wilkes92, Wilkes95], which
crossing interfaces between the operating systesnd incorporated most of these features, was intended to
device driver, and the hardware, which can be orders afupport a packet-based, fault tolerant, adaptive routing
magnitude more than the cost of moving a message’s hittwork for a large-scaleymMb multicomputer, derived
across the wires. from the Mayfly project [Davis92]. This paper extends the

Hamlyn is an architecture for processor-interconnectiofi9inal Hamlyn work by descnbmg:
interfaces that addresses this difficulty. It achieves both * performance data from a working prototype;
low latency and high bandwidth, isolates applications ¢ improved methods of message arrival notification;

from each other's mistakes, and supplies a rich set of « a more powerful packet counting scheme that

message-delivery semantics. It does so by exploiting supports generalized group-receive semantics;
several techniques: « layered protocols that provide in-order message
* Sender-based memory managemsgenders, not streams and application buffer management.

receivers, choose the destination memory addressv% describe the Hamlyn architecture and our application

which messages are deposited. This means that . ;
interface library, presents performance measurements of
messages are sent only when the sender knows thai .
i LT our prototype, discusses related work, and then
there is memory space for them, eliminating buffer

overrun and retransmission under heavy loads. summarizes what we have learned.
+ Direct application access to interface hardware. .
Send and receive operations require@so 2 The Hamlyn architecture
intervention, yielding very low latencies. Hamlyn was intended to support scalable, concurrent,
« Zero-copy protocolsData are transferred directly ~fault-tolerant applications, running ormemp
between application memory and the network withmulticomputer or a closely-coupled computer cluster.
no memory-to-memory Copying or page remappinéUCh applications often require high-bandwidth bulk data
« Automatic message reassemblye interface allows transfers, low-latency control messages (a few
out-of-order packet delivery in order to support mlcrosgconds per round.-trlp), and multiple, independent
adaptive routing networks, which have greater protection domains provided concurrently on each

throughput and fault tolerance [Davis92]. processor.

This paper appears in the proceedings of the 2nd Symposium on Operating Systems Design and Implementation (OSDI'96), Seattle,
Washington, 28-31 October 1996. The USENIX Association has exclusive rights to publish the paper until October 1997. © Copyright
Hewlett-Packard Company 1996. All other rights reserved.

For low latency, Hamlyn gives applications direct access

to the interface hardware for sending messages witisno ~Hamlyn

intervention. It provides a fast, low-cost, message-arrival interface Interface
ificati i ira i control

notification mechanism that does not require interrupts or registers

system calls in order to receive messages. (Interrupts may

be used as an optional alternative, in which case Haml Message Slots
tries to coalesce them instead of delivering one for eac.. areas/ /
N
N

packet.)

For high bandwidth, Hamlyn includes a scatter-gather

direct memory accesbNA) capability that frees the host Eerotection
processor for other operations during long transfers. @< y
Appllcanpns can use it dlrecFIy: it does not requis _ Message
intervention for each use. This allows Hamlyn to avoid all irggut?%sse

memory-to-memory copying in the host.

For security in a multiple-user environment, Hamlyn ~ Figure 1 : message areas and slots.

prevents mutually_s_uspicious applications from sending\y explicit goal was that Hamlyn should be simple
reading, or overwriting each other's data even though thg{ough to be implementable using hardware state

use the ir|1|terfac_e_hardwar|e_directly. This E\VO_idS the negghchines, since programmable controllers are often slow.
to statically partition a multicomputer, or having to use . .
gang-scheduling and interconnection fabric draining fo'll'he next subsections describe the features of the Hamlyn

inter-application protection, as on the-5. design that allow these goals to be met.

Hamlyn deliberately exploits several features of the shapt4 Sender-based memory management
distance interconnection networks commonly used in The first—and perhaps most important—feature is

modern, multicomputer systems: sender-based memory managemerich is a technique
* Very low transient error rateedicated, enclosed, to avoid software-induced packet loss. Packet loss is a

multicomputer interconnection fabrics are better serious problem in low-latency data communication
thought of as extended backplanes than as unreliabigtems because coping with it usually means retaining
networks—they rarely lose or corrupt packets. Hartansmission buffers, acknowledging packet reception in
failures can occur, but transient errors are so order to release buffers when they are no longer needed,
infrequent (perhaps one every few months) that it ignd using a low-level time-out mechanism to trigger
reasonable to handle them using high-level, retransmission. Moreover, the problem usually occurs
application-program mechanism, such as abortingunder heavy loads, when retransmission will only make it
and restarting a transaction [Saltzer84]. worse, so even a low rate of packet loss can produce a
This means that automatic retransmission by a lowewch higher rate of message loss.

level of a protocol stack is unnecessary, improvingThere are two main causes of packet loss: interconnection
performance; that packet reception need not be network problems, such as damaged or lost packets, and
acknowledged, eliminating a potential cause of yeceijver buffer overrun. Our design assumptions legislate

released as soon as their contents have been sentyanagement to prevent the latter.

simplifying buffer management.

. . _ . The basic idea is to determine a message’s final
Hardware flow control in the interconnection fabric

. . _ ‘destination in a receiving host’'s memory before sending
This avoids packet loss by_ applying back pressure iE?so that receiver buffer overrun is impossible. The
senders when _resources fill UP') receiving network interface places incoming packets
Small packet size$hese permit simpler, faster gjrectly into their final resting place instead of leaving
switches and better throughput guarantees, at the G@gim on an interface card or temporarily copying them

of requiring message segmentation and reassemblyj8ewhere in the receiving host's memory.
the interface.

A physically secure netwarkh such networks, 2.2 Slots: naming and protecting message areas
messages need not be encrypted to protect them Data are sent to and fromessage areasvhich are
against eavesdropping. contiguous regions of an application’s virtual-memory

Hamlyn was designed withrsc-like philosophy: to ~ address space, protecteddmechanisms in the usual
make common cases fast and less common ones possif, (Figure 1). Message areas arged down(pinned

into memory) while they remain allocated. This is a
deliberate design decision that trades greater physica e |
memory use for lower latency and greatly simplified

Hamlyn interface

interface design. Incoming

packets
Message areas are referred teshots which are in turn
indexed by small integeslot numbersA slot contains e
base and bound registers for the message area to which it \%'géx in
refers (several slots may refer to the same message area), / - _
and a protection key that must also be held by applications, Slots \S;fjgt'”
wishing to send messages to it. A slot is implemented by area
a data structure that can only be modified byaehis ‘\

data structure lives in the network interface hardware in Incoming

our prototype. Message packet is
area put here

Memory addresses in Hamlyn messages are represented _ _ _
by <slot-number, offset> tuples; this indirection allows Figure 2 : processing an incoming packet.

senders to be isolated from the details of virtual and may be used to used to prevent unauthorized overwrites of

physical memory addressing at receivers. Since packefsetadata at the receiver (see section 2.7).
can potentially arrive out of order, each one needs to be

self-describing. This is accomplished by having the 2.3 Sending termini

Hamlyn interface add a header to each packet that it sep,(g;an gives each sending application a private

out, as shown in Table 1. hardwaresend terminusmplemented as a set of control
Table 1: packet header format (slightly registers and aIFO wprk gueue in_ the_ interfgce card.
simplified). Each line represents 32 bits. These are mapped into the application’s virtual-memory

address space and protectedgynechanisms in the

usual way. In our prototype, each work queue holds up to

63 entries, so that applications can quickly post several

messages without blocking. When the interface sends a

message, it writes a sequence number in a prearranged,

per-terminus, host memory word; this number, modulo

the work queue’s size, identifies the corresponding entry,

thereby telling the application that the entry and any

buffer memory associated with its message can be reused.

[Destination host 1D
Slot number | Metadata index
Protection key
(64 bits)

Packet offset

Packet length

Delta (used in packet counting)

Metadata length | Flags
(user data follows here ...)

Short messages are pushed from a host processor to the
When a packet arrives at a receiving interface (Figure 2drminus queue using ordinasyoReinstructions. We

the interface locates the named slot, adds the base add@gﬁ&hisdirecu/o_ To send a message, the app"cation

of the target message area to the offset specified in thgyrites a transmission-request bleekasically a packet
header, and then moves the packet’s data to that addl’?fé“ader_into the send terminus’ work gueue, followed by
usingbmA, after checking that the packet will fit into theany metadata, then the data. It then notifies the hardware
message area. When the last packet of a message arrgfafie new entry and proceeds to other work; no system

the interface will also notify the receiving application if call or interrupt occurs when Sending a message.

desired (see section 2.6). Long messages are pulled from host memory by the

To ensure that data cannot be written into a buffer withoterface using asynchronoosia. Our prototype

permission, the receiving interface compares the prevents applications from accessing data belonging to
protection key in the packet header to the one in the slgther applications in the following way. Each send

Only if the keys match is writing allowed. Hamlyn terminus has 8 base and bounds registers, settable only by
protection keys are large (64 bits) and sparsely allocatgk os, that are used to identify speciaind buffer arem

to provide good inter-application protection. that are named by small integend buffer tag; A single
Application software can often be simplified if a messaggessage can contain parts from one or more of these
carries a small amount of out-of-bameétadatao be areas; the HamlynmA engine interface gathers them up

deposited in a separate buffer, so our prototype Hamlyan the fly as the message is sent'ol.send a long
interface allows up to 60 bytes of it in the first packet sept

Secondary base and bound registers and a protection k%z;ggg;”g:gggggfﬁi[sv‘g'l'frffogsze] used slots instead of special send

message, the application writes a transmission-request Table 2: a metadata entry.
block to the terminus’ work queue that consists of the

User metadata
header followed by a sequence<eénd_buffer_tag, (60 bytes)
offset, length> tuples describing the location of metadata Packet accumulator
and data. It then notifies the interface of the new entry. Paranoid-mode protection key
The send terminus automatically segments messages Paranoid-mode message area low limit
larger than a single packet, replicating the header in each Paranoid-mode message area high limit
packet—except for the offset field, which is adjusted Hamlyn library receive class pointer

automatically to reflect the address of the new packet gfackets of a message have arrived and the receiving

the receiver. All metadata are put into the first packet. application can be notified. Hamlyn does this by

The Hamlyn interface interleaves packets from all the maintaining a 32-bipacket accumulatan the metadata
send termini with non-empty work queues, providing entry for each expected message. The value of the
approximately equal bandwidth to competing processegccumulator starts out at zero and returns to this when all
sending large amounts of data and, in the absence of the packets have arrived [Jacobson93].

network delays, bounding the time any message waitsgach send terminus has a 32ggtket countemwhich is

a work queue. This scheme could be embellished withjnitialized to a value) specified by the sender in the

priorities, although our prototype didn’t include them. delta field of a transmission-request block. For each
packet except the last in a message, the send terminus sets

2.4 The metadata area a 32-bitdeltafield in the packet header to 1 and

Message areas are intended to receive most incomingdecrements its packet counter using 2’'s complement

data, but we needed three other storage structures for eg@ihmetic. For the last packet it sets the delta field to the

arriving message: final value of the packet counter. It is easily seen that the
« a place in which to deposit metadata; sum of all delta fields in a transmitted message’s packet
. packet counters for the message-arrival notificatiofieaders equaté modulo 32
mechanism (see section 2.5); In receiving interfaces, the delta field in a packet is added
* information for a finer-grained, per-message to its associated packet accumulator as the packet arrives.
protection scheme (see section 2.7); When the accumulator reaches zero again, the entire

There might be hundreds of application processes, witf'€SSage has arrived and a receiving application can be

hundreds of interleaved, concurrently arriving messagd®@!tified (see section 2.6). If a packet delta field is zero,

per process, so we might need tens of thousands of thBgfification occurs without consulting the packet

structures—too many to store on the interface éake. accumulator. This is used as an optimization for single-
chose one mechanism to solve all of these problems: £aCket messages.

128-bytemetadata entrys provided for each expected This deceptively simple mechanism provides two
message (Table 2). These entries are arranged in a vedtoportant capabilities:

called ametadata areawhose base and bound are stored « Single message receiv@ut-of-order packet arrival

in a slot data structure. It lives in a receiving application’s js handled as described above. To summarize: if a
virtual-memory address space. Each packet header message has only one packet, then its sender sets the
specifies the index of a metadata entry associated with its packet header’s delta field to 0 and notification occurs
destination slot, which may be thought of as a message immediately upon arrival. If a message has several
identifier. A metadata entry may be reused as soon as all packets, then the sum of the packet headers’ delta
packets of a message referring to it have been assembledfields is 22. Since the receiving packet accumulator

by the interface and processed by the receiving is also counting modulc®, its value will return to 0
application. A slot must therefore have enough metadata exactly when all packets have arrived.

entries associated with it to accommodate the largest Group receive.A single notification can be
number of messages that might arrive concurrently. generated when a set of messages from a known

group of senders has arrived (e.g., for a distributed

2.5 Packgt counting _) barrier operation). In this case, il sender is given
In some interconnection fabrics, packets of a segmented 5, initial valueY; such that the sum over all

message may arrive at a receiving interface out of order, participating senders of = 232 This sum reaches
so a mechanism is needed to determine when all the 232 5nd wraps around to zero exactly when all

2-The Myricom LANai 2.3 network controller IC that we first planned packets in the message set have arrived. Scatter-
to use only supported 128K bytes of memory for all of the control
program, slot and terminus data structures, and packet buffers.

gathen/o is a special case of this in which all
messages come from the same sender.
Moreover, a process receiving a packet counter value
Y; can delegate work to (say) two other procegses,

Hamlyn interface

andk, as long as their initial packet counter valu(?s, /El%%et

andyY), sum toY,. The identity of a group’s senders

need never be known by a receiver. The Hamlyn y;esqage Slots— ?‘&%Bp%r}t”es
library (section 3) provides a means for dividing area /application)
buffer space and counter values among the delegates Metadata Notification
of the group. area LEue

Individual, multiple-packet messages could be handled
using a simpler mechanism in which each packet header’s
delta field carries the total packet count, and a packet Write cursor
accumulator is reset by the first packet to arrive; however Last packet of in NQCB

this would require the sending interface to calculate the message

total number of packets before sending any. Our scherFigure 3 : notification queues and message notification.
allows group reception and scatter-gathemhile a
receiver remains oblivious to the number of packets se

and requires no extra memory. Slot data structure

Slot mode (see section 2.7)
2.6 Message arrival notification Protection key
A Hamlyn interface indicates that all packets of a messgMessage area base + bounds
have arrived by appending an entry to a circular Metadata area base + bounds
notification queuén main memory. There is one such |NQCB pointer ¢

gueue for each receiving application. The interface the
generates an interrupt if requested, the receiving proce
is asleep, and the processor has no pending interrupt
requests from the interface for other processes. All this Notification queue control block
reduces interrupt overheads to minimum.

Notification queue base + limit

Notification queues are identified hytification queue Write cursor

control blocks(NQCBS) in the interface cardsrAMm, Wrap-around flag ~ Wake-up flag
which are in turn referred to by slot data structures Process handle

(Figures 3 and 4). EaaiQce has a cursor that points to Notification queue virtual address

the tail of its notification queue; when all of a message
packets have arrived, an entry (Table 3) is written at thFigure 4 : slot and notification queue control block
location indicated by the cursor and the cursor is contents. Several slots may point to the same NQCB.
advanced. When it advances beyond the queue’s stor:
area, the cursor is reset and a wrap flag inges is
toggled—that is, the notification queue is treated as a
circular list. This is the only part of the Hamlyn design in which buffer
overrun might occur: a faulty or malicious sender could
transmit messages faster than a receiver can consume

wWrite-only by the interface, no other locking or
synchronization is necessary.

Table 3: notification queue entry.

Wrap flag | SIot Inaex [Notification index them, overwriting an older naotification queue entry. This
Metadata entry pointer can be prevented by ensuring that the queue’s size exceeds
(padding for alignment) the number of messages arriving in the worst case.

. . L . Section 2.7 describes a mechanism that can enforce an
A receiver application wishing to busy-wait for a message per bound on this count: section 2.8 describes a

maintains its own cursor and wrap flag and polls the neag oo . L
. e) iscipline-based solution to bounding it.

available natification queue entry until the wrap flags

match. (The cache-coheref of our prototype’s

workstation ensures that this busy-waiting causagno

bus activity until the entry is rewritten.) Because the

notification queue is read-only by the application and

2.7 Special modes of operation

The mechanism described so far accommodates
cooperating processes in a single application, but we
wanted Hamlyn to provide increased robustness, privacy,

and security for client-server systems of mutually with minimal overhead. In retrospect, it may have been a
suspicious processes: specifically, several senders shapremature optimization.

a common receiver slot. To this end, slots can be put into

two special modes of operation caljgdtanoid and 2.8 Flow control and deadlock prevention
paranoid_one_shot. Both modes use extra fieldsina An important consideration in Hamlyn’s design was to
message’s metadata entry: a secondary base and bouedsure that, in the absence of a failing sender, receiver, or
register, and a protection key that supersedes the slot datarconnection fabric, data is never lost and

structure’s key. When a packet arrives in a slot operatis@mmunication never deadlocks. Deadlock is a

in one of these special modes, the packet header’s baseacherous issue. If Hamlyn employed low-level

and bound fields are compared first to the slot's messagknowledgment of each packet’s transmission, and

area (primary) base and bounds, then to the metadatacommunications were ever blocked because the fabric
(secondary) base and bounds, while the packet headecannot accept more packets, then acknowledgments could
key field is compared to the secondary protection key. Ale blocked as well, potentially causing deadlock.

_tests must pass before the packet is accepted. Additiong{l¥ 40id deadlock by not depending upon hardware

in paranoid_one_shot mode, no further use of the packet acknowledgments and by arranging that the only
metadata entry is allowed without application software 5 qware moderating the flow of incoming packets is the
intervention after the first message for the entry has &gy /0 bus. Incoming transfers are given priority over
received, preventing subsequent messages from being, i4ing transfers for access to thebus, so that the
received before the first one is processed. maximum time an incoming packet stalls at the interface
These modes provide several advantages: is the time for one packet to traverse tkaebus plus a

« Senders’ data can be confined to a small part of asmall amount of overhead in the interface.

message area, limiting the damage that a faulty orwhen power is first applied to a Hamlyn interface card, it
malicious client can cause. enters a state in which it simply accepts and discards

* The paranoid_one_shot mode prevents a faulty or arriving packets. It does the same if the host fails to reset
malicious client from overrunning a notification a periodic handshake timer. The Myricom switch used in
gueue as long as the queue’s size exceeds the nuntherprototype detects powered-down interfaces and
of metadata entries used. This mode also ensures ttigtards packets destined for them. It uses a round-robin
a packet’s data cannot be overwritten after messagervice discipline for incoming ports to avoid starvation
arrival, so the data need not be copied elsewhere ffincoming packets. If arriving packets are delayed while
safe-keeping. waiting for the Hamlyn interface to process them, or if

« Every sender can have its own protection key, there is conflicting traffic at a switch port, the switch and
allowing revocation of one sender’s access rights interface hardware generate link-level back-pressure,
without affecting others. For example, if a node halting the sender. Eventually the sending application will
appears to have failed, all of its senders’ keys can bck when its terminus’ work queue fills up.

revoked, potentially allowing message and metadatg streamline higher-level protocols, we exploit the fact
areas to be immediately reassigned. that the interconnection fabric never loses packets in the
» Since metadata areas are allocated in main memaaasence of failures, which is a reasonable design decision
applications can change the secondary base, bourfdsa small-area, multicomputer interconnection, although
and key registers for their own metadata areas less so for a wide-area network. Sender management of
without osintervention. memory automatically imposes a higher level of flow

These modes entail more complicated interface logic aR@ntrol for buffer space and metadata management, so a
extra tests during packet arrival which introduce a smafitnding application blocks when no resources are

amount of extra latency. (There need not be more hosfVailable to service a request at the receiver.

memory accesses, since a metadata entry’s packet A final concern is to prevent notification queue overrun.
accumulator must be updated anyway.) This can be accomplished by ensuring that the gap

A third special mode of operation, calledt mode, between the number of messages processed at the receiver

represents a special-case optimization for single-pack&nd the number that can have been transmitted by the
messages: if an arriving packet header's metadata inde§8ders is always smaller than the number of metadata
all 1s, then the packet header is used to carry exactly didiries available. This limit can be enforced in

word of metadata, which is written in a notification queugranoid_one_shot mode.

entry in place of a metadata entry pointer. This lets a

single-packet message carry a small amount of metadata

support Hamlyn in bix system§ are largely confined to
Application program this driver, which provides all interface management
services requiringsmediation, such as creating slots and
termini, installing slot protection keys, wiring and

Application interface library:
simple datagrams, record-

streams, tagged remote write unwiring memory, and arranging to suspend or resume an
Lower-level interface library application pending a message’s arrival.
HP-UX OS All other interface management services reside in
IHamen device driver unprivileged library code, linked in with application
Hamlyn programs.
Workstation hardware interface
card

3.2 Low-level library procedures
The Hamlyn library includes a procedural interface to the
[Myrinetswichfabric | network interface hardware and hardware-manipulated
data structures. It uses a data structure caltisttet
/ J \ \ which contains a message’s destination, slot number,
metadata index, protection key, data buffer base and
Figure 5 : schematic view of Hamlyn hardware and bound, and some flags. Tickets are location-independent

chgm%e' The shaded portions were added to support in that they may be exported in a message and used later
: to reply from a remote Hamlyn interface.

2.9 Arch|tectur-al costs i) The library’s lower layer has two main functions:
Hamlyn consciously makes some design choices that h_send_msg andh_recv. The former accepts a ticket, a

impose additional costs compared to more traditional §5t5 puffer's address and length, and a metadata buffer's

approaches: o address and length. Buffer addresses are converted to
1. Message, metadata, and notification queue storageffsets in sender message areas. A small message is
areas must be wired down. written to the interface using direéd, while abma

2. Applications are responsible for buffer managementquest is built for a large message. The function returns
including reclamation after sends and receives. g handle that can later be used to decide when to release a
In return for these costs—which we think are relativelybuffer.

small, and not unlike those imposed by other high- Thep recy function checks whether a message has
performance network designs—Hamlyn provides fully-5rived and, if so, it returns the address of the

protected, direct application access to a network, corresponding notification queue entry. A variant,
automatic message segmentation and assembly, grou recy plock, accepts a time-out argument and waits until

reception notification, rejection of messages from failingjther a message arrives or the specified interval expires.
or malicious processors, and both dindotandDMA

sends. 3.3 Higher-level protocols
The Hamlyn library’s upper layer supports a set of
3 The Hamlyn interface library protocols with varying semantics to send and receive data.

In order to make the Hamlyn architecture easier to use, War€€ protocols, embodying most of its key ideas, are

built a two-level application interface library. The upperd€scribed below.

layer provides a set of convenient programming This layer was written in C++ because the language lets
abstractions and hides the details of buffer memory communication end points be represented as objects,
management. The lower layer provides a simple, efficiekeeping an application’s name space clean and letting
procedural interface to our communication hardware. Tleach protocol use the same operation namgs<end,

library was designed to provide a convenient receive). We were inspired by the work of Stepanov and
infrastructure for popular middleware, suchvas Lee on the C++ Standard Template Library [Stepanov95]
[Corbett95], Active Messages [vonEicken92], and in which aggressive inlining and optimization are

Oracle’s distributed lock manager. We describe these combined to achieve highly efficient object code.

layers from the bottom up (Figure 5). The library creates a Hamlyn manager (an instance of the

hamlyn_manager class) for each send terminus. This class

3.1 0S interface is responsible for managing the device driver interface

The Hamlyn interface card is managed by a device drivggq notification queues, and for allocating buffer memory.
module in the host operating systews.modifications to

S:UNIX is a registered trademark of X/Open Company, Limited.

Applications create an end point for message reception b
instantiating aeceiver class, which contains one or more
metadata areas and buffers, and a queue of received

osti/o

512KB static RAM

messages. It also provides a C++ virtual procedure
(process_arrival) that is called by the Hamlyn manager to -

; . Outgoing
record a new message’s arrival. link DMA
Whenreceive is applied to an end point, a message is Host engine ol
returned from the arrival queue in the receiver class " DMA Lt . ”l\/lr%l/(rsmet
instance if possible. Otherwise—if the queue is empty engine ¢ H:ﬁ(oén,\,'&g
thereceiver instance calls poll_nowait routine in the engine
hamlyn_manager. The latter gets the next notification
gueue entry if there is one, follows its pointers to the LANai microprocessor
metadata area ameceiver end point, and then calls

process_arrival there, passing it the address of the
metadata. Control then returns to tbeeiver end point Figure 6 : schematic view of the Myricom network
originally called by the application, which looks again fointerface.

a new message. (It may not have received one if the Senders block if they ever get so far ahead of the receiver

notification queue was empty or the queue entry just that they run out of tickets (which provide permission to
processed represented a message for a diffexiter \rite to a metadata entry).

instance.) This process continues until the original requ
is satisfied, a time interval expires, or theeiver end
point chooses to block instead of busy-wait.

q’?atgged Remote Write.In this protocol, aend call
specifies a ticket, a source buffer's address and length, the
_ _ destination buffer offset, and an integer tag. Tags are
Although the Hamlyn architecture and the library’s lowegnqueued in theeceiver and can be retrieved by calling
level are thread-safe, the upper level is not. Making it s@t_tag orget_specific_tag. This protocol usefast mode,
remains a research topic. S0 messages must fit in a single packet. In-order delivery
All of the connection-orienteckceiver classes support a IS not guaranteed.
make_seed call, which returns aeedobject, containing
tickets for preallocated buffers, metadata, and other 4 performance evaluation
information. A seed can be sent to a remote node in order .

. . . n order to evaluate the Hamlyn architecture, we
to create an instance of the corresponding end point . . . e

: ; .. collaborated with the University of California at Berkeley
sender class. (It's so named by analogy with the similar : . :
. and Myricom, Inc., to build a prototype interface card for

purpose seeds serve in plants.)

a Myrinet network [Boden95, Buzzard95].
The Hamlyn library uses these techniques to support t

. . t}%e Myrinet switch we used is a non-blocking, 8x8
following protocols:

crossbar, which uses wormhole routing. It provides
Simple datagram protocol.This provides access to rawgoms/s of bandwidth per port in each direction with about
Hamlyn hardware semantics. Téend call is a wrapper (.5,s of latency. We used Myricom’s LANai Version 4.0
for theh_send_msg routine. It creates a small amount ohetwork controller chip with 5K8 of on-card statigAm,
metadata that tells the receiver the offset and length of figcrocoded to implement the Hamlyn design. The LANai
transmitted data and can include a reply ticket. There ifas a 32-bicruand thre@ma units (Figure 6): incoming
separateeceiver instance for each metadata entry, and from the switch, outgoing to the switch, and to/from host
each instance is either “ready” or “not ready”: there is I’memory_ The hostmA engine is the on|y mechanism
queue. available to the LANai controller to access the host's main

Stream protocol. This provides a one-way, one-to-one, memory.

in-order connection from a sender to a receiver. The Our host computers were early-products®000 Series
sender class supportsend andflush. Large buffers are 770 (J200pa-Rrisc workstations with 10@0Hz cPus,

sent as-is, and small ones may be coalesced by copyifgnning Version 10.00 of thee-ux operating system. The
Callingflush forces transmission of all preViOUS'y-pOSte(}hterface cards p|ugged into the workstations’ grapym:s
data. Theeceiver class supporteceive andrelease; the bus, which operates at the same frequency as the LANai
former returns &start-pointer, length> pair describing its cpy (40 MHz). The bus and its processor interface can

result; no copying occurs. It automatically allocates mokgipport incomingma at 10848/s, but outgoing transfers
buffers if needed. Thelease procedure frees all records

up to and including that identified by its argument.

100 { { { 1400+

60 bytes of metadata

1200—:
. N |

, U]
R 4 bytes of metadata A ’U? 1000f
| 2 800
2] S 600
> E ﬂ,fd‘ no metadata 9]
2 ©
= 40 1 " @
< i
_l .

20

O\\\'\\\\'\\\\'\\\\

—_— 1 0 10000 20000 30000 40000
0 200 400 600 800 1000 1200 Message size (bytes)
Message size (bytes)

/ 400—f
F'M 200

o

Figure 7 : latency vs. message size for 256-byte packets. Figure 8 : latency vs. message size for 4kB packets.

are limited to 3®B/s because of reduced opportunities fat.4us of overhead, yielding 14u% in all (28.21s round-
pipelining requests through the bus interface chip. trip). Table 4 shows where the time goes.

The workstations have a cache-coher&ntirchitecture, Table 4: one-way short-message transfer time (us).
which obviates the need for software to flush or purge data

cache lines imMA buffers. It also lets applications busy- ~ raw tagged-remote-
wait for HamlynomMA completion without consumingo interface write protocol
bus bandwidthoma buffers’i/o bus addresses are DMA 33 33
mapped to physical memory addresses by the LANai 6.7 6.7
workstations’ memory-tefo bus interface hardware, so Switch 0.5 0.5
that our card can access a multiple-page buffer in a Host I/0 writes 14 1.4
contiguous/o bus address range—a considerable Host protocol software 0.8 2.2
simplification. Total 12.7 14.1

Unless otherwise stated, our performance measuremeNtsice that the 14s due to the hosto writes represents
were taken by sending a message from one applicatioonly 8 STOREinstructions: these are slow because of the
level process to a second remote one, which returned test of traversing théo bus. By contrast the host protocol
message to the sender. The round-trip times we measweftware costs represent tens or hundreds of instructions.
were divided by two to get one-way data. Where we report

single measurement numbers, we generated them by 4.2 Latency for normal messages

timing at least 10 000 messages. There was less than Bure 7 shows the one-way latency as a function of
variation between independent runs of our test suite. message size with 0, 4, and 60 bytes of metadata and 256-

The performance data reported here apply only to our t8¥{€ Packets. Several effects are visible:

systems and do not necessarily represent products * A baseline cost of about 171 due to host software

currently in production. overhead, LANai control program overhead, and the
cost of writing a notification queue entry.

4.1 Short single-packet messages « Increases in latency at message sizes that are

The lowest latency is obtained using our interfatzas multiples of 256 bytes. Our LANai code takes about

mode of operation (see section 2.7). We measured two 12.54s more to receive a packet of this size than to
cases using 16-byte payloads. In one, application code send one, so the overall time increases at each packet
wrote data to the interface using diréctwithout the boundary. The first step is larger than the others
Hamlyn library, while the other case used the library’s because the code changes from never updating the
Tagged Remote Write protocol. The first case took 2.7 packet accumulator to updating it twice, while

one way (25.4ds round-trip), and the second case added subsequent packets cause one update each.

30 25
g i L 4096
25 20 e e MYV T
] — 1024
£ 20 £]
[oa) i [a) g
s] S 15 e 512
e B = -
= 15— =
S] S 1 256
& 107 3]
5 57
o+ o+t
(0] 10000 20000 30000 40000 o 10000 20000 30000 40000
Message size (bytes) Message size (bytes)

Figure 9 : bandwidth vs. message size for packet sizes of ~ Figure 10 : loopback bandwidth vs. packet size for packet
256, 512, 1024, 2048, and 4096 bytes and no metadata. sizes of 256, 512, 1024, 2048, and 4096 bytes.

« A marginal transmission cost of 55.5ns/byte Keeton95, vonEiken95]. (On the same machine, a context
(18.0vB/s). This results because the three steps switch provoked by a semaphore takegs3)1L
involved are handled serially for each packet: about
31.3ns/byte to move outgoing data to the interface4.3 Bandwidth and packet size
usingdbMA, 12.5ns/byte to move it across the networklsing 4B packets, the bottleneck is ttie bus interface.
at 8vB/s, and 11.7ns/byte famA into the The observed slope of the latency function in Figure 7 is
destination host. 30.7vB/s, from which we infer that the LANai control

« Repeating fine structure with a 32-byte period due fFogram achieves a 96% payload utilization of thes32
power-of-2|/o bus transaction sizes. For examp|e, QUthingDMA channel. The actual utilization is somewhat
28-byte transfer requires three transactions (for 16,/8gher, since counter values are fetched and stored for

and 4 bytes) while a 32-byte transfer is done in jusgach packet. (A potential optimization that we did not
one. explore would be to cache some counters in the interface

« An extra 7.is to sending metadata, including low- ¢&rd-)
level library overhead to translate buffer addressesQur packet size can be altered by recompiling the LANai
then start incoming and outgoipgA. Metadata control program, so it is instructive to examine the latency
bytes incur the same transfer cost as other data butachieved versus message size for various packet sizes.
not counted in the x-axis of Figure 7, so sending moRégure 9 shows the overall one-way bandwidth as a
metadata sent shifts the lines to the left. function of message length for several packet sizes. The

Figure 8 shows the one-way latency fas4ackets. receiving interface takes 1219 per packet. For 256-byte

Here, the bottleneck is moving data from the sending h&§tckets, this limits bandwidth to 6/s, which agrees
to the Hamlyn interface card across fikiebus controller. with our observations. Asymptotic performance increases

The latency exhibits alternating costs of 55.5ns/byte affith Packet size, butks packets outperformké packets
11.6ns/byte: if the last, partial packet of a message is for smaller messages because there is more concurrency

almost full, each additional byte waits for outgoinga, ~PEWEEN OUIgOINGMA, transmission, and incomimyA.
transmission, and incomimpA, totalling 55.5ns/byte. The advantage oi# packets is slight and inconsistent up

But small, final packets arrive early enough that they nelimessage sizes of ki) the largest we measured.

only wait for the previous packetsva into the host Even though the interface does not pad packets to their
memory to finish, which sets the marginal cost of maximum size, there are conflicting pressures on the
11.6ns/byte. choice of packet size:

If a receiving process is asleep, latency is dominated by * Choosing a packet size large enough that network
interrupt service and process-context switching time. We transit time exceeds LANai packet-processing time
observef 78us for packets with no payload, which 7
compares favorably with other recent reports [Jones96,

Our prototype had a defect, which was impractical to fix, that caused
' the actual times to vary widely. This was the minimum latency, which
we are confident would be the latency in a corrected system.

10

keeps the LANai from being a bottleneck. The larges.1 Load/store interfaces

the packet size, the more LANai time remains for A storeinstruction can be thought of as a degenerate,

other tasks, including processing packets moving i§ender-directed message—indeed, there is a large and

the opposite direction. active literature that views large-scale shared memory
* Long delays should be avoided. Transferringg® 4 machines in this way, of which the Cray T3D, Convex

packet occupies a link ancdaa channel for about Exemplarksr AllCache architecture, Alewife

50 us, a long time to block another packet needing[Kranz93], Typhoon [Reinhardt94], and low-lessl|

the same resources. This argues in favor of shorteprotocols [EEE92] are representative examples. All

packets. require dedicated hardware support that is tightly

Taking these into account, we recommend a packet sizdbggrated with the host processors.
1kB for the particular combination of bandwidths and Several groups have used tleaD/STOREparadigm in
overheads measured for our prototype. less tightly coupled systems to provide an interface to

The effect of competing for LAN@Pucycles and/o bus cross-network communication. For example, the Alto
bandwidth can be seen when a message’s source and'€Mote memory reference protocol [Spector81] used
destination are the same process on the same host, a§€tWork messages in this way; [Thekkath94] discusses
shown in Figure 10. With only 4 bytes of data, the Iatenépe idea of separating datg movement from notification in
in this loopback test rises to 1914 because sending and’©MOtELOAD/STOREOperations (Hamlyn also allows
receiving compete for the same LANai controller chip. tiS); andsHRImMP [Blumrich94] provides low-latency

The bandwidth figures tell a similar story: the asymptotf€MOte-memory access using hardware support for
bandwidth of 2818/s from Figure 9 drops to B®/s in automatic data replication, coupled to a virtual-memory

Figure 10 because @b bus contention. protection scheme. Many of these schemes provide
excellent performance for the particular operations that
4.4 Projections for alternative hardware they support—specialization is a powerful tool for

The LANai performance is relatively low because it is 40Wering latency—but sometimes at the expense of
programmable controller. If we were to implement a relatively h|gh'processor ut|I|zat|qn. Most implicitly
Hamlyn interface using hardware state machines, we 9€Pend upon in-order packet delivery.

estimate that the one-way, application-to-application The hybrid deposit model [Osborne94] combines sender-
short-message transfer time would decrease to apsut based addressing with the execution of small programs on
but the large-message bandwidth, which is limited by tleeremote node, using both local and remote data—a

I/0 bus, would not change appreciably. considerable generalization of tienote fetch-and-op
proposed in [Wilkes92]. Implemented in software on top
5 Related work of a 155Mb/sxTMm system, it achieved a round-trip time of

) i 49us without a switch and §8 with one. Osborne credits
There has been a great deal of work in the field of [Subhlok93] with introducing the term “deposit model”

interface design for high-speed interconnections, for what we call sender-based memory management.
especially since the original Hamlyn design was written

up. The history of these ideas is not entirely clear: sevegah Copy avoidance

teams were inventing similar-sounding approaches at geyerq| projects have used page-remapping and smart
around the same time. Itis neither fair to say that Hamlyle face puffer allocation to accelerate processor-to-
copied from them, nor that they copied from Hamlyn. ierface communication, including theufswork at the

(For the record, the earliest extant reference to Hamly”lﬁuiversity of Arizona [Druschel93], the Medusap!
dated July 1992.) Although we think that Hamlyn's mait}, 40 [Lumley92, Banks93] and the follow-on
contribution lies in its coupling of sender-based memon¢a purner project [Dalton93].

management to its protection scheme, we present a

somewhat broader summary of what we consider to be tHee Nectar system [Cooper90] allowed applications
work most relevant to our finished design. direct access to its communication interface memory in

, _ . _ order to eliminate copies at the cost of all accesses being
IBM’s 05/360 provided variants @lut andget file-system to memory in the/o space. It achieved round-tipc

calls that avoided data copying by havingdisespecify |5tencies of 500s across a 1@fb/s network.
the location of the buffer to use, rather than the application i] L -
[Clark66, Belady81]. Hamlyn uses a variant of this ATM network interfaces can use virtual circuit identifiers

mechanism in its interface library. (vcis) to provide early demultiplexing of incgming dat.a. to
user data buffers. One such use occurred in the Osiris
project [Druschel94], which combined stream

11

demultiplexing usingsTm vei s into fbufs, some support controlled by the sender, rather than the receiver; and all
for out-of-order delivery, and direct access to the netwopkotocol processing happens in a well-defined application
interface for a limited number of applications. Togethercontext. “Although the restrictions and limitations of

these achieved a round-trip latency of 1&4nd a previous interfaces [to Active Message systems] made
maximum throughput of about ¥i/s on a 628b/saTm their implementations simple and efficient, the same
network. restrictions and limitations prevent them from supporting

the broader spectrum of applications now required”

CMU’s HardwareAssisteckemoterut (HARP) interface to) g
[Mainwaring95a].

the CreditNetstm adapter card allows applications to
send directly from their own buffers (akin to Hamlyn [Karamcheti94] reported instruction counts (but no

message areas), and to provide a set of buffers into whirhings) for Active Messages oncat-5 (CMAM), which
data for a virtual circuit is placed, but it does not appearaoe roughly comparable to ours although they were
allow direct addressing of remote memory on a per- measured on a®8RC processor and ours are fa¢RISC.
message basis [Mummert96]. We were unable to locat€he cmam finite-sequence, multiple-packet delivery

any published latency figures for this interface. protocol seems to provide functionality that approaches
. our simple datagram protocol: it does not support our
5.3 Cranium group-receive operations, but, like ours, it does handle

Cranium[McKenzie94], like Hamlyn, was designed to out-of-order packet delivery. [Karamcheti94] quotes 397
provide a host interface to a packet-switching fabric thastructions to do a 16-word (64-byte) unidirectional
performed adaptive routing. Like Hamlyn, it has messagend. A send using Hamlyn’s tagged remote write

areas that are used to send and receive data, althougtrcansumes 260 processor cycles (fewer instructions), most
appears that these are restricted® gages, and the of which are consumed when the processor stalls while
expectation is that there is a single message per area, simttng to thel/o bus, and a receive consumes 120 cycles.

there seems to be no provision for a message-offset figlf||achos] reports the lifting of one of the restrictions on

Multiple packets use a sequence number to allow Active Messages: that the handlers must not block.
reassembly, rather than offsets; this simplifies the

hardware, but it requires that all packets in a message ifg think that the idea of Active Messages is good, and we
of the same size. (This means that Cranium could not are gratlﬂed that some Hamlyn f_eatur_es are makl_ng their
handle variable-length metadata.) Receivers specify th¥@ Into a revised proposal [Mainwaring95a], which

identity of senders expected to write to a message areSUPPOrts protection, caching end point descrlpt?om_,
and this is used for protection checks. (There is no well as multiple send and receive areas per end point.

discussion of how spoofing is prevented.) Cranium als®n the other hand, we think that a scheme requiring host
provides queueing channels, which allow messages tofpecessor intervention on every packet wawdtibe such
appended to the end of a message area. We thought albayod idea because the process-context switches would
providing these for Hamlyn but eventually decided not tgrove too expensive. Indeed, the current trend in

(1) to force us to work through all of the details of pureprocessor design seems to be toward ever-larger amounts
sender-based memory management; (2) to avoid of machine state, which will make this more costly still.
introducing gprima faciesource of receiver buffer Hamlyn addresses this concern by automating message
overruns; and (3) because such messages have to be reassembly in the interface card.

restricted to single papkets. _Cranium supports many pf IU@Net [vonEicken95] embodies some of the same

goals of Hamlyn, butits designers made several decisigfigciples as Hamlyn, including direct user-level access to
to reduce functionality in order to simplify the interfaceiq interface in order to eliminatss involvement

It thus represents a different point in the design space.henever possible, and end points that can route

. incoming messages directly to application memory. Like
5'4_ACt'Ve Messages.]] Hamlyn, the prototype U-Net implementation is built by
Active MessagdsonEicken92, vonEicken94, Martin94] re-microcoding an existing interface card—a Fore

provide a set of arrival semantics for single-packet gy stemgu interface. (By their definition, Hamlyn is
messages by including the address of a function to calljging a “standard network interface™) Since it is built on
each one. The function is typically invoked in a restrictivgr\, “which is inherently unreliable, U-Net has to deal
environment on the interrupt stack, with no protection ity |ost packets. Its performance is slightly worse than
barriers around it. As a result, aggressive |mplementat|qqgm|ynls: [vonEicken95] reports Active Message round-

of Active Messages are the standard performance targﬂp times on top of U-Net of 18 for 32 bytes of data or
for this kind of work. The main difference is that Hamlyn

provides security between applications; data placement gwilkes92] suggested the same idea as a way to conserve interface-
card memory.

12

less (411s of which is due to therm switch; the theosinstances can use to establish higher-level
equivalent Myrinet time is|is) and 13fs + 0.2us/byte communication paths.)

for bulk data transfers. (The equivalent Hamlyn numbes gimjjar observation applies to detecting peer-process

are probably the 28 for a round-trip tagged remote ¢4ires. We once thought that an “Are you there?”

write, and the one-way bulk data transfer cost ofi# a5sage should be sent periodically between processes in

32.6ns/byte with k8 packets.) a highly available system, but if such a polling interval
expires without a reply, an application does not know

6 Conclusions whether the system is overloaded, or the polled host has

What did we learn from this exercise? First, the basic [@iled, or a peer process is dead, or the process is stuck in

Hamlyn approach seems to have been validated: we c&1°"9 computation. On the oth'er hand, dshas
provide low-latency, high bandwidth, protected definitive knowledge of process’ states and so can prevent

communication directly from multiple application much of this confusion. The moral is to let tedo what

programs, with little or nosintervention. We also picked It iS good at.
up a few other observations and lessons along the Wa)é . .
.4 Closing connections

6.1 Network demands Traditional networks have difficulty providing reliable
[Karamcheti94] argues that the underlying network connection close because of potential message loss. In the

should provide in-order delivery, deadliock freedom, an@PSence of such loss, they can do a good job because the

fault-tolerant packet transmission. We conclude instea®Sknows about the connection setup and can tear it down
that Hamlyn can synthesize in-order delivery cheaply, V€N after the application dies. (This is even true in most

assuming a deadlock- and error-free network, giving applicati_on—level protocol suites, which invoke thefor
interconnection designers freedom to optimize for ~ connection setup/teardown.) In Hamlyn, gecannot
performance, rather than high-level protocol support. fUlfill this role because it has no knowledge of the
[Davis92] argues that an adaptive-routing network canCONnections, so we reverted to a model where our
achieve roughly twice the throughput of a non-adaptivés);cr’]tgzpe only allows gracefalose operations by a
one. '

6.2 Buffer management 6.5 Stronger security
Hamlyn does not copy outgoing messages, so Hamlyn uses 64-bit protection keys. We estimate that our

applications must be coded to avoid reusing buffers uriototype can detect and discard a packet having an
transmission is complete. To help with this, the Hamlyrﬂ,nval'd key within 3us. At this rate, a brute-force attack is
library provides a function that determines whether a 'IK€ly to take about 877,000 years. Keys can be generated

message buffer can be reclaimed. using cryptographic-quality pseudo-random number
generators, or generators embodying true random

Metadata often originate in a few small variables on an,ocesses, so we think that attack by guessing keys is
application program’s run-time stack, but if transmissiofiiie. But Hamlyn keys reside in applications’ memory

is done usin@wmA, they must be copied to a special, 4qqress spaces, so our defense against forged messages
wired-down metadata area. This proved burdensome; Eepends upon memory privacy. For this reason, and

we were to redesign Hamlyn, we might always send pecayse some users find probabilistic protection
metadata using diredo. unsatisfactory, we thought briefly about other techniques:

6.3 Opening and monitoring connections It would be easy to make protection keys accessible only
There is a “bootstrapping” problem when contacting a indirectly, and have applications spec'ify ipdices into a
long-lived server: a potential client cannot transmit to tHiFCUTe: Per-process table of keys, maintained byshé
server because it has no resources allocated there, andfif&reos would then make keys unforgeable. But this
server cannot send a ticket or seed because it does ncﬁpheme would fundamen.tall){ alter the Hamlyn paradigm,
know of the client's existence. We considered adding afi"c€ aimost all communication channel management
unreliableriFo message queue, but we decided that sint@uld then requiresintervention.

these operations are not time-critical, they could be dohepractice, this is largely irrelevant because the main
with standardbs services, which might themselves use security problem is user passwords, which are much
Hamlyn inside the operating system. (The lowest-levelsimpler to attack than 64-bit binary keys.

bootstrapping problem here can be solved by allocating

well-known slots, one for each remote processor, which

13

6.6 Interface memory cost [Blumrich94] Matthias A. Blumrich, Kai Li, Richard

The original Hamlyn design proposed that slots be cached\Pert, Cezary Dubnicki, Edward W. Felton, and
by interface hardware in order to make them abundant andc;nafthanfSa}[?]dberg. V|rtu|?l memct)rypmappe dq netw;)rk
cheap. Our prototype allocates slot data structures in Intértace tor the&HRIMPmulticomputeri-roceedings o

T : 21st International Symposium on Computer
expensive interface caskAM, and metadata areas in Architecture(Chicago, IL). Published &@omputer

main memory. We never satisfactorily established the A chitecture News22(2):142-53 AcM/IEEE, April
right trade-off between function and complexity here. 1994.

[Boden95] Nannette J. Boden, Danny Cohen, Robert E.

6.7 Summary i .) Felderman, Alan E. Kulawik, Charles E. Seitz, Jakov N.
The Hamlyn architecture provides users with a messagegegjzovic, and Wen-King Su. Myrinet: a Gigabit-per-

passing interface having a combined hardware and second local area networkee Micro, pages 2936,
software latency of just a few microseconds, while February 1995.

providing full protection between mutually suspicious JBuzzardQS] Greg Buzzard, David Jacobson, Scott
applications. We described the most important techniq ©Marovich, and John Wilkes. Hamlyn: A high-

underlying our implementation, including design trade- performance network interface with sender-based
offs that we can make (and have made), and we presentaflemory management. Presentedatinterconnectsi
performance measurements. (Stanford, CA), August 1995. Available from

Our design is optimized for closely-coupled, http:_//www.hpI.hp.com/personal/John_WlIkes
multicomputer systems. It yields better performance thanmp"ndex'html#Hamlyn'
loosely-coupled clusters of autonomous computers anflark66] W. A. Clark. The functional structure of
due to the inherent isolation of message-passing system&S360: partil, data managemenm Systems Journal
provides much better fault tolerance than shared—memoryr’(l):go_Sl' 1966.
systems, as well as inter-application protection at low [Cooper90] Eric Cooper, Peter Steenkiste, Robert
cost. All of these needs must be addressed if large-scale>ansom, and Brian Zill. Protocol implementation on the
parallel machines are to have a significant impact upon Nectar communication processBroceedings of the
general-purpose computing. The Hamlyn architecture is ACM SIGCOMMIO SymposiuniPhiladelphia, PA),
an important step in that direction. September 1990.

[Corbett95] Peter Corbett, Dror Feitelson, Sam Fineberg,
Acknowledgments Yarsun Hsu, Bill Nitzberg, Jean-Pierre Prost, Marc Shnir,
Martin Fouts and Bill Worley of HP Laboratories Bernard Traversat, and Parkson Wong. Overview of the

rovided the initial encouragement to turn Hamlyn from a™"- - '© parallelifo interface 3rd Annual Workshop on
P 9 y I/0in Parallel and Distributed System®gADS95)

random thought into a proper architecture. Monroe (Santa Barbara, CA), pages 1-15, April 1995.

Bridges and his colleagues in Hewlett—Packard’s . .
[Dalton93] Chris Dalton, Greg Watson, David Banks,

Networked Computing Division provided valuable Costas Calamvokis, Aled Edwards, and John Lumley:
insight from the perspective of product designers, forCingAfterburner \EEE Net’work7(4)'36—43; July 1993 '

us to justify and simplify our design. Cedric Krumbein) .
and other members of the Network of Workstations ~ [Davis92] Al Davis. Mayfly: a general-purpose, scalable,
project in the Computer Science and Engineering parallel processing architectutdsp and Symbolic

Division of the University of California at Berkeley Computatiorb(1-2):7-48, May 1992.

helped us to design our interface cards, while the staff[fruschel93] Peter Druschel and Larry L. Peterson.
Myricom, Inc., helped us to build them and gave us a Fbufs: a high-bandwidth cross-domain transfer facility.
considerable amount of advice, sample firmware, and Proceedings of the 148TM Symposium on Operating

. . Systems Principle@sheville, NC), pp 189-202,
early access to their technology, enabling our success. December 1993

[Druschel94] Peter Druschel, Larry L. Peterson, and

References Bruce S. Davie. Experiences with a high-speed network

[Banks93] D. Banks and M. Prudence. A high adaptor: a software perspecti®Rroceedings of the
performance network architecture fopaRISC 1994Acm siccommConference on Communications
workstation Eee Journal on Selected Areas in Architectures, Protocols and Applicationp 2-13,
Communicationd 1(2), February 1993. August 1994.

[Belady81] L. A. Belady and R. P. Parmelee, and C. A[IEEE92] Standard for scalable coherent interfas)(
Scalzi. Thesm history of memory management IEEE Standard 1596-1992.
technologyism Journal of Research and Developmen{jacobson95] David M. Jacobsdfiethod and apparatus
25(5):491-503, September 1981. for determining when all packets of a message have

14

arrived. US patent application, filed 24 February 1999Stepanov95] Alexander Stepanv and Meng Lee. The

allowed 25 June 1996.

[Jones96] Rick JonebletPerf.
http://www.cup.hp.com/netperf/NetperfPage.html,
Hewlett-Packard Company, Cupertino, CA.

[Karamcheti94] Vijay Karamcheti and Andrew A. Chien
Software overhead in messaging layers: where does
time go?Proceedings of International Conference on
Architectural Support for Programming Languages an
Operating Systen{$an Jose, CApcM, October 1994.

[Keeton95] Kimberley Keeton, Thomas Anderson, and
David Patterson. LogP quantified: the case for low-
overhead local area networks. Presented at
HotInterconnectal (Stanford, CA), August 1995.
Available athttp://now.cs.berkeley.edu/Papers/Papers
/hotinter95-tcp.ps.

[Kranz93] David Kranz, Kirk Johnson, Anant Agarwal,
John Kubiatowicz, and Beng-Hong Lim. Integrating
message-passing and shared-memory: early
experienceProceedings of 4thcm Annual Symposium
on Principles and Practice of Parallel Programmijng
May 1993.

[Lumley92] J. LumleyA high-throughput network
interface for to eriscworkstation.Hewlett-Packard
Laboratories technical repotbL—92—7, January 1992.

[McKenzie94] Neil R. McKenzie, Kevin Bolding, Carl

Ebeling, and Lawrence Snyder. Cranium: an interface .

for message passing on adaptive routing networks.
Proceedings of Parallel Computer Routing and
Communication Workshoseattle, WA), pages
266-80, May 1994.

[Osborne94] Randy Osborne. A hybrid deposit model f
low overhead communication in high speads.Proc.
4th Intl. IFIP Workshop on Protocols for High-speed
Networks August 1994. Available as
http://www.merl.com/TR/TR94-02c/Welcome.html.

Standard Template Library. Technical Repot-95-
11 (R.1), Hewlett-Packard Laboratories, 1995.

[Subhlok93] J. Subhlok, J. Stichnoth, D. O’Hallaron, and

T. Gross. Exploiting task and data parallelism on a

multicomputerProceedings of thecm SIGPLAN
ymposium on Principles and Practice of Parallel
rogramming(San Diego, CA), May, 1993, pp 13-22.

frhekkath94] Chandramohan A. Thekkath, Henry M.
Levy, and Edward D. Lazowska. Separating data and
control transfer in distributed operating systems.
Proceedings oAspLOS vI(4—7 Oct. 1994, San Jose,
CA). Published a®perating Systems Review
28(5):2—11, December 1994.

[vonEicken92] Thorsten von Eicken, David E. Culler,
Seth Copen Goldstein, and Klaus Erik Schuser. Active
Messages: a mechanism for integrated communication
and computatiorProceedings of 19th International
Symposium on Computer Architect¢@old Coast,
Australia), pages 25666, May 1992.

[vonEicken94] Thorsten von Eicken, Veena Avula,
Anindya Basu and Vineet Buch. Low-latency
communication over ATM networks using active
messages. PresentedHat Interconnects (Stanford,
CA), August 1994,

[vonEicken95] Thorsten von Eicken, Anindya Basu,
Vineet Buch, and Werner Vogels. U-Net, a user-level

th

interface for parallel and distributed computing.
Proceedings of thecm Symposium on Operating
System Principle€Copper Mountain Resort,
Colorado). Published a@3perating Systems Review
29(5):40-53, December 1995.

?\rl\/ilke392] John WilkesHamlyn—an interface for

sender-based communicatioff@chnical repomtipL-
0SR-92-13. Operating Systems Research Department,
Hewlett-Packard Laboratories, Palo Alto, CA,
November 1992. Available from

[Reinhardt94] Steven K. Reinhardt, James R. Larus, anthp:/amww.hpl.hp.com/personal/John_Wilkes

David A. Wood. Typhoon and Tempest: user-level
shared memorroceedings of 21st International
Symposium on Computer Architect¢@hicago, IL).
Published a€omputer Architecture News
22(2):325-36 ACM/IEEE, April 1994.

[Saltzer84] J. H. Saltzer, D. P. Reed, and D. D. Clark.
End-to-end arguments in system desigm
Transactions on Computer Syste2(g):277—-88,
November 1984.

15

[ftp-index.html#Hamlyn.

[Wilkes95] John Wilkeslnter-processor communication
system in which messages are stored at locations
specified by the sendé&tS patent number 5,448,698,
granted Sept. 1995.

The authors can be contacted as follows:
gdb@geoplex.com, {jacobson, marovich, mackey,
wilkes}@hpl.hp.com. Please address correspondence to

David Jacobson.

