
1  Introduction
Processors are rapidly getting faster, and message-passing
multicomputer interconnections are doing the same,
thanks to recent developments in Gb/s links and low-
latency packet switches. But the cost of passing messages
between applications also includes the overhead of
crossing interfaces between the operating system (OS), a
device driver, and the hardware, which can be orders of
magnitude more than the cost of moving a message’s bits
across the wires.

Hamlyn is an architecture for processor-interconnection
interfaces that addresses this difficulty. It achieves both
low latency and high bandwidth, isolates applications
from each other’s mistakes, and supplies a rich set of
message-delivery semantics. It does so by exploiting
several techniques:

• Sender-based memory management. Senders, not
receivers, choose the destination memory address at
which messages are deposited. This means that
messages are sent only when the sender knows that
there is memory space for them, eliminating buffer
overrun and retransmission under heavy loads.

• Direct application access to interface hardware.
Send and receive operations require noOS

intervention, yielding very low latencies.

• Zero-copy protocols. Data are transferred directly
between application memory and the network with
no memory-to-memory copying or page remapping.

• Automatic message reassembly. The interface allows
out-of-order packet delivery in order to support
adaptive routing networks, which have greater
throughput and fault tolerance [Davis92].

• Data movement and message arrival notification are
separate. Data can be moved without interrupting the
remote host if desired, which provides greater
application control and lower overheads
[Thekkath94].

The original Hamlyn design [Wilkes92, Wilkes95], which
incorporated most of these features, was intended to
support a packet-based, fault tolerant, adaptive routing
network for a large-scale,MIMD multicomputer, derived
from the Mayfly project [Davis92]. This paper extends the
original Hamlyn work by describing:

• performance data from a working prototype;

• improved methods of message arrival notification;

• a more powerful packet counting scheme that
supports generalized group-receive semantics;

• layered protocols that provide in-order message
streams and application buffer management.

We describe the Hamlyn architecture and our application
interface library, presents performance measurements of
our prototype, discusses related work, and then
summarizes what we have learned.

2  The Hamlyn architecture
Hamlyn was intended to support scalable, concurrent,
fault-tolerant applications, running on aMIMD

multicomputer or a closely-coupled computer cluster.
Such applications often require high-bandwidth bulk data
transfers, low-latency control messages (a few
microseconds per round-trip), and multiple, independent
protection domains provided concurrently on each
processor.
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For low latency, Hamlyn gives applications direct access
to the interface hardware for sending messages with noOS

intervention. It provides a fast, low-cost, message-arrival
notification mechanism that does not require interrupts or
system calls in order to receive messages. (Interrupts may
be used as an optional alternative, in which case Hamlyn
tries to coalesce them instead of delivering one for each
packet.)

For high bandwidth, Hamlyn includes a scatter-gather
direct memory access (DMA) capability that frees the host
processor for other operations during long transfers.
Applications can use it directly: it does not requireOS

intervention for each use. This allows Hamlyn to avoid all
memory-to-memory copying in the host.

For security in a multiple-user environment, Hamlyn
prevents mutually suspicious applications from sending,
reading, or overwriting each other’s data even though they
use the interface hardware directly. This avoids the need
to statically partition a multicomputer, or having to use
gang-scheduling and interconnection fabric draining for
inter-application protection, as on theCM-5.

Hamlyn deliberately exploits several features of the short-
distance interconnection networks commonly used in
modern, multicomputer systems:

• Very low transient error rates. Dedicated, enclosed,
multicomputer interconnection fabrics are better
thought of as extended backplanes than as unreliable
networks—they rarely lose or corrupt packets. Hard
failures can occur, but transient errors are so
infrequent (perhaps one every few months) that it is
reasonable to handle them using high-level,
application-program mechanism, such as aborting
and restarting a transaction [Saltzer84].

This means that automatic retransmission by a lower
level of a protocol stack is unnecessary, improving
performance; that packet reception need not be
acknowledged, eliminating a potential cause of
deadlock; and that transmission buffers can be
released as soon as their contents have been sent,
simplifying buffer management.

• Hardware flow control in the interconnection fabric.
This avoids packet loss by applying back pressure to
senders when resources fill up.

• Small packet sizes.These permit simpler, faster
switches and better throughput guarantees, at the cost
of requiring message segmentation and reassembly in
the interface.

• A physically secure network. In such networks,
messages need not be encrypted to protect them
against eavesdropping.

Hamlyn was designed with aRISC-like philosophy: to
make common cases fast and less common ones possible.

An explicit goal was that Hamlyn should be simple
enough to be implementable using hardware state
machines, since programmable controllers are often slow.

The next subsections describe the features of the Hamlyn
design that allow these goals to be met.

2.1 Sender-based memory management
The first—and perhaps most important—feature is
sender-based memory management, which is a technique
to avoid software-induced packet loss. Packet loss is a
serious problem in low-latency data communication
systems because coping with it usually means retaining
transmission buffers, acknowledging packet reception in
order to release buffers when they are no longer needed,
and using a low-level time-out mechanism to trigger
retransmission. Moreover, the problem usually occurs
under heavy loads, when retransmission will only make it
worse, so even a low rate of packet loss can produce a
much higher rate of message loss.

There are two main causes of packet loss: interconnection
network problems, such as damaged or lost packets, and
receiver buffer overrun. Our design assumptions legislate
away the former, and we use sender-based memory
management to prevent the latter.

The basic idea is to determine a message’s final
destination in a receiving host’s memory before sending
it, so that receiver buffer overrun is impossible. The
receiving network interface places incoming packets
directly into their final resting place instead of leaving
them on an interface card or temporarily copying them
elsewhere in the receiving host’s memory.

2.2 Slots: naming and protecting message areas
Data are sent to and frommessage areas, which are
contiguous regions of an application’s virtual-memory
address space, protected byOS mechanisms in the usual
way (Figure 1). Message areas are wired down (pinned
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into memory) while they remain allocated. This is a
deliberate design decision that trades greater physical
memory use for lower latency and greatly simplified
interface design.

Message areas are referred to byslots, which are in turn
indexed by small integerslot numbers. A slot contains
base and bound registers for the message area to which it
refers (several slots may refer to the same message area),
and a protection key that must also be held by applications
wishing to send messages to it. A slot is implemented by
a data structure that can only be modified by theOS; this
data structure lives in the network interface hardware in
our prototype.

Memory addresses in Hamlyn messages are represented
by <slot-number, offset> tuples; this indirection allows
senders to be isolated from the details of virtual and
physical memory addressing at receivers. Since packets
can potentially arrive out of order, each one needs to be
self-describing. This is accomplished by having the
Hamlyn interface add a header to each packet that it sends
out, as shown in Table 1.

When a packet arrives at a receiving interface (Figure 2),
the interface locates the named slot, adds the base address
of the target message area to the offset specified in the
header, and then moves the packet’s data to that address
usingDMA, after checking that the packet will fit into the
message area. When the last packet of a message arrives
the interface will also notify the receiving application if
desired (see section 2.6).

To ensure that data cannot be written into a buffer without
permission, the receiving interface compares the
protection key in the packet header to the one in the slot.
Only if the keys match is writing allowed. Hamlyn
protection keys are large (64 bits) and sparsely allocated
to provide good inter-application protection.

Application software can often be simplified if a message
carries a small amount of out-of-bandmetadata to be
deposited in a separate buffer, so our prototype Hamlyn
interface allows up to 60 bytes of it in the first packet sent.
Secondary base and bound registers and a protection key

may be used to used to prevent unauthorized overwrites of
metadata at the receiver (see section 2.7).

2.3 Sending termini
Hamlyn gives each sending application a private
hardwaresend terminus, implemented as a set of control
registers and aFIFO work queue in the interface card.
These are mapped into the application’s virtual-memory
address space and protected byOS mechanisms in the
usual way. In our prototype, each work queue holds up to
63 entries, so that applications can quickly post several
messages without blocking. When the interface sends a
message, it writes a sequence number in a prearranged,
per-terminus, host memory word; this number, modulo
the work queue’s size, identifies the corresponding entry,
thereby telling the application that the entry and any
buffer memory associated with its message can be reused.

Short messages are pushed from a host processor to the
terminus queue using ordinarySTORE instructions. We
call thisdirect I/O. To send a message, the application
writes a transmission-request block—basically a packet
header—into the send terminus’ work queue, followed by
any metadata, then the data. It then notifies the hardware
of the new entry and proceeds to other work; no system
call or interrupt occurs when sending a message.

Long messages are pulled from host memory by the
interface using asynchronousDMA. Our prototype
prevents applications from accessing data belonging to
other applications in the following way. Each send
terminus has 8 base and bounds registers, settable only by
theOS, that are used to identify specialsend buffer areas
that are named by small integersend buffer tags. A single
message can contain parts from one or more of these
areas; the HamlynDMA engine interface gathers them up
on the fly as the message is sent out.1 To send a long

1.Our original proposal [Wilkes92] used slots instead of special send
message areas for this purpose.

Table 1 : packet header format (slightly
simplified). Each line represents 32 bits.

Destination host ID

Slot number Metadata index

Protection key

(64 bits)

Packet offset

Packet length

Delta (used in packet counting)
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(user data follows here …)
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Figure 2 : processing an incoming packet.
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message, the application writes a transmission-request
block to the terminus’ work queue that consists of the
header followed by a sequence of<send_buffer_tag,
offset, length> tuples describing the location of metadata
and data. It then notifies the interface of the new entry.

The send terminus automatically segments messages
larger than a single packet, replicating the header in each
packet—except for the offset field, which is adjusted
automatically to reflect the address of the new packet at
the receiver. All metadata are put into the first packet.

The Hamlyn interface interleaves packets from all the
send termini with non-empty work queues, providing
approximately equal bandwidth to competing processes
sending large amounts of data and, in the absence of
network delays, bounding the time any message waits in
a work queue. This scheme could be embellished with
priorities, although our prototype didn’t include them.

2.4 The metadata area
Message areas are intended to receive most incoming
data, but we needed three other storage structures for each
arriving message:

• a place in which to deposit metadata;

• packet counters for the message-arrival notification
mechanism (see section 2.5);

• information for a finer-grained, per-message
protection scheme (see section 2.7);

There might be hundreds of application processes, with
hundreds of interleaved, concurrently arriving messages
per process, so we might need tens of thousands of these
structures—too many to store on the interface card.2 We
chose one mechanism to solve all of these problems: a
128-bytemetadata entry is provided for each expected
message (Table 2). These entries are arranged in a vector,
called ametadata area, whose base and bound are stored
in a slot data structure. It lives in a receiving application’s
virtual-memory address space. Each packet header
specifies the index of a metadata entry associated with its
destination slot, which may be thought of as a message
identifier. A metadata entry may be reused as soon as all
packets of a message referring to it have been assembled
by the interface and processed by the receiving
application. A slot must therefore have enough metadata
entries associated with it to accommodate the largest
number of messages that might arrive concurrently.

2.5 Packet counting
In some interconnection fabrics, packets of a segmented
message may arrive at a receiving interface out of order,
so a mechanism is needed to determine when all the
2.The Myricom LANai 2.3 network controller IC that we first planned

to use only supported 128K bytes of memory for all of the control
program, slot and terminus data structures, and packet buffers.

packets of a message have arrived and the receiving
application can be notified. Hamlyn does this by
maintaining a 32-bitpacket accumulator in the metadata
entry for each expected message. The value of the
accumulator starts out at zero and returns to this when all
the packets have arrived [Jacobson95].

Each send terminus has a 32-bitpacket counter, which is
initialized to a value (Y) specified by the sender in the
delta field of a transmission-request block. For each
packet except the last in a message, the send terminus sets
a 32-bitdelta field in the packet header to 1 and
decrements its packet counter using 2’s complement
arithmetic. For the last packet it sets the delta field to the
final value of the packet counter. It is easily seen that the
sum of all delta fields in a transmitted message’s packet
headers equalsY, modulo 232.

In receiving interfaces, the delta field in a packet is added
to its associated packet accumulator as the packet arrives.
When the accumulator reaches zero again, the entire
message has arrived and a receiving application can be
notified (see section 2.6). If a packet delta field is zero,
notification occurs without consulting the packet
accumulator. This is used as an optimization for single-
packet messages.

This deceptively simple mechanism provides two
important capabilities:

• Single message receive. Out-of-order packet arrival
is handled as described above. To summarize: if a
message has only one packet, then its sender sets the
packet header’s delta field to 0 and notification occurs
immediately upon arrival. If a message has several
packets, then the sum of the packet headers’ delta
fields is 232. Since the receiving packet accumulator
is also counting modulo 232, its value will return to 0
exactly when all packets have arrived.

• Group receive. A single notification can be
generated when a set of messages from a known
group of senders has arrived (e.g., for a distributed
barrier operation). In this case, theith sender is given
an initial valueYi such that the sum over all
participating senders ofYi = 232. This sum reaches
232 and wraps around to zero exactly when all
packets in the message set have arrived. Scatter-

Table 2 : a metadata entry.

User metadata
(60 bytes)

Packet accumulator

Paranoid-mode protection key

Paranoid-mode message area low limit

Paranoid-mode message area high limit

Hamlyn library receive class pointer
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gatherI/O is a special case of this in which all
messages come from the same sender.

Moreover, a process receiving a packet counter value
Yi can delegate work to (say) two other processes,j
andk, as long as their initial packet counter values,Yj
andYk, sum toYi. The identity of a group’s senders
need never be known by a receiver. The Hamlyn
library (section 3) provides a means for dividing
buffer space and counter values among the delegates
of the group.

Individual, multiple-packet messages could be handled
using a simpler mechanism in which each packet header’s
delta field carries the total packet count, and a packet
accumulator is reset by the first packet to arrive; however
this would require the sending interface to calculate the
total number of packets before sending any. Our scheme
allows group reception and scatter-gatherI/O while a
receiver remains oblivious to the number of packets sent,
and requires no extra memory.

2.6 Message arrival notification
A Hamlyn interface indicates that all packets of a message
have arrived by appending an entry to a circular
notification queue in main memory. There is one such
queue for each receiving application. The interface then
generates an interrupt if requested, the receiving process
is asleep, and the processor has no pending interrupt
requests from the interface for other processes. All this
reduces interrupt overheads to minimum.

Notification queues are identified bynotification queue
control blocks (NQCBs) in the interface card’sSRAM,
which are in turn referred to by slot data structures
(Figures 3 and 4). EachNQCB has a cursor that points to
the tail of its notification queue; when all of a message’s
packets have arrived, an entry (Table 3) is written at the
location indicated by the cursor and the cursor is
advanced. When it advances beyond the queue’s storage
area, the cursor is reset and a wrap flag in theNQCB is
toggled—that is, the notification queue is treated as a
circular list.

A receiver application wishing to busy-wait for a message
maintains its own cursor and wrap flag and polls the next
available notification queue entry until the wrap flags
match. (The cache-coherentI/O of our prototype’s
workstation ensures that this busy-waiting causes noI/O
bus activity until the entry is rewritten.) Because the
notification queue is read-only by the application and

write-only by the interface, no other locking or
synchronization is necessary.

This is the only part of the Hamlyn design in which buffer
overrun might occur: a faulty or malicious sender could
transmit messages faster than a receiver can consume
them, overwriting an older notification queue entry. This
can be prevented by ensuring that the queue’s size exceeds
the number of messages arriving in the worst case.
Section 2.7 describes a mechanism that can enforce an
upper bound on this count; section 2.8 describes a
discipline-based solution to bounding it.

2.7 Special modes of operation
The mechanism described so far accommodates
cooperating processes in a single application, but we
wanted Hamlyn to provide increased robustness, privacy,

Table 3 : notification queue entry.

Wrap flag Slot index Notification index

Metadata entry pointer

(padding for alignment)

Metadata
area

Figure 3 : notification queues and message notification.

Figure 4 : slot and notification queue control block
contents. Several slots may point to the same NQCB.

Slot data structure

Slot mode (see section 2.7)

Protection key

Message area base + bounds

Metadata area base + bounds

NQCB pointer

Notification queue control block

Notification queue base + limit

Write cursor

Wrap-around flag Wake-up flag

Process handle

Notification queue virtual address

Message
area

Last packet of
message

Packet
slot #

Hamlyn interface
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Notification
queue

Slots NQCB entries
(one per
application)
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and security for client-server systems of mutually
suspicious processes: specifically, several senders sharing
a common receiver slot. To this end, slots can be put into
two special modes of operation calledparanoid and
paranoid_one_shot. Both modes use extra fields in a
message’s metadata entry: a secondary base and bounds
register, and a protection key that supersedes the slot data
structure’s key. When a packet arrives in a slot operating
in one of these special modes, the packet header’s base
and bound fields are compared first to the slot’s message
area (primary) base and bounds, then to the metadata
(secondary) base and bounds, while the packet header’s
key field is compared to the secondary protection key. All
tests must pass before the packet is accepted. Additionally
in paranoid_one_shot mode, no further use of the
metadata entry is allowed without application software
intervention after the first message for the entry has been
received, preventing subsequent messages from being
received before the first one is processed.

These modes provide several advantages:

• Senders’ data can be confined to a small part of a
message area, limiting the damage that a faulty or
malicious client can cause.

• The paranoid_one_shot mode prevents a faulty or
malicious client from overrunning a notification
queue as long as the queue’s size exceeds the number
of metadata entries used. This mode also ensures that
a packet’s data cannot be overwritten after message
arrival, so the data need not be copied elsewhere for
safe-keeping.

• Every sender can have its own protection key,
allowing revocation of one sender’s access rights
without affecting others. For example, if a node
appears to have failed, all of its senders’ keys can be
revoked, potentially allowing message and metadata
areas to be immediately reassigned.

• Since metadata areas are allocated in main memory,
applications can change the secondary base, bounds,
and key registers for their own metadata areas
without OS intervention.

These modes entail more complicated interface logic and
extra tests during packet arrival which introduce a small
amount of extra latency. (There need not be more host
memory accesses, since a metadata entry’s packet
accumulator must be updated anyway.)

A third special mode of operation, calledfast mode,
represents a special-case optimization for single-packet
messages: if an arriving packet header’s metadata index is
all 1’s, then the packet header is used to carry exactly one
word of metadata, which is written in a notification queue
entry in place of a metadata entry pointer. This lets a
single-packet message carry a small amount of metadata

with minimal overhead. In retrospect, it may have been a
premature optimization.

2.8 Flow control and deadlock prevention
An important consideration in Hamlyn’s design was to
ensure that, in the absence of a failing sender, receiver, or
interconnection fabric, data is never lost and
communication never deadlocks. Deadlock is a
treacherous issue. If Hamlyn employed low-level
acknowledgment of each packet’s transmission, and
communications were ever blocked because the fabric
cannot accept more packets, then acknowledgments could
be blocked as well, potentially causing deadlock.

We avoid deadlock by not depending upon hardware
packet acknowledgments and by arranging that the only
hardware moderating the flow of incoming packets is the
host’sI/O bus. Incoming transfers are given priority over
outgoing transfers for access to theI/O bus, so that the
maximum time an incoming packet stalls at the interface
is the time for one packet to traverse theI/O bus plus a
small amount of overhead in the interface.

When power is first applied to a Hamlyn interface card, it
enters a state in which it simply accepts and discards
arriving packets. It does the same if the host fails to reset
a periodic handshake timer. The Myricom switch used in
our prototype detects powered-down interfaces and
discards packets destined for them. It uses a round-robin
service discipline for incoming ports to avoid starvation
of incoming packets. If arriving packets are delayed while
waiting for the Hamlyn interface to process them, or if
there is conflicting traffic at a switch port, the switch and
interface hardware generate link-level back-pressure,
halting the sender. Eventually the sending application will
block when its terminus’ work queue fills up.

To streamline higher-level protocols, we exploit the fact
that the interconnection fabric never loses packets in the
absence of failures, which is a reasonable design decision
for a small-area, multicomputer interconnection, although
less so for a wide-area network. Sender management of
memory automatically imposes a higher level of flow
control for buffer space and metadata management, so a
sending application blocks when no resources are
available to service a request at the receiver.

A final concern is to prevent notification queue overrun.
This can be accomplished by ensuring that the gap
between the number of messages processed at the receiver
and the number that can have been transmitted by the
senders is always smaller than the number of metadata
entries available. This limit can be enforced in
paranoid_one_shot mode.
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2.9 Architectural costs
Hamlyn consciously makes some design choices that
impose additional costs compared to more traditional
approaches:

1. Message, metadata, and notification queue storage
areas must be wired down.

2. Applications are responsible for buffer management,
including reclamation after sends and receives.

In return for these costs—which we think are relatively
small, and not unlike those imposed by other high-
performance network designs—Hamlyn provides fully-
protected, direct application access to a network,
automatic message segmentation and assembly, group
reception notification, rejection of messages from failing
or malicious processors, and both directI/O andDMA

sends.

3  The Hamlyn interface library
In order to make the Hamlyn architecture easier to use, we
built a two-level application interface library. The upper
layer provides a set of convenient programming
abstractions and hides the details of buffer memory
management. The lower layer provides a simple, efficient
procedural interface to our communication hardware. The
library was designed to provide a convenient
infrastructure for popular middleware, such asMPI

[Corbett95], Active Messages [vonEicken92], and
Oracle’s distributed lock manager. We describe these
layers from the bottom up (Figure 5).

3.1 OS interface
The Hamlyn interface card is managed by a device driver
module in the host operating system.OS modifications to

support Hamlyn in UNIX systems3 are largely confined to
this driver, which provides all interface management
services requiringOS mediation, such as creating slots and
termini, installing slot protection keys, wiring and
unwiring memory, and arranging to suspend or resume an
application pending a message’s arrival.

All other interface management services reside in
unprivileged library code, linked in with application
programs.

3.2 Low-level library procedures
The Hamlyn library includes a procedural interface to the
network interface hardware and hardware-manipulated
data structures. It uses a data structure called aticket,
which contains a message’s destination, slot number,
metadata index, protection key, data buffer base and
bound, and some flags. Tickets are location-independent
in that they may be exported in a message and used later
to reply from a remote Hamlyn interface.

The library’s lower layer has two main functions:
h_send_msg and h_recv. The former accepts a ticket, a
data buffer’s address and length, and a metadata buffer’s
address and length. Buffer addresses are converted to
offsets in sender message areas. A small message is
written to the interface using directI/O, while aDMA

request is built for a large message. The function returns
a handle that can later be used to decide when to release a
buffer.

Theh_recv function checks whether a message has
arrived and, if so, it returns the address of the
corresponding notification queue entry. A variant,
h_recv_block, accepts a time-out argument and waits until
either a message arrives or the specified interval expires.

3.3 Higher-level protocols
The Hamlyn library’s upper layer supports a set of
protocols with varying semantics to send and receive data.
Three protocols, embodying most of its key ideas, are
described below.

This layer was written in C++ because the language lets
communication end points be represented as objects,
keeping an application’s name space clean and letting
each protocol use the same operation names (e.g., send,
receive). We were inspired by the work of Stepanov and
Lee on the C++ Standard Template Library [Stepanov95]
in which aggressive inlining and optimization are
combined to achieve highly efficient object code.

The library creates a Hamlyn manager (an instance of the
hamlyn_manager class) for each send terminus. This class
is responsible for managing the device driver interface
and notification queues, and for allocating buffer memory.

3.UNIX is a registered trademark of X/Open Company, Limited.

Figure 5 : schematic view of Hamlyn hardware and
software. The shaded portions were added to support
Hamlyn.

Application program
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Applications create an end point for message reception by
instantiating areceiver class, which contains one or more
metadata areas and buffers, and a queue of received
messages. It also provides a C++ virtual procedure
(process_arrival) that is called by the Hamlyn manager to
record a new message’s arrival.

Whenreceive is applied to an end point, a message is
returned from the arrival queue in the receiver class
instance if possible. Otherwise—if the queue is empty—
thereceiver instance calls apoll_nowait routine in the
hamlyn_manager. The latter gets the next notification
queue entry if there is one, follows its pointers to the
metadata area andreceiver end point, and then calls
process_arrival there, passing it the address of the
metadata. Control then returns to thereceiver end point
originally called by the application, which looks again for
a new message. (It may not have received one if the
notification queue was empty or the queue entry just
processed represented a message for a differentreceiver
instance.) This process continues until the original request
is satisfied, a time interval expires, or thereceiver end
point chooses to block instead of busy-wait.

Although the Hamlyn architecture and the library’s lower
level are thread-safe, the upper level is not. Making it so
remains a research topic.

All of the connection-orientedreceiver classes support a
make_seed call, which returns aseedobject, containing
tickets for preallocated buffers, metadata, and other
information. A seed can be sent to a remote node in order
to create an instance of the corresponding end point
sender class. (It’s so named by analogy with the similar
purpose seeds serve in plants.)

The Hamlyn library uses these techniques to support the
following protocols:

Simple datagram protocol. This provides access to raw
Hamlyn hardware semantics. Thesend call is a wrapper
for theh_send_msg routine. It creates a small amount of
metadata that tells the receiver the offset and length of the
transmitted data and can include a reply ticket. There is a
separatereceiver instance for each metadata entry, and
each instance is either “ready” or “not ready”: there is no
queue.

Stream protocol. This provides a one-way, one-to-one,
in-order connection from a sender to a receiver. The
sender class supports send andflush. Large buffers are
sent as-is, and small ones may be coalesced by copying.
Callingflush forces transmission of all previously-posted
data. Thereceiver class supportsreceive andrelease; the
former returns a<start-pointer, length> pair describing its
result; no copying occurs. It automatically allocates more
buffers if needed. Therelease procedure frees all records
up to and including that identified by its argument.

Senders block if they ever get so far ahead of the receiver
that they run out of tickets (which provide permission to
write to a metadata entry).

Tagged Remote Write. In this protocol, asend call
specifies a ticket, a source buffer’s address and length, the
destination buffer offset, and an integer tag. Tags are
enqueued in thereceiver and can be retrieved by calling
get_tag orget_specific_tag. This protocol usesfast mode,
so messages must fit in a single packet. In-order delivery
is not guaranteed.

4  Performance evaluation
In order to evaluate the Hamlyn architecture, we
collaborated with the University of California at Berkeley
and Myricom, Inc., to build a prototype interface card for
a Myrinet network [Boden95, Buzzard95].

The Myrinet switch we used is a non-blocking, 8x8
crossbar, which uses wormhole routing. It provides
80MB/S of bandwidth per port in each direction with about
0.5µs of latency. We used Myricom’s LANai Version 4.0
network controller chip with 512KB of on-card staticRAM,
microcoded to implement the Hamlyn design. The LANai
has a 32-bitCPU and threeDMA units (Figure 6): incoming
from the switch, outgoing to the switch, and to/from host
memory. The hostDMA engine is the only mechanism
available to the LANai controller to access the host’s main
memory.

Our host computers were early-productionHP 9000 Series
770 (J200)PA-RISC workstations with 100MHz CPUs,
running Version 10.00 of theHP-UX operating system. The
interface cards plugged into the workstations’ graphicsI/O
bus, which operates at the same frequency as the LANai
CPU (40 MHz). The bus and its processor interface can
support incomingDMA at 106MB/s, but outgoing transfers

Figure 6 : schematic view of the Myricom network
interface.
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are limited to 32MB/s because of reduced opportunities for
pipelining requests through the bus interface chip.

The workstations have a cache-coherentI/O architecture,
which obviates the need for software to flush or purge data
cache lines inDMA buffers. It also lets applications busy-
wait for HamlynDMA completion without consumingI/O
bus bandwidth.DMA buffers’ I/O bus addresses are
mapped to physical memory addresses by the
workstations’ memory-to-I/O bus interface hardware, so
that our card can access a multiple-page buffer in a
contiguousI/O bus address range—a considerable
simplification.

Unless otherwise stated, our performance measurements
were taken by sending a message from one application-
level process to a second remote one, which returned the
message to the sender. The round-trip times we measured
were divided by two to get one-way data. Where we report
single measurement numbers, we generated them by
timing at least 10 000 messages. There was less than 1%
variation between independent runs of our test suite.

The performance data reported here apply only to our test
systems and do not necessarily represent products
currently in production.

4.1 Short single-packet messages
The lowest latency is obtained using our interface’sfast
mode of operation (see section 2.7). We measured two
cases using 16-byte payloads. In one, application code
wrote data to the interface using directI/O without the
Hamlyn library, while the other case used the library’s
Tagged Remote Write protocol. The first case took 12.7µs
one way (25.4µs round-trip), and the second case added

1.4µs of overhead, yielding 14.1µs in all (28.2µs round-
trip). Table 4 shows where the time goes.

Notice that the 1.4µs due to the hostI/O writes represents
only 8STORE instructions: these are slow because of the
cost of traversing theI/O bus. By contrast the host protocol
software costs represent tens or hundreds of instructions.

4.2 Latency for normal messages
Figure 7 shows the one-way latency as a function of
message size with 0, 4, and 60 bytes of metadata and 256-
byte packets. Several effects are visible:

• A baseline cost of about 17.4µs due to host software
overhead, LANai control program overhead, and the
cost of writing a notification queue entry.

• Increases in latency at message sizes that are
multiples of 256 bytes. Our LANai code takes about
12.5µs more to receive a packet of this size than to
send one, so the overall time increases at each packet
boundary. The first step is larger than the others
because the code changes from never updating the
packet accumulator to updating it twice, while
subsequent packets cause one update each.
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Figure 7 : latency vs. message size for 256-byte packets.

Table 4 : one-way short-message transfer time (µs).

raw
interface

tagged-remote-
write protocol

DMA 3.3 3.3

LANai 6.7 6.7

Switch 0.5 0.5

Host I/O writes 1.4 1.4

Host protocol software 0.8 2.2

Total 12.7 14.1
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10

• A marginal transmission cost of 55.5ns/byte
(18.0MB/s). This results because the three steps
involved are handled serially for each packet: about
31.3ns/byte to move outgoing data to the interface
usingDMA, 12.5ns/byte to move it across the network
at 80MB/s, and 11.7ns/byte forDMA into the
destination host.

• Repeating fine structure with a 32-byte period due to
power-of-2I/O bus transaction sizes. For example, a
28-byte transfer requires three transactions (for 16, 8,
and 4 bytes) while a 32-byte transfer is done in just
one.

• An extra 7.7µs to sending metadata, including low-
level library overhead to translate buffer addresses,
then start incoming and outgoingDMA. Metadata
bytes incur the same transfer cost as other data but are
not counted in the x-axis of Figure 7, so sending more
metadata sent shifts the lines to the left.

Figure 8 shows the one-way latency for 4KB packets.
Here, the bottleneck is moving data from the sending host
to the Hamlyn interface card across theI/O bus controller.
The latency exhibits alternating costs of 55.5ns/byte and
11.6ns/byte: if the last, partial packet of a message is
almost full, each additional byte waits for outgoingDMA,
transmission, and incomingDMA, totalling 55.5ns/byte.
But small, final packets arrive early enough that they need
only wait for the previous packet’sDMA into the host
memory to finish, which sets the marginal cost of
11.6ns/byte.

If a receiving process is asleep, latency is dominated by
interrupt service and process-context switching time. We
observed4 78µs for packets with no payload, which
compares favorably with other recent reports [Jones96,

Keeton95, vonEiken95]. (On the same machine, a context
switch provoked by a semaphore takes 31µs.)

4.3 Bandwidth and packet size
Using 4KB packets, the bottleneck is theI/O bus interface.
The observed slope of the latency function in Figure 7 is
30.7MB/s, from which we infer that the LANai control
program achieves a 96% payload utilization of the 32MB/s
outgoingDMA channel. The actual utilization is somewhat
higher, since counter values are fetched and stored for
each packet. (A potential optimization that we did not
explore would be to cache some counters in the interface
card.)

Our packet size can be altered by recompiling the LANai
control program, so it is instructive to examine the latency
achieved versus message size for various packet sizes.
Figure 9 shows the overall one-way bandwidth as a
function of message length for several packet sizes. The
receiving interface takes 12.9µs per packet. For 256-byte
packets, this limits bandwidth to 20MB/s, which agrees
with our observations. Asymptotic performance increases
with packet size, but 2KB packets outperform 4KB packets
for smaller messages because there is more concurrency
between outgoingDMA, transmission, and incomingDMA.
The advantage of 4KB packets is slight and inconsistent up
to message sizes of 40KB, the largest we measured.

Even though the interface does not pad packets to their
maximum size, there are conflicting pressures on the
choice of packet size:

• Choosing a packet size large enough that network
transit time exceeds LANai packet-processing time

4.Our prototype had a defect, which was impractical to fix, that caused
the actual times to vary widely. This was the minimum latency, which
we are confident would be the latency in a corrected system.
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keeps the LANai from being a bottleneck. The larger
the packet size, the more LANai time remains for
other tasks, including processing packets moving in
the opposite direction.

• Long delays should be avoided. Transferring a 4KB

packet occupies a link and aDMA channel for about
50 µs, a long time to block another packet needing
the same resources. This argues in favor of shorter
packets.

Taking these into account, we recommend a packet size of
1KB for the particular combination of bandwidths and
overheads measured for our prototype.

The effect of competing for LANaiCPU cycles andI/O bus
bandwidth can be seen when a message’s source and
destination are the same process on the same host, as
shown in Figure 10. With only 4 bytes of data, the latency
in this loopback test rises to 19.1µs because sending and
receiving compete for the same LANai controller chip.
The bandwidth figures tell a similar story: the asymptotic
bandwidth of 28MB/s from Figure 9 drops to 22MB/s in
Figure 10 because ofI/O bus contention.

4.4 Projections for alternative hardware
The LANai performance is relatively low because it is a
programmable controller. If we were to implement a
Hamlyn interface using hardware state machines, we
estimate that the one-way, application-to-application
short-message transfer time would decrease to about 6µs,
but the large-message bandwidth, which is limited by the
I/O bus, would not change appreciably.

5  Related work
There has been a great deal of work in the field of
interface design for high-speed interconnections,
especially since the original Hamlyn design was written
up. The history of these ideas is not entirely clear: several
teams were inventing similar-sounding approaches at
around the same time. It is neither fair to say that Hamlyn
copied from them, nor that they copied from Hamlyn.
(For the record, the earliest extant reference to Hamlyn is
dated July 1992.) Although we think that Hamlyn’s main
contribution lies in its coupling of sender-based memory
management to its protection scheme, we present a
somewhat broader summary of what we consider to be the
work most relevant to our finished design.

IBM’s OS/360 provided variants ofput andget file-system
calls that avoided data copying by having theOS specify
the location of the buffer to use, rather than the application
[Clark66, Belady81]. Hamlyn uses a variant of this
mechanism in its interface library.

5.1 Load/store interfaces
A STORE instruction can be thought of as a degenerate,
sender-directed message—indeed, there is a large and
active literature that views large-scale shared memory
machines in this way, of which the Cray T3D, Convex
Exemplar,KSR AllCache architecture, Alewife
[Kranz93], Typhoon [Reinhardt94], and low-levelSCI

protocols [IEEE92] are representative examples. All
require dedicated hardware support that is tightly
integrated with the host processors.

Several groups have used theLOAD/STORE paradigm in
less tightly coupled systems to provide an interface to
cross-network communication. For example, the Alto
remote memory reference protocol [Spector81] used
network messages in this way; [Thekkath94] discusses
the idea of separating data movement from notification in
remoteLOAD/STORE operations (Hamlyn also allows
this); andSHRIMP[Blumrich94] provides low-latency
remote-memory access using hardware support for
automatic data replication, coupled to a virtual-memory
protection scheme. Many of these schemes provide
excellent performance for the particular operations that
they support—specialization is a powerful tool for
lowering latency—but sometimes at the expense of
relatively high processor utilization. Most implicitly
depend upon in-order packet delivery.

The hybrid deposit model [Osborne94] combines sender-
based addressing with the execution of small programs on
a remote node, using both local and remote data—a
considerable generalization of theremote fetch-and-op
proposed in [Wilkes92]. Implemented in software on top
of a 155Mb/sATM system, it achieved a round-trip time of
49µs without a switch and 60µs with one. Osborne credits
[Subhlok93] with introducing the term “deposit model”
for what we call sender-based memory management.

5.2 Copy avoidance
Several projects have used page-remapping and smart
interface buffer allocation to accelerate processor-to-
interface communication, including thefbufs work at the
University of Arizona [Druschel93], the MedusaFDDI

interface [Lumley92, Banks93] and the follow-on
Afterburner project [Dalton93].

The Nectar system [Cooper90] allowed applications
direct access to its communication interface memory in
order to eliminate copies at the cost of all accesses being
to memory in theI/O space. It achieved round-tripRPC

latencies of 500µs across a 100Mb/s network.

ATM network interfaces can use virtual circuit identifiers
(VCIs) to provide early demultiplexing of incoming data to
user data buffers. One such use occurred in the Osiris
project [Druschel94], which combined stream
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demultiplexing usingATM VCI s into fbufs, some support
for out-of-order delivery, and direct access to the network
interface for a limited number of applications. Together,
these achieved a round-trip latency of 154µs and a
maximum throughput of about 41MB/s on a 622Mb/sATM

network.

CMU’s Hardware-AssistedRemotePut (HARP) interface to
the CreditNetATM adapter card allows applications to
send directly from their own buffers (akin to Hamlyn
message areas), and to provide a set of buffers into which
data for a virtual circuit is placed, but it does not appear to
allow direct addressing of remote memory on a per-
message basis [Mummert96]. We were unable to locate
any published latency figures for this interface.

5.3 Cranium
Cranium [McKenzie94], like Hamlyn, was designed to
provide a host interface to a packet-switching fabric that
performed adaptive routing. Like Hamlyn, it has message
areas that are used to send and receive data, although it
appears that these are restricted to 2KB pages, and the
expectation is that there is a single message per area, since
there seems to be no provision for a message-offset field.
Multiple packets use a sequence number to allow
reassembly, rather than offsets; this simplifies the
hardware, but it requires that all packets in a message be
of the same size. (This means that Cranium could not
handle variable-length metadata.) Receivers specify the
identity of senders expected to write to a message area,
and this is used for protection checks. (There is no
discussion of how spoofing is prevented.) Cranium also
provides queueing channels, which allow messages to be
appended to the end of a message area. We thought about
providing these for Hamlyn but eventually decided not to:
(1) to force us to work through all of the details of pure,
sender-based memory management; (2) to avoid
introducing aprima facie source of receiver buffer
overruns; and (3) because such messages have to be
restricted to single packets. Cranium supports many of the
goals of Hamlyn, but its designers made several decisions
to reduce functionality in order to simplify the interface.
It thus represents a different point in the design space.

5.4 Active Messages
Active Messages [vonEicken92, vonEicken94, Martin94]
provide a set of arrival semantics for single-packet
messages by including the address of a function to call in
each one. The function is typically invoked in a restrictive
environment on the interrupt stack, with no protection
barriers around it. As a result, aggressive implementations
of Active Messages are the standard performance target
for this kind of work. The main difference is that Hamlyn
provides security between applications; data placement is

controlled by the sender, rather than the receiver; and all
protocol processing happens in a well-defined application
context. “Although the restrictions and limitations of
previous interfaces [to Active Message systems] made
their implementations simple and efficient, the same
restrictions and limitations prevent them from supporting
the broader spectrum of applications now required”
[Mainwaring95a].

[Karamcheti94] reported instruction counts (but no
timings) for Active Messages on aCM-5 (CMAM), which
are roughly comparable to ours although they were
measured on a SPARCprocessor and ours are forPA-RISC.
TheCMAM finite-sequence, multiple-packet delivery
protocol seems to provide functionality that approaches
our simple datagram protocol: it does not support our
group-receive operations, but, like ours, it does handle
out-of-order packet delivery. [Karamcheti94] quotes 397
instructions to do a 16-word (64-byte) unidirectional
send. A send using Hamlyn’s tagged remote write
consumes 260 processor cycles (fewer instructions), most
of which are consumed when the processor stalls while
writing to theI/O bus, and a receive consumes 120 cycles.

[Wallach95] reports the lifting of one of the restrictions on
Active Messages: that the handlers must not block.

We think that the idea of Active Messages is good, and we
are gratified that some Hamlyn features are making their
way into a revised proposal [Mainwaring95a], which
supports protection, caching end point descriptions,5 as
well as multiple send and receive areas per end point.

On the other hand, we think that a scheme requiring host
processor intervention on every packet wouldnot be such
a good idea because the process-context switches would
prove too expensive. Indeed, the current trend in
processor design seems to be toward ever-larger amounts
of machine state, which will make this more costly still.
Hamlyn addresses this concern by automating message
reassembly in the interface card.

U-Net [vonEicken95] embodies some of the same
principles as Hamlyn, including direct user-level access to
the interface in order to eliminateOS involvement
whenever possible, and end points that can route
incoming messages directly to application memory. Like
Hamlyn, the prototype U-Net implementation is built by
re-microcoding an existing interface card—a Fore
SystemsATM interface. (By their definition, Hamlyn is
using a “standard network interface”!) Since it is built on
ATM, which is inherently unreliable, U-Net has to deal
with lost packets. Its performance is slightly worse than
Hamlyn’s: [vonEicken95] reports Active Message round-
trip times on top of U-Net of 79µs for 32 bytes of data or

5.[Wilkes92] suggested the same idea as a way to conserve interface-
card memory.



13

less (41µs of which is due to theATM switch; the
equivalent Myrinet time is 1µs) and 135µs + 0.2µs/byte
for bulk data transfers. (The equivalent Hamlyn numbers
are probably the 28µs for a round-trip tagged remote
write, and the one-way bulk data transfer cost of 17.4µs +
32.6ns/byte with 4KB packets.)

6  Conclusions
What did we learn from this exercise? First, the basic
Hamlyn approach seems to have been validated: we can
provide low-latency, high bandwidth, protected
communication directly from multiple application
programs, with little or noOS intervention. We also picked
up a few other observations and lessons along the way.

6.1 Network demands
[Karamcheti94] argues that the underlying network
should provide in-order delivery, deadlock freedom, and
fault-tolerant packet transmission. We conclude instead
that Hamlyn can synthesize in-order delivery cheaply,
assuming a deadlock- and error-free network, giving
interconnection designers freedom to optimize for
performance, rather than high-level protocol support.
[Davis92] argues that an adaptive-routing network can
achieve roughly twice the throughput of a non-adaptive
one.

6.2 Buffer management
Hamlyn does not copy outgoing messages, so
applications must be coded to avoid reusing buffers until
transmission is complete. To help with this, the Hamlyn
library provides a function that determines whether a
message buffer can be reclaimed.

Metadata often originate in a few small variables on an
application program’s run-time stack, but if transmission
is done usingDMA, they must be copied to a special,
wired-down metadata area. This proved burdensome; if
we were to redesign Hamlyn, we might always send
metadata using directI/O.

6.3 Opening and monitoring connections
There is a “bootstrapping” problem when contacting a
long-lived server: a potential client cannot transmit to the
server because it has no resources allocated there, and the
server cannot send a ticket or seed because it does not
know of the client’s existence. We considered adding an
unreliableFIFO message queue, but we decided that since
these operations are not time-critical, they could be done
with standardOS services, which might themselves use
Hamlyn inside the operating system. (The lowest-level
bootstrapping problem here can be solved by allocating
well-known slots, one for each remote processor, which

theOS instances can use to establish higher-level
communication paths.)

A similar observation applies to detecting peer-process
failures. We once thought that an “Are you there?”
message should be sent periodically between processes in
a highly available system, but if such a polling interval
expires without a reply, an application does not know
whether the system is overloaded, or the polled host has
failed, or a peer process is dead, or the process is stuck in
a long computation. On the other hand, theOS has
definitive knowledge of process’ states and so can prevent
much of this confusion. The moral is to let theOS do what
it is good at.

6.4 Closing connections
Traditional networks have difficulty providing reliable
connection close because of potential message loss. In the
absence of such loss, they can do a good job because the
OS knows about the connection setup and can tear it down
even after the application dies. (This is even true in most
application-level protocol suites, which invoke theOS for
connection setup/teardown.) In Hamlyn, theOS cannot
fulfill this role because it has no knowledge of the
connections, so we reverted to a model where our
prototype only allows gracefulclose operations by a
sender.

6.5 Stronger security
Hamlyn uses 64-bit protection keys. We estimate that our
prototype can detect and discard a packet having an
invalid key within 3µs. At this rate, a brute-force attack is
likely to take about 877,000 years. Keys can be generated
using cryptographic-quality pseudo-random number
generators, or generators embodying true random
processes, so we think that attack by guessing keys is
futile. But Hamlyn keys reside in applications’ memory
address spaces, so our defense against forged messages
depends upon memory privacy. For this reason, and
because some users find probabilistic protection
unsatisfactory, we thought briefly about other techniques:

It would be easy to make protection keys accessible only
indirectly, and have applications specify indices into a
secure, per-process table of keys, maintained by theOS. A
secureOS would then make keys unforgeable. But this
scheme would fundamentally alter the Hamlyn paradigm,
since almost all communication channel management
would then requireOS intervention.

In practice, this is largely irrelevant because the main
security problem is user passwords, which are much
simpler to attack than 64-bit binary keys.
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6.6 Interface memory cost
The original Hamlyn design proposed that slots be cached
by interface hardware in order to make them abundant and
cheap. Our prototype allocates slot data structures in
expensive interface cardSRAM, and metadata areas in
main memory. We never satisfactorily established the
right trade-off between function and complexity here.

6.7 Summary
The Hamlyn architecture provides users with a message
passing interface having a combined hardware and
software latency of just a few microseconds, while
providing full protection between mutually suspicious
applications. We described the most important techniques
underlying our implementation, including design trade-
offs that we can make (and have made), and we presented
performance measurements.

Our design is optimized for closely-coupled,
multicomputer systems. It yields better performance than
loosely-coupled clusters of autonomous computers and,
due to the inherent isolation of message-passing systems,
provides much better fault tolerance than shared-memory
systems, as well as inter-application protection at low
cost. All of these needs must be addressed if large-scale,
parallel machines are to have a significant impact upon
general-purpose computing. The Hamlyn architecture is
an important step in that direction.
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