
The Palladio layout control protocol

Richard Golding and Liz Borowsky

HPL{SSP{99{1 rev. 2
30 August 1999

Abstract

This document presents the Palladio layout control protocol, which
provides for failure recovery and coordinates layout changes.

Contents

1 Assumptions 2

2 Constants 3

3 Players 3

4 Chunks 4
4.1 State . 4
4.2 Transitions . 6

4.2.1 Regular lease state . 6
4.2.2 Reconciling state . 8
4.2.3 Regular transition state 8
4.2.4 Garbage collect state . 9
4.2.5 Newly awake state . 9
4.2.6 No lease state . 9
4.2.7 Recovery lease state . 10
4.2.8 Recovery transition state 12
4.2.9 Recovery reconciling state 13

5 Managers 13
5.1 State . 13
5.2 State overview . 15
5.3 Transitions . 16

5.3.1 None state . 16
5.3.2 Newly awake state . 16
5.3.3 Into reconciling state . 17
5.3.4 Into transition state . 17
5.3.5 Out of reconciling state 17

1

5.3.6 Out of transition state . 17
5.3.7 Manager state . 18
5.3.8 Relayout reconciling state 20
5.3.9 Relayout transition state 21
5.3.10 Gathering chunks state 21
5.3.11 Gathered state . 24
5.3.12 Gathering leases state . 25
5.3.13 Recovery reconciling state 26
5.3.14 Recovery transition state 26

1 Assumptions

� Partitions partition nodes into mutually communicating subsets. This
means that we don't have to worry about non-transitivity in the commu-
nication graph.

� Devices can tell with complete certainty that they are restarting after they
have failed. (That is, a device knows when it reboots.)

� The commit protocol is assumed to always eventually terminate, even if
some participants fail. If a manager fails during a run of the commit
protocol, chunks will observe a lease expiry some time after the commit
protocol terminates.

� The network is fairly reliable (perhaps by a bounded, small bit error rate?).
Message delivery occurs within bounded time when not partitioned. Mes-
sages are not corrupted in transit; nor are they replayed or spontaneously
generated.

� All parties (chunks and manager nodes) respond to events within bounded
time.

� There is a way for any chunk in a partition to �nd, within a bounded
time, all manager nodes that exist in that partition. It can do so an
in�nite number of times.

� Leases (both normal and recovery) last much longer than the time it takes
to renew them. As a result, there will eventually be a period when all
leases are not in the middle of being renewed. Moreover, the timer used
to detect the failure of a chunk to acknowledge a lease renewal is longer
than the time it takes to do a successful renewal, so that there are never
acknowledgement messages coming back to a manager after the timer goes
o�.

2

2 Constants

�c maximum di�erence between any two clocks in the
system.

�tmsg bound on message delivery latency

ctend a bound on the latency between the �rst and last
commit terminations

ctaend analogous to ctend, but just for aborts

ctcend analogous to ctend, but just for commits

ctstart a bound on the latency between the �rst and last
commit start messages from di�erent participants

abort lease window �t for how long leases are extended after transac-
tion abort; want �t > ctaend.

commit lease window �t for how long leases are extended after transac-
tion commits; want �t > ctcend

dl the length of a lease. (Practically speaking it can
vary; for this presentation we assume a constant.)

Note that the lease windows imply 9�t > 0 such that commit has ended and
lease renewals are not yet needed.

Note that the commit protocol latency is assumed bounded, but potentially
large. The commit protocol always eventually terminates.

3 Players

There are three kinds of participants in the failure recovery protocol:

1. Chunks. These are the units of data storage. They have persistent state.

2. Managers. These coordinate changes to the layout of the chunks, and serve
as a single point where outside users can �nd out about layout. They have
no persistent state. There are many managers, but at most one manager
node can manage a particular virtual store.

3. Outside policies. These policies determine when the layout for a virtual
store should change, and when management function should migrate from
management node to management node. These policies are arbitrary and
outside the scope of this protocol, except for specifying the interface they
use.

3

outside
policies

managers

relayout, migrate
commands

chunks

management regeneration

4 Chunks

4.1 State

Device state. Devices as a whole do not �gure much into this protocol; rather,
most of the protocol is concerned with the behaviour of the chunks within a
device.

set of chunks the chunks on this device

clock a (loosely-)synchronised clock

Chunk state. Most of the protocol deals with the behaviour of individual
chunks. Much of the state in a chunk is persistent { that is, it can be counted
on to remain intact as long as the chunk exists. Persistent state variables are in
bold face below. Other state variables are not persistent: they are expected
to be erased whenever the chunk (or the device on it) fails, and some are only
used while in one or two states.

Each chunk has a unique identity, and that identity is never reused. In
practice, this can mean that each chunk is given a serial number within the
device, and the device must be careful to record any advance in the serial number
on stable storage before making a new serial number available to the outside
world.

4

epoch integer the current epoch
number

metadata { the metadata giving the
layout of the store in the
named epoch

lease expiry timer when the chunk's
current lease expires

lease renewal timer when the chunk's
current lease should be
renewed

lease manager manager id the manager that
granted the current
lease (or none)

state one of none, regular,
recovery, newly awake,
reconciling, regular
transition, recovery
reconciling, recovery
transition

the state of the chunk.
This corresponds,
roughly, to the kind of
lease the chunk has.

epoch transition log record f metadata,
epoch, manager g

temporary used during
epoch transitions

mgr attempt queue priority queue of man-
ager id, ordered by
decreasing manager
precedence

a priority queue of ids of
managers that might be
useful in regenerating
manager state; used
only during manager
regeneration

The state of the chunk is a special case: it is reset on each state transition.
Note that we have assumed, above, that devices can detect that they have
restarted with complete certainty.

Note that the access protocol blocks unless the state is regular.

5

4.2 Transitions

Regular
lease

renewal acquire

Reconciling

epoch
transition

No lease

lease
expiry

Regular
transition

done

acquire and
wrong epoch

re

Garbage
collect

lose
Recovery

lease

acquire and
correct epoch

commit tx and
in new epoch

abort tx

renewal

commit and not
in new epoch

Newly
awake

lease expiry
release and

correct epoch

lose

renewal,
transfer

release and
wrong epoch

Recovery
reconciliing

epoch
transition

Recovery
in transition

done

commit tx

abort tx

renewal

Note that any state can transition to the newly awake state at any time
when a fail event occurs; for clarity, these transitions are not shown in the
transition diagram and have been omitted from some of the state transition
actions that follow.

4.2.1 Regular lease state

In this state, the chunk is in regular operation and has a valid lease. This is the
only state in which the access protocol will allow data to be read or written.

renewal(mgr epoch, new expiry time)

The chunk's manager is renewing the chunk's lease.

if (mgr epoch == current epoch)

lease expiry time new expiry time

lease renewal now + lease renewal period

state regular lease

6

epoch transition(old epoch, new epoch, new metadata, new mgr id)

A manager is beginning an epoch transition. The �rst step is to

perform reconciliations.

if (old epoch >= curr epoch)

log arguments in transient storage

state reconciling

lease renewal

The chunk's lease will expire soon, and so the chunk should request

renewal.

send renewal request(curr epoch) to manager

state regular lease

lease expiry

This transition occurs when the lease has expired, and the chunk now

suspects its manager of having failed.

state no lease

fail

state newly awake (after some delay)

acquire(new lease expiry, new mgr, new epoch number)

A manager node is trying to regenerate the metadata for the virtual

store of which this chunk is part, but this chunk is already properly

being managed by somebody. Note that in this case the new epoch

number should always be less than or equal to the current epoch num-

ber.

send nack(new epoch number, current manager, regular lease) to sender

state regular lease

lose

This message should not be received while the chunk has an active

lease.

ignore this message

state regular lease

7

release(epoch number, (opt) new mgr hint set)

This message should not be received while the chunk has an active

lease.

ignore this message

state regular lease

4.2.2 Reconciling state

In this state, the manager has begun an epoch transition, and any reconciliations
are being performed. The run of the reconciliation protocol is omitted; it triggers
a done event when when all reconciliation for this chunk is complete.

done

initiate commit protocol, voting commit

state regular transition

4.2.3 Regular transition state

commit tx

if self 2 logged new metadata

using logged state

epoch new epoch

metadata new metadata

lease expiry time now + lease commit window

lease renewal now + lease renewal period

lease grantor new manager

clear log

state regular lease

else

state garbage collect

abort tx

lease expiry time now + lease abort window

lease renewal now + lease renewal period

clear log

state regular lease

fail

state newly awake (after some delay)

8

release(epoch number, (opt) new mgr hint set)

This message should not be received while the chunk has an active

manager. It is thus ignored in this state.

state regular lease

4.2.4 Garbage collect state

In this state, the chunk should not be there. The chunk should delete itself.
The device may need to respond to one message on behalf of the now-deleted

chunk:

acquire(lease expiry, mgr, epoch)

send nochunk(chunk) to sender

All other messages to the chunk are ignored.

4.2.5 Newly awake state

The device places all chunks in this state immediately upon rebooting after a
failure, and before any messages are processed. On entering this state the chunk
does the following:

clear log and any other transient data

mgr attempt queue lease mgr

state no lease

4.2.6 No lease state

In this state the chunk believes that its manager has failed, and so it must try
to regenerate a manager. It will continue to attempt regeneration until it is able
to do so successfully, or until it is informed that it is no longer needed.

We assume that the random selection of a director node will eventually try
all director nodes in the system. An actual design will want to be more clever:
attempting to only contact reachable director nodes, avoiding generating too
much tra�c, and so on. Note that we believe that this sequence will eventu-
ally terminate with a fail, acquire, or lose transition as long as partitions are
eventually repaired and the chunk retries regeneration forever.

Upon entry to this state the chunk does the following:

repeatedly:

if mgr attempt queue is empty

pick a director node d at random

else

d mgr attempt queue.pop

send help(epoch number, metadata) to d

wait long enough for d to respond if it is available

9

This loop terminates when the chunk transitions out of the no lease state.
The restriction on the wait ensures that at most one help message is out-

standing from any chunk at time.

fail

state newly awake (after some delay)

lose

A manager has determined that this chunk should be garbage col-

lected.

state garbage collect

acquire(new lease expiry, new mgr, new epoch number)

if new epoch number < current epoch number

send nack(current epoch number, nil, no lease) to sender

state no lease

else

if new epoch number == current epoch number

send ack(current epoch number) to new mgr

else

send ack-conditional(new epoch number, current epoch number, metadata) to n

lease expiry time new lease expiry

lease renewal now + lease renewal period

mgr new mgr

mgr attempt queue nil

state recovery lease

redirect(new mgr)

append new mgr to mgr attempt queue

state no lease

4.2.7 Recovery lease state

epoch transition(old epoch, new epoch, new metadata, new mgr id)

This is identical to the transition of the same name in the regular

lease state.

if (old epoch >= curr epoch)

log arguments in transient storage

state recovery reconciling

10

lease renewal

send recovery renewal request(curr epoch) to mgr

state recovery lease

lease expiry

state no lease

fail

state newly awake

renewal(mgr epoch, new expiry time)

if (mgr epoch == curr epoch)

lease expiry time new expiry time

lease renewal lease renewal period

state recovery lease

release(epoch number, (opt) new mgr hint set)

The manager with which this chunk has been interacting has deter-

mined that another manager node, which has precedence over it, is

also attempting to regenerate a manager. This message informs the

chunk that its current manager is abandoning its attempt to regen-

erate, and that the chunk should contact the new manager node to

complete regeneration.

if (epoch number != current epoch number) or

(sender != current mgr)

state recovery lease

else

append new mgr hints to mgr attempt queue

state no lease

lose

state garbage collect

11

acquire(new lease expiry, new mgr, epoch number)

Another manager is trying to acquire this chunk during regeneration.

Inform it that the chunk has already been acquired.

if (new mgr != current mgr) or

(epoch number != current epoch number)

send nack(current epoch number, current mgr, recovery lease) to sender

state recovery lease

transfer lease(epoch number, new mgr, expiry)

Another manager has won the right to be the manager for the store.

Change the recovery lease over to that new manager.

if (epoch number != current epoch number)

send nack(current epoch number, current mgr) to sender

else

send transfernotice(epoch number, new mgr) to lease mgr

send transferack(epoch number, new mgr) to sender

lease mgr new mgr

lease expiry time new expiry

lease renewal renewal period

state recovery lease

4.2.8 Recovery transition state

commit tx

if self 2 logged new metadata

using logged state

epoch new epoch

metadata new metadata

lease expiry time now + lease commit window

lease renewal now + lease renewal period

lease grantor new manager

clear log

state regular lease

else

state garbage collect

abort tx

clear log

state no lease

12

fail

state newly awake (after some delay)

4.2.9 Recovery reconciling state

In this state, the manager has begun an epoch transition at the end of a recovery
sequence, and any reconciliations are being performed. The run of the reconcil-
iation protocol is omitted; it triggers a done event when when all reconciliation
for this chunk is complete.

done

initiate commit protocol, voting commit

state recovery transition

5 Managers

The manager nodes provide fast access to the metadata for a store, and are
the entities that can coordinate changes to the layout of a store. The manager
function can migrate from node to node, and this ability is reected in the
protocol here. There is also a distributed data structure for �nding the manager,
even as it moves around; this is not included in this protocol.

5.1 State

The state of a manager is one of new, newly awake, mgr, gathering chunks,
gathering leases, into reconciling, into transition, out of reconciling, out of tran-
sition, recovery reconciling, recovery transition, relayout reconciling, or relayout
transition.

13

clock { a (loosely-)synchronised clock

epoch number integer the current epoch number

metadata metadata the currently active metadata for
the virtual store.

failed chunks list of chunks the chunks in the current epoch
that the manager believes have
failed.

recovered chunks list of chunks the chunks in the current epoch
that the manager believes have
failed and since recovered.

forwarding address manager id where a manager can be found (if
none or newly awake)

new mgr id manager id temporary manager id variable
used during manager migration.

better mgr id set of manager id set of managers with higher prece-
dence; used during manager regen-
eration.

lesser mgr id set of manager id set of managers with lower prece-
dence; used during manager regen-
eration.

new metadata log metadata a temporary copy of new metadata

release result boolean during regeneration, indicates
that the chunks involved in
regeneration are from an
out-of-date epoch and causes the
manager to give up its
regeneration attempt.

outstanding chunks set of chunks during regeneration, the chunks
that have not yet been heard from

won chunks set of chunks during regeneration, the chunks
that have agreed to this manager
as their manager

renewal i�y chunks set of chunks during lease gathering, the chunks
to which lease transfers have been
sent, but not yet acknowledged.

chunkfail(c) one-shot timer a set of timers for detecting when
individual chunks' leases have ex-
pired.

timeout(i) one-shot timer a set of timers used to bound re-
sponse to acquire messages.

old mgr manager id the node that was previously man-
ager for this store; used during
manager migration.

14

5.2 State overview

None

into
reconciling

handoff

Gathering
chunks

help

Into
transition

done

ack, timeout,
nochunk, nack/

some outstanding
help

Gathered

ack, timeout,
nochunk, nack/
no outstanding

abort tx

Manager

commit tx

help/
old epoch

help/
current or new epoch

chunk fail/
quorum

Out of
reconciling

migrate

Newly
awake

chunk fail/
no quorum

Relayout
reconciling

relayout

Out of
transition

done

commit tx

abort tx

Relayout
transition

done

commit tx abort tx

new round

lose or release
result bit

Gathering
leases

quorum

response

Recovery
reconciling

No outstanding

Recovery
transition

done

commit tx

abort tx

15

5.3 Transitions

Note: all states can transition to the newly awake state on a fail event.

fail

state newly awake (after some delay)

5.3.1 None state

This node is not a manager for the store in question.

hando�(old epoch number, new metadata, failed chunks)

The manager function is being migrated into this node.

epoch number old epoch number + 1

metadata new metadata

old mgr sender

failed chunks new failed chunks

state into reconciling

help(epoch number, metadata)

A device is requesting that management be regenerated.

outstanding chunks (chunks 2 metadata)

won chunks nil

for all d 2 outstanding chunks

send acquire(expry, me, epoch number) to d

set timeout(d) to a reasonable message timeout

better mgr id nil

lesser mgr id nil

epoch number new epoch number

metadata new metadata

state gathering chunks

5.3.2 Newly awake state

This node has restarted; initialise all state.

erase all state

state none

16

5.3.3 Into reconciling state

Manager function is being migrated into this node; as the �rst step in this,
chunks are being reconciled.

done

Reconciliation has completed.

initiate commit, voting commit

state into transition

5.3.4 Into transition state

Manager function is being migrated into this node, and reconciliation is done;
execute a commit protocol.

commit tx

failed chunks nil

state manager

abort tx

erase epoch number, metadata

state none

5.3.5 Out of reconciling state

Manager function is being migrated out of this node; as the �rst step, chunks
are being reconciled.

done

Reconciliation has completed.

initiate commit, voting commit

state out of transition

5.3.6 Out of transition state

commit tx

erase epoch number, metadata

forwarding address new mgr id

state none

17

abort tx

erase new mgr id

state mgr

5.3.7 Manager state

migrate(node)

An outside policy has decided that the manager running here should

migrate to another node.

send hando�(epoch number, metadata, failed chunks) to node

send epoch transition(epoch number, epoch number + 1, metadata, node)
to all chunks 2 metadata - failed

new mgr id node

state out of transition

chunkfail(chunk)

A chunk has failed to renew its lease.

if chunk 62 failed

a new failure

failed chunks += chunk

send chunkfail(chunk) to outside policy

if (coverage and quorum)

state manager

else

state newly awake (suicide)

else

failure of a recovered chunk

recovered -= chunk

state manager

renewal request(chunk epoch)

A chunk is requesting that its lease be renewed.

if sender 62 failed and chunk epoch == curr epoch

t now +dl

send renewal(epoch,t) to sender

set timer chunkfail(sender) to t

state manager

else

ignore message

18

relayout(new metadata)

An outside policy has decided that the metadata has changed.

send epoch transition(epoch number, epoch number + 1, new metadata, me)
to (all chunks 2 metadata - failed) [

(all chunks 2 new metadata)

new metadata log new metadata

state relayout reconciling

help(chunk epoch number, metadata)

A chunk has lost its lease and wants to regenerate. This can occur

in two cases: when a chunk from a previous epoch becomes able to

communicate and chooses the current manager to try regeneration;

or when a lease renewal message to a chunk active in this epoch has

been lost, the chunk's lease has expired, and that chunk happens to

choose the current manager for manager regeneration.

If the chunk is part of the current layout, then the manager is-

sues the chunk a recovery lease to keep the chunk from trying other

recovery steps until it can be reconciled and brought back into active

use. If the chunk is not part of the current layout, it has been deleted

and is sent a lose message so that it garbage collects.

if sender 2 chunks(metadata)

if sender 62 failed

note this is the same as the chunkfail(chunk) event.

failed chunks += sender

send chunkfail(sender) to outside policy

if not (coverage and quorum)

state newly awake (suicide)

expry now + dl

send acquire(expry, self, curr epoch) to sender

else

send lose to sender

state manager

ack(chunk epoch)

A chunk has been issued a recovery lease and is acknowledging it.

if sender 2 failed

recovered += sender

expry now + dl

set chunkfail(sender) to expry

19

ack-conditional(mgr epoch, chunk epoch, chunk metadata)

A chunk from a previous epoch has been issued a recovery lease and

is acknowledging it. Note that the behaviour is the same as for an

ordinary ack.

if sender 2 failed

recovered += sender

expry now + dl

set chunkfail(sender) to expry

nack(chunk epoch, chunk mgr, lease type)

A chunk has been issued a recovery lease but is not accepting it.

do nothing

recovery renewal request(chunk epoch)

A chunk is requesting that its recovery lease be renewed.

if sender 2 recovered

t now +dl

send renewal(epoch,t) to sender

set timer chunkfail(sender) to t

state manager

else

ignore message

5.3.8 Relayout reconciling state

A store layout change is being committed; as the �rst step, chunks are being
reconciled.

done

Reconciliation has completed.

initiate commit, voting commit

state relayout transition

20

5.3.9 Relayout transition state

commit tx

metadata new metadata

erase new metadata log

increment epoch

send relayout commit to outside policy

state manager

abort tx

erase new metadata log

send relayout abort to outside policy

state mgr

5.3.10 Gathering chunks state

This state is the �rst in the recovery sequence. In it, the manager node tries to
become a recovering manager for the store, contending with other managers to
acquire as many chunks as possible.

ack(epoch number)

A chunk has agreed to be acquired by this manager node. Note that

the epoch number in the message should always equal the current

epoch.

oustanding -= sender

won chunks += sender

cancel timeout(sender)

set chunkfail(sender) to now + dl

if outstanding = nil

state gathered

else

state gathering chunks

ack-conditional(old epoch, chunk epoch, chunk metadata)

A chunk has agreed to be acquired by this manager node, but it has

a di�erent epoch number than the manager. If the chunk's epoch is

newer than the one the manager is currently recovering, the manager

brings forward its recovery attempt to that epoch.

oustanding -= sender

won chunks += sender

cancel timeout(sender)

21

set chunkfail(sender) to now + dl

if chunk epoch > epoch number

cnew chunks(chunk metadata) - chunks(metadata)

foreach c 2 cnew

send acquire(expry, self, chunk epoch) to c

outstanding chunks += c

set timeout(c) to a reasonable message timeout

metadata chunk metadata

epoch chunk epoch

if outstanding = nil

state gathered

else

state gathering chunks

timeout(chunk)

A chunk has failed to respond to an acquire message.

oustanding -= chunk

if outstanding = nil

state gathered

else

state gathering chunks

nochunk(chunk)

A device is responding that a chunk doesn't exist.

oustanding -= chunk

cancel timeout(sender)

if outstanding = nil

state gathered

else

state gathering chunks

recovery renewal request(chunk epoch)

It is time to renew the lease on some chunk that has been acquired

by this manager.

if sender 2 won

t now +dl

send renewal(epoch,t) to sender

set timer chunkfail(sender) to t

state gathering chunks

22

chunkfail(c)

A chunk has failed to acknowledge a lease renewal.

won -= c

state gathering chunks

help(epoch number, metadata)

A chunk is asking for management to be regenerated. If this is from

a chunk from an old epoch that has since been removed from the

layout, signal the chunk to garbage-collect itself. Otherwise, as long

as the chunk does not already have an acquire message on the way to

it, try to acquire the chunk. Note that the chunk may have previously

been acquired by this manager, but since failed during the recovery

process. Note also that if the chunk is from another epoch, trying to

acquire the chunk will provoke the chunk into replying with an ack-

conditional, which may advance the recovering manager to a newer

epoch.

if (chunk epoch < epoch) and (sender 62 chunks(metadata))

send lose to sender

else if sender 62 outstanding

if sender 2 won

won -= sender

expry now + dl

send acquire(expry, self, curr epoch) to sender

set timeout(sender) to a reasonable message timeout

outstanding += sender

state gathering chunks

nack(chunk epoch number, chunk mgr, chunk lease type)

A chunk is responding that it has already been acquired by a dif-

ferent manager. This transition implements the arbitration between

managers based on a precedence relation, which is assumed to be

well-known. Note: Chunk lease type can be regular lease, no lease,

recovery lease.

oustanding -= sender

cancel timeout(sender)

if lease type = regular lease

if chunk mgr = this mgr

(do nothing)

else (someone else has a regular lease on this chunk)

23

better mgr id += chunk mgr

else (recovery lease or no lease)

if chunk mgr = this mgr

(shouldn't happen)

else if chunk mgr has precendence over this mgr

better mgr id += chunk mgr

else

lesser mgr id += chunk mgr

if outstanding = nil

state gathered

else

state gathering chunks

transfernotice(chunk epoch number, chunk mgr)

A chunk is informing the manager that a di�erent manager has won

the contention for completing recovery, and that the chunk has trans-

ferred its lease to that manager.

if (chunk epoch number == current epoch number)

state newly awake

else

state gathering chunks

5.3.11 Gathered state

Immediately on entry to this state, the manager does the following:

if (coverage and quorum)

state gathering leases

else if |better manager id| = 0 and

(won [failed) � chunks(metadata)

for each c 2 chunks(metadata) - won

send acquire(expiry, me, epoch number) to c

outstanding += c

set timeout(c) to a reasonable message timeout

state gathering chunks

else

send release(better mgr id, epoch number) to all chunks 2 won

state newly awake

This transition depends on two predicates { coverage and quorum { on the set
of won chunks. Quorum must ensure that the manager in at most one partition
is allowed to proceed with regeneration. The coverage predicate must ensure
that data is present for all of the virtual store.

24

If this manager has not clearly lost the competition to become manager, but
has not yet acquired coverage and quorum, it starts another round of acquisitions
rather than proceeding with recovery.

5.3.12 Gathering leases state

In this state, the manager has won the right to be the one true manager for the
store. Now it needs to go through all the chunks that are still active and get
their leases, in preparation for taking them all through an epoch transition.

Immediately on entry to this state, the manager does the following:

renewal iffy nil

t metadata - (failed chunks [won)

if jtj > 0
for each chunk c 2 t

t now + dl

send transfer lease(epoch, me, t) to c

renewal iffy += c

set timer chunkfail(c) to t

state gathering leases

else

send epoch transition(epoch, epoch+1, metadata, me)
to all chunks in won

state recovery transition

recovery renewal request(chunk epoch)

It is time to renew the lease on some chunk that has been acquired by

this manager. This transition is the same as the similar transition

in the gathering chunks state.

if sender 62 failed

t now +dl

send renewal(epoch,t) to sender

set timer chunkfail(sender) to t

state gathering chunks

chunkfail(chunk)

renewal iffy -= chunk

won -= chunk

if !(coverage and quorum)

state newly awake

else

state gathering leases

25

transfer ack(chunk epoch number, chunk mgr)

assert that epoch number and mgr match this mgr
renewal iffy -= sender

won += sender

if renewal iffy == nil

send epoch transition(epoch, epoch+1, metadata, me)
to all chunks in won

state recovery transition

else

state gathering leases

5.3.13 Recovery reconciling state

This manager is performing an epoch transition to complete recovery; as the
�rst step in this, chunks are being reconciled.

done

Reconciliation has completed.

initiate commit, voting commit

state recovery transition

5.3.14 Recovery transition state

commit tx

increment epoch number

failed chunks nil

state manager

abort tx

state newly awake

26

