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As storage systems continue to grow (due to the introduction of new IO
interconnect such as FibreChannel), their design and configuration continues
to be a costly and difficult task which involves complex trade-offs in cost,
performance and availability. We focus on the problem of designing large
storage systems to meet workload availability requirements (we use the term
“workload unit” to refer to an object and the streams that access that object). We
propose to reduce the difficulty of this problem by having end-users specify the
availability requirements of workload units to the storage system and let the
system configure itself to meet these requirements. We demonstrate the
feasibility of this proposition by describing an approach and developing a
working tool to automatically design storage systems to meet the availability
requirements of a large set of workload units. The tool automatically synthesizes
all candidate storage logical units that match the input workload units and
assesses their reliability, availability and performance via automatically
generated Markov chains. An Assignment engine selects the appropriate
storage logical units and determines the assignment of workload units to storage
logical units so as to minimize total storage system cost.
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1  Introduction and motivation
Current storage systems require significant administration and high management costs. As
storage systems continue to grow (due to fast IO interconnect such as FibreChannel), the problem
of configuring and managing storage systems will even be more difficult. Storage systems
composed of a connection of network-attached both simple and composite fault-tolerant storage
devices present a wide choice of configurations that have varying availability and cost
characteristics.

Our goal is to automate the design and configuration of storage systems to meet the availability
requirements of applications. Applications specify their reliability and availability requirements to
the storage system which automatically configures itself to meet them while minimizing total
system cost. There are two main challenges to automating storage system design to meet
availability requirements that we tackle in this paper:

1. How should the quality of service requirements of workload units be specified?

We found out that the traditional availability measure of mean availability does not provide
the storage system with adequate information to determine the optimal configuration to
match a set of workload units (we use a workload unit here to refer to an object together
with the streams that access it). We develop a meaningful specification of QoS availability
requirements that is easy to use (is based on information readily known to users) and that is
necessary and sufficient to ensure that the storage system is optimally configured for the
workload units’ requirements.

2. How should the storage system be designed to meet the requirements of a large number of
workload units while minimizing total system cost?

Given sufficient knowledge about the application availability requirements, the storage
system can in principle configure itself to meet these needs. We develop an approach and an
algorithm implementation that performs automatic configuration.

The rest of the paper is organized as follows. In section 2, we review background information on
reliability and availability. Section 3 describes the proposed specification of reliability and
availability requirements. Section 4 describes the problem. Our solution approach is presented in
section 5 and the conclusions are presented in section 6. Appendix A contains the mathematical
analysis behind the availability computations.

2  Background: reliability and availability
Before diving into the details of our approach, we overview background information on reliability
and availability. This section is only an overview and assumes that the reader is familiar with the
main concepts in reliability and availability theories. However, this section can be skipped
altogether and the reader should have no problem following the discussion in the rest of the
paper.

2.1 Definitions

The lifetime T of a component is the time until the failure of the component, starting from some
initial time (t=0) which corresponds to the time the component was installed. T is a random
variable since it can not be predicted with certainty.
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The reliability of a component is defined as the function R(t) which stands for the probability that
the component is operational up and until time t. That is,

In other words,

where F(t) is the cumulative distribution function of the component lifetime random variable T.
The corresponding density function is denoted by f(t) which gives the probability that the lifetime
is exactly t. Formally, f(t) = P(T=t).

The expected lifetime of a component E(T) can be computed to be

The failure rate of a component z(t) is the time dependent rate of failure of the component, and is
defined by

Informally, the failure rate at time t is the conditional probability that a component fails during
the infinitely small interval (t, t+ t] given that it has survived until time t divided by the interval’s
length t.

2.2 Case of exponentially distributed lifetimes

Electronic components exhibit almost constant failure rates during their normal-life. Normal life
is the period of time that follows an intial stage (after manufacturing) where a higher “infant
mortality” failure rate is observed. Normal life is followed by a wear-out period where the failure
rates increase again because of mechanical and electronic wear-out.

During normal life, if the failure rate z(t) is considered constant

Then the reliability function can be shown to have an exponential distribution [Siewiorek90],
[Fleishmann96]

As a result, the expected lifetime E(T) can be computed to be

In this paper, we base some of our modeling and analysis on the assumption that storage system
components exhibit constant failure rates (and therefore have exponentially distributed
reliabilities).

The availability of a component is defined as the probability that the component is operating at
time t. If the component is not repairable, then we obviously have A(t) = R(t). However, if the
component fails and undergoes repair (during which it is restored to the operational state) then
the two functions are different. The instantaneous availability as a function is hard to specify so a
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continuous (interval) availability measure is usually used to characterize the availability of
repairable systems. The continuous availability A of a component is defined as

2.3 Current reliability measures

We overview the traditional measures of system reliability and availability in this section.

The measure of reliability for a single component or a non-fault-tolerant system is mean time to
failure (MTTF). This is the expected lifetime of the component, which is equal to the inverse of the
failure rate (in case of exponentially distributed reliability function). Similarly, the mean time to
repair (MTTR) corresponds to the expected value of the repair time.

Continuous availability is equal to the proportion of time the component is not in repair taken
over a long interval. It can be expressed in terms of the mean time to failure and mean time to
repair as

This relationship is based on the observation that the probability of being in an operational state
is equal to the proportion of time the system is in the operational (non-repair) mode with respect
to total time. A can therefore be expressed in terms of mean time between failures (MTBF) and
mean time to repair as

Figure 1. shows a diagram relating the mean reliability measures.

2.4 New reliability measure: annualized failure rate

One problem with the mean time to failure (MTTF) or mean time between failures (MTBF) is that
it is somewhat misleading to the general population of customers and system users. If the mean
time to failure of a disk drive is 800,000 hours then the customer expects to operate without
failures for that much time (91 years!).

In fact, electronic component and disk drives have a constant failure rate during their “normal-
life.” Most components are replaced before they start to exhibit “wear-out” related failures.
Hence, the lifetimes (reliabilities) of such components follow an exponential distribution. If a
component has an exponentially distributed reliability with parameter , then the reliability is
expressed as
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Figure 1 Diagram of the mean reliability measures and their relationships.
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Hence, the probability that a component survives till the expected lifetime (MTTF) is only 0.37

Moreover, the median of the exponential distribution of parameter is 0.6931*MTTF. This means
that 50% of the components fail before 69% of the MTTF specification period has elapsed.

Figure 2 illustrates the relationship between mean lifetime, median lifetime and reliability in case
of the exponential distribution.

A better measure that Hewlett-Packard and the rest of the industry is shifting to is the annualized
failure rate, or AFR[Allen96].

The annualized failure rate, or AFR, usually expressed as a percentage, predicts the number of
failures that will occur over the course of a year for a certain population of components.

In the case of exponentially distributed reliability, the annualized failure rate is related to the
mean time to failures as follows

There are 356*24 hours a year, and assuming that the mean time to failure is much larger than a
year, then the probability of a failure one year is the number of hours in a year multiplied by the
failure rate (per hour). The failure rate is nothing but the inverse of the mean time to failure. This
ratio is then multiplied by 100 to convert it to a percentage.

2.5 Performability: performance aspects of reliable systems

The availability measure (as a proportion of time the system or component is available) is
adequate for ultra-reliable systems, where there are two important states: failed and operational.
Fault-tolerant computer systems (multiprocessor systems, storage systems) employ redundancy
to improve reliability. However, this redundancy has important implications on performance.
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Figure 2. Exponential reliability versus time. There is a 37% chance of surviving until MTTF, a 61%
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MTTF has elapsed
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During repair of a faulty component, a fault-tolerant system can be still available albeit at
degraded performance levels. As shown in figure 2, performance can degrade below a certain
application-dependent baseline performance. Real-time applications (video for instance) place a
certain baseline performance requirement from the storage system (minimal data rate). The
continuous availability measure A does not capture this degradation in performance and does not
incorporate the notion of a minimal acceptable performance (baseline performance).

Previous work [Beaudry78], [Meyer82], [Pattipatti93] has addressed the performance aspects of
reliable systems. The measure used to represent the cumulative performance of a fault-tolerant
system as it undergoes degradation and repair has been coined “performability”. The
performability of a system with N configurations {1,2,3,...,N} is defined in [Pattipatti93],
[Meyer82] as the probability density function of the stochastic process yt

 where

is the discrete-valued state corresponding to the N possible system configurations and
denotes the performance (reward or benefit) of the system when in state .

For our purposes, we define the average availability ai(t) of a storage system with respect to an
object wi with baseline performance bpi, over the interval [0,t], to be the proportion of time the
storage system provides the object with a higher than baseline performance.

where u(t) is the step function defined over the set of real numbers as
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Figure 3. Faults and the performance of the system during recovery. The system is unavailable for the
duration of time that its performance is below the baseline performance set by the application.
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3  Specifying availability requirements
Self-configuring storage systems are based on the premise that applications specify their desired
QoS requirements to the storage system, which configures itself to best meet them. In order for
the storage system to determine the best possible configuration to match the applications, the QoS
requirements should transfer as much information as possible about the application’s data
availability needs. In general, performance requirements are usually much better understood and
therefore much more accurately specified than data availability requirements. This is partially
due to the fact that the latter concepts are harder to grasp or measure in real life.

One fact remains, however, is that systems fail in predictable and measurable fashion, and have
very predictable repair times. Consequently, the length of downtime and the frequency of
occurrence of downtime can be accurately known for a given storage system.

There are two major trade-offs relating to data availability: a cost-availability trade-off (how much
availability is worth the cost) and a performance-availability trade-off (how much performance is
to be forsaken for higher availability). A good specification for availability goals should allow the
application to express its needs as far as these two trade-offs are concerned.

This is a brief description of the availability requirements that we propose for workload units to
specify:

• Baseline performance requirements (BPR): Minimal performance levels that are acceptable to
the application (below which data is considered unavailable). Example: maximum response
time of 100 msec.

• Maximum write loss (MWL): The maximum amount of writes (specified as a time period or
size of updates) that can be lost without resulting in data loss as far as the application is
concerned (this measure can be zero.) Example: the MWL=1day or 10KB (worth of updates.)

• Annualized data loss rate (ADR): The maximum tolerated probability of data loss over the
course of a year. Data loss here occurs if data can not be recovered to a consistent state of
updates within the MWL period specified by the application. Example: 0.001% annualized
data loss rate.

• Cost of data outage (CDO): The cost of data outage specified as a function of the length of the
outage. Example: a linear cost of data outage function of $10,000 per minute.

• Mean data outage duration

The maximum data outage duration tolerated by the application.

• Mean data outage rate

The mean annualized data outage rate (DOR) tolerated by the application.

For a more detailed description of these QoS measures, refer to [Amiri96].
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4  Problem description
Before describing the approach we take towards the solution, we describe the problem to give a
feel of its complexity. Figure 4 represents a sketch of a networked storage system. We anticipate
back-end interconnect technology such as FibreChannel and probably ATM to allow for a large
number of heterogeneous network-attached devices to be interconnected together at client-access
latencies that are comparable if not better than access latencies to local storage. FibreChannel and
ATM lift the proximity and connectivity limitations of legacy storage interconnect technologies
such as SCSI, which allows for wide-sharing and larger storage systems. Larger storage systems
are substantially harder to design and configure. We believe storage systems can be automatically
designed and configured to meet the reliability and availability requirements of applications.

Precisely, the problem is given a specification of the availability requirements of a set of workload
units, how can we automatically configure the system to meet these requirements at minimal cost.
In order to be able to identify the optimal (cost-effective) configuration and understand the space
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of possible configurations, we need to take a look at the architectural properties of storage
subsystems that impact data availability.

4.1 Availability of storage systems

The availability of a storage subsystem is a function of several system properties. We break down
the important properties that impact system availability to two categories: static and dynamic.

1. Static properties involve data layout schemes to tolerate storage device failures as well as
hardware redundancy schemes to tolerate the failure of support hardware components. The
data redundancy schemes we consider are parity-based RAID levels, strictly consistent and
weakly consistent replication. Hardware redundancy involves the use of redundant power
supplies, redundant controllers and dual interconnect links.

2. Dynamic properties involve the execution of special algorithms and policies. For example,
backup and reconstruction (rebuild) algorithms and admission policies (what workload
units are serviced in degraded modes -when some of the components have failed resulting
in degraded performance).

4.2 Problem input

We assume that a pool of base storage devices and hardware components is available to build the
system. These base components have different performance reliability and cost attributes.

We show below some sample input to the tool. The requirements of the workload units and the
component specifications are described via attribute-value pairs. A Tcl script parses the input and
creates the base devices and workload units and initializes their attributes. It then invokes the
automatic design engine, which is implemented in C++, via an exciting set of macros (Tcl/C++
interface).

create_workload_unit w0

{{readThroughput 1e4} {writeThroughput 1e4}

 {minReadThroughput 5e3} {minWriteThroughput 5e3}

 {avgReqSize 4} {maxDataLossRate.0006}

 {maxDataOutageDuration 0.8} {maxDataOutageRate 12.2}

 {dataOutageCostModel 0} {dataOutageCostAlpha 1e2}

 {dataOutageCostBeta 10}

 {size 3000} {importance 1}};

create_simple_device disk0

{{modelRefNum 1}

 {SimpleDeviceReadThroughput 5e6}

{SimpleDeviceWriteThroughput 5e6}

 {SimpleDeviceMTTF 100e3}

 {SimpleDeviceTimeToReplace 0.5}

 {capacity 3000}

 {cost 450}};



HP Confidential 9 of 20

5  Solution approach
The approach we take attempts to structure the search (design) space to simplify the task of
automatic design. The approach uses the concept of a logical unit, which is a virtual or logical
device that is composed of a set of base storage devices, a certain hardware architecture
(controllers, power supplies, interconnect) and which has a set of dynamic properties (recovery
algorithm, admission policy). Workload units are not assigned to physical devices, but rather to
logical units. The cost, performance and availability characteristics of logical units can be
computed from the characteristics of the base devices and from the data layout on the logical unit.

We first precisely define what constitutes a logical unit in the next section. Next, we overview the
solution approach and discuss its details in the subsequent sections.

5.1 Logical units.

In this section, we define precisely what constitutes a logical unit. A logical unit is defined by:

1. a hardware organization:

• device_type: The type of the simple base device (the type of the elementary disk drive).

• group_size: a group size. The group size varies from a minimum minG=3 to a maximum
size of maxG=10.

• num_spares: number of spares {0 or 1}

• num_controllers: number of controllers {1 or 2}

• num_supporthw_units: number of support hardware units {1 or 2}

• num_loops: number of local FibreChannel loops the devices are connected to {1 or 2}

2. a data layout

• replication_scheme: can be one of the RAID redundancy schemes {RAID0, 1, 3, 4, 5}, or
some form of strict or weakly-consistent replication.

• striping_choice: the striping choice {non-striped, striped}

3. a set of policies

Figure 5. A logical unit is characterized by a hardware organization, a data layout and a set of policies.
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• backup_policy: every x hours.

• cache_write_policy: write-through, write-back.

• recovery_policy: off-line (stop user requests), on-line (equal priority), on-line (recon
priority).

5.2 Solution approach

Given a set of objects with specified availability requirements, the goal of this step is to integrate
candidate logical units from a set of available storage devices and supporting components. This
list of candidate logical units is then passed to the assignment engine which selects which logical
units should be used and determines the minimal cost assignment of objects to logical units that
meet the objects’ requirements.

The approach we take can be divided into three steps:

1. Automatically synthesize all candidate logical units. A candidate logical unit is a logical unit
that matches the requirements of at least one workload unit. Logical units that do not meet
the requirements of any workload unit are discarded. Approximate analysis (analytic
formulae) is used to estimate the characteristics of logical units at this step.

2. Model the candidate logical units to determine their reliability and availability
characteristics (annualized data loss rate and the probability of being in each degraded
mode together with the mean duration of the repair from each mode). Estimate the cost and
performance of the logical units.

3. Determine a selection of logical units to be used and an assignment of workload units to the
selected logical units that meets all requirements and minimized total cost.

5.3 Integration and availability modeling of logical units.

Logical units are automatically generated by integrating simple storage devices (disk drives), and
other supporting components (controllers, support hardware). The available components and
their characteristics (reliability and performance) are specified as input. For an arbitrary
(automatically generated) logical unit, we are interested in estimating its annualized data loss rate
and in computing the probability of the device being in each degraded mode. Degraded modes
are modes where some of the components in the logical units have failed. A controller, disk or

Figure 6. Annualized data loss rate (ADR) for alternative storage configurations. We assume that the
groups are composed of homogenous disk drive (of MTTF=800,000 hours, AFR=1.095%). The data
loss rates are computed approximately, assuming 1hour repair time for all fault-tolerant configurations
(RAID1, RAID5) and assuming independent and exponentially distributed disk drive failures.

10-4 10-3 10-2 10-1 1

RAID0(G=5)RAID1(G=10) RAID5(G=5) RAID5(G=10)

10-510-610-7 10%

RAID0(G=10)

}}

non-redundant storageredundant storage
(small group size)

}

redundant storage
(large group size)

ADR (%)



HP Confidential 11 of 20

power failure causes the logical unit to go to a degraded mode. The logical unit may have either
degraded performance (disk failure in a RAID5 array group) or zero performance (controller
failure in a single controller disk array group). All such modes are referred to as degraded modes.

5.3.1 Estimating the annualized data loss rate

There are several tools to estimate the reliability and availability of complex systems. These range
from simple series-parallel models to fault trees, markov chains and stochastic petri nets
[Siewiorek92], [Bavuso87]. Markov models represent a powerful tool for reliability and
availability modeling because they can model several processes (such as failure and repair
processes). A central concept to Markov models is the notion of a state and a state transition. The
state of the system represents all relevant information needed to describe the state of each
component in the system. For reliability (availability) modeling, a state is usually associated with
each possible combination of failed and operational components in the system. Transitions from
state to state represent the failure or repair of certain component. Continuous time markov chains
are Markov models based on the premise that transitions can occur at any instant in time
(continuous time model). A main assumption underlying Markov models is that the probability
of a given state transition depends only on the current state, a nd not on the path the system
travelled to get to that state. This memoryless (markovian) property, in the case of continuous
time models, implies that the probability of a transition from a start state to some destination state
is independent of the time spent already in the start state. This assumption implies that the
waiting time until a transition is exponentially distributed. For reliability (availability) models of
storage systems where the transitions correspond to component failures and repairs, the Markov
model is well suited to the assumption that time to failure of disk drives and electronic component
is exponentially distributed. Figure 6 is a partial sketch of a simple Markov chain used to model
the reliability of a RAID5 disk array group with single power supply and dual controllers

A Markov chain is generated to model the reliability and availability of each logical unit. The
markov chain is generated automatically from a description of the components in the unit, their
failure and repair rates and from a definition of what constitutes a death state (data loss state) for
the unit.

More precisely, a markov chain is generated from the following information about the logical unit:

1. The number of components in the logical unit:
(#disks, #controllers, #support_hardware_units,..., #local_interconnect_links)

specified as a tuple representing the number of components of each type in the unit.

2. The data loss states for this unit:
(max # of disk failures,..., max # of link failures)

Rather than specifying all the states that represent data loss state. This can be shorthanded
as a tuple specifying the maximum number of failures of each type that can be tolerated
before data loss (death state) is declared.

3. The failure and repair rates of each component, specified as a pair of tuples.
(disk failure rate, support hw failure rate,..., link failure rate)

(disk repair rate, support hw repair rate,..., link repair rate)

As far as the implementation is concerned, the tuple is not a list of numbers but rather a list
of functions. The function represents the failure rate of the component for a certain start
state. Treating failure and repair rates as functions of the start state allow us to represent
dependent failures among components.
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5.3.2 Estimating degraded mode probabilities

In addition to the mean time to data loss, we are interested in estimating the probability of the
logical unit being in each degraded mode over the course of the use of the unit. The frequency of
occurrence of degraded modes and their duration is important because it impacts the application
perceived “data outage duration” and “data outage rate”.

We solve the markov chains to determine the expected time to data loss (MTTDL). Then, we
eliminate the death state (absorbing state) from the chain and solve it again to determine the
steady-state probabilities of being in each non-death state. In conclusion, we characterize each
logical unit by an annualized data loss rate and by the probability of being in each degraded mode
and the duration of the degraded mode.

1. An annualized data loss rate:

The annualized data loss rate (ADR) can be computed from the mean time to data loss
(MTTDL) using the equation

2. A list of states or modes of operation. Each state is described by the number of failed and
operational components. For each state, the probability of being in that state and the
duration of that state (repair time) are specified as shown for an example state s below.

state s = (0,1,0)

prob ps = 1.234E-4

repair time rts = 600 sec

The tuple (0,1,0) implies that there is one failure in the second component type (controller).
The probability of being in this state is 1.234E-4 and the repair time is 10 minutes.

Figure 7. (Partial) Markov chain model for a logical unit consisting of dual disk controllers and N disks.
State (0,0,0) is the initial operational state. State (1,0,0) occurs if one of the disks fails. State (2,0,0)
is the data loss state (second disk failure before first is repaired).  denotes the failure rate and
the repair rate of components
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5.4 Assignment engine

In the assignment step, workload units are assigned to logical units with the objective of
minimizing total cost.

The problem of assigning workload units to a set of devices (logical units) has been formulated as
an instance of the discrete multiple-knapsack multiple-constraint problem. In principle, any
approximate algorithm developed to solve this type of multiple-knapsack problem can be used to
solve the assignment problem. [Shriver96] presents a formalization of the assignment problem.
Qos goals are represented as constraint equations that have to hold for an assignment of a
workload unit to a device to be acceptable. The assignment algorithm (solver) attempts to
minimize some objective functions. The basic objective function that we are interested in here is
the total cost of the system.

We first overview the constraints that have to be verified by the assignment solver. Next, we
describe the “total cost” objective function and show how availability goals are incorporated in
the function.

5.4.1 Assignment constraints

An assignment A of workload units to logical units can be regarded as a mapping from the set of
objects W to the set of logical units L.

1. Reliability constraint:

Workload unit W can be assigned to logical unit L (A(w)=l) only if the data loss rate of the
logical unit is less than or equal to the maximum data loss rate specified by the workload
unit.

2. Capacity constraint:

The size of the objects assigned to a logical unit is less than the capacity of the logical unit.

3. Performance constraints:

The performance constraint we deal with is simple. For each state (fault-free or degraded
mode) of a logical unit, the sum of the throughputs (short-term transfer rate) of all the
workload units assigned to a logical unit should be less than the throughput of the logical
unit in that state. We use throughput to mean the number of requests per second that the
logical unit can satisfy assuming a request stream with a certain average request size and
random locality.

4. Availability constraints:

The data outage duration and data outage rate of the device are less than the object’s goals.

5.4.2 Objective function: minimizing total effective cost

We introduce the notion of the “effective cost” of a storage system, which is a more appropriate
measure of cost to use when configuring storage systems to meet availability requirements at
minimal cost [Amiri96], [Golding94]. The effective cost of storage system is the “purchase cost”
plus the cost resulting from the risk of data outages during the lifetime of the system.

DataLossRate l( ) MaxDataLossRate w( )≤

Size w( )
w A w( ), l=

∑ Capacity l( )≤

DataOutageRate l( ) MaxDataOutageRate w( )≤
DataOutageDuration l( ) MaxDataOutageDuration w( )≤



14 of 20 HP Confidential

For example, consider a storage system, which a cost of purchase Costpurchase. Suppose that the
system experiences outages of length Loutage = 20 minutes, with an annualized data outage rate
Routage =3%. The system is used to store the a data object which has a linear cost of downtime of
$10,000 per minute, i.e. CDO(20min)=$10,000*20=$200,000. Then, the effective cost of the system
over n years of usage is:

or equivalently

Each term of the summation represents the cost of downtime during one year (the ith year). This
cost model incorporates the discount rate D (which expresses the change in the value of money in
terms of time). With a discount rate of 10%, a sum of x dollars today is worth (1+0.1)2x dollars in
two years.

We note that workload units are assigned to logical units with the assumption that admission
policies (what workload units are serviced during degraded modes) are enforceable by the device
or by the device manager. The motivation behind admission policies should be clear. When a
device is in a degraded mode, it is desirable that it admits only a certain set of workloads for
which it can meet the baseline requirements, rather than spread itself over the fault-free workload
and end up not meeting any guarantees.

In the following, we describe the objective function of total effective cost. But first of all, we
introduce some necessary notational definitions:

- We have already defined the assignment to be a mapping from the set of workload units
W to the set of logical units L.

A(w) = l means workload unit w has been assigned to logical unit l.

- We define the admission policy, denoted by Adm, as the mapping from the cross product
set of logical units, workload units and states LxWxS to the set {0,1} where

In all other cases Adm(l,w,s) = 0. If workload unit w is not admitted in a certain state, then
we refer to that state as a data outage state for workload unit w.

- l denotes a logical unit, we denote the number of modes (fault-free +degraded modes) with
modes(l). For each mode or state s, s =1... modes(l), we denote the mean duration of the mode
(repair time) by rts and the probability of occurrence of the mode by ps.

- w denotes a workload unit, CDOw denotes the cost of downtime for workload unit w,
which is a function of the downtime duration.

The total effective cost of the system is defined as the sum of the effective costs of the logical units
used up by the assignment. The effective cost of a logical unit is the sum of the purchase cost of
the logical unit and the sum of the cost of downtime for all the workload units asigned to the
logical unit. The cost of downtime for a workload unit w assigned to a unit l is the sum of the
products of the annualized data outage rate of each type of outage and the cost of the outage. A
workload unit experiences a data outage in the states s, during which it is not admitted at unit l,

Costeff Cost purchase

CDO Loutage( ) Routage×

1 D+( )i
-----------------------------------------------------------

i 1=

n

∑+=

Costeff Cost purchase
200 000, 0.03×

1 0.1+( )i
-------------------------------------

i 1=

n

∑+=

Adm l w s, ,( ) 1=
A w( ) l= and,

w is admitted in state s of unit l⎩
⎨
⎧

⇔
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i.e. the states for which Adm(l,s,w)=0. Let RO(s) denote the annualized rate of occurrence of state
s (The value of RO(s) is derived in Appendix A). Thus, for a workload unit w, the cost of downtime
(data outages) over a period of n years is given by

where D is the discount rate.

Now, we can express the total effective cost of the storage system as the cost of purchase of the
devices and the cost of downtime of the workload units

5.4.3 Assignment algorithm

The assignment problem is hard because the discrete multiple-knapsack multiple constraint
problem is NP-hard. The efficient algorithms proposed to solve this problem are approximate
algorithms that use some heuristic to ensure that a solution that is close enough to optimal is
reached within a reasonable time.

For this particular instance of the knapsack problem, we know that higher availability can be
achieved via increased hardware redundancy and through the use of more reliable components.
This comes at increased purchase cost. However, higher availability implies less data outages and
therefore decreased losses due to downtime. Figure 8 graphs the effective cost of a logical unit
(storage system) as a function of system “availability”. Our goal is to minimize the objective
function of total effective cost. The heuristics employed by the algorithm are based on the
following observations:

• Each workload unit taken independently, we can match it with the optimal logical unit.
Namely, the logical unit which minimizes the total effective cost. For an arbitrary workload
unit w, we denote the effective cost of the optimal logical unit (assuming the workload unit

Costdowntime w( )
RO s( ) CDOw rts( )×

1 D+( )i
-------------------------------------------------

i 1=

n

∑
⎝ ⎠
⎜ ⎟
⎛ ⎞

s Adm l s, w,( ) 0=,
∑=

Costtotal Cost purchase l( )
l used l( ),

∑ Costdowntime w( )
w A w( ) l=,

∑
l used l( ),

∑+=

Figure 8. Cost of system versus availability. While purchase cost increases with availability, cost due to
downtime obviously decreases for more available systems. Effective cost is the sum of the purchase cost
and the cost due to downtime. Clearly, there is a point towards the middle where the total effective cost is
minimized.
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is independently assigned) by min_eff_cost(w). This cost denotes the sum of the purchase
cost and the downtime cost for the logical unit that minimizes the effective cost for this
particular workload unit, while meeting the reliability, capacity and availability constraints
of the workload unit.

• Some workload units ‘demand’ high availability and will have to be matched with highly
available ‘expensive logical units’. Others are satisfied with cheaper logical units. We would
like to allow for workload units to be assigned to better devices than they require if the units
have to be purchased anyway (to satisfy a demanding workload unit). However, we would
like to avoid scenarios where low demand workload units end up being assigned to
expensive devices instead of demanding workload units.

• Often, some workload units will end up being assigned to logical units that have higher
availability (and higher purchase cost) because the logical unit was required by some
demanding workload unit, but that workload unit did not use up all the capacity. We define
a measure of how much ‘overmatched’ a workload unit was, that we call workload unit
entropy. The entropy of a workload unit w (that has been assigned to logical unit l) is defined
as the ratio of the actual effective cost of the logical unit l (assuming it has been assigned w
only) to the minimal effective cost of workload unit w. In other words,

• One important observation is that given an initial assignment of workload units to logical
units, we can identify the well-matched workload units by looking at their entropies. An
entropy of one implies a well-matched workload unit (The workload unit was assigned to
the logical unit to which it would have been assigned if it were the only workload unit).
However, workload units with high entropies have been mismatched (notice the effective
cost curve of Figure 8 is shaped like a valley. A workload unit has high entropy if it has been
assigned to a logical unit corresponding to a point on either sides of the valley curve). Note
that an assignment may have many workload units with high entropies while still being
optimal (minimizing the total effective cost).

• Assuming we reached an initial assignment. We can identify the high entropy workload
units and swap them with workload units that are better matches to that space.

A good heuristic is then to reach a decent intial assignment refine the assignment using
information on how well things were matched and packed into the logical units. The algorithm is
not fancy at this point as it has not been the focus of this work.

The algorithm goes as follows:

1. Greedy first-pass

Iterating over the workload units in input order, assign a workload unit to the logical unit
that will minimize total effective cost (purchase cost of all logical units + total cost of
downtime for all workload units already assigned). The availability, reliability and
performance constraints should hold of course.

2. Refinement passes: multiple passes to refine assignment

Characterize the workload units according to the entropy measure.

Remove (unassign) objects with high entropies from the logical units they have been
assigned to and assign in their place objects that are better matched with that logical unit.

entropy w( ) act_eff_cost(w)
min_eff_cost(w)
-------------------------------------- purchase_cost(l)+cost_of_downtime(l,w)

min_eff_cost(w)
---------------------------------------------------------------------------------------------------= =
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5.5 Future work

The approach we developed can be immediately extended to model logical units more accurately.
Caches and Non-volatile RAM (NVRAM) can be included as an other component of a logical unit.
Dependent failure rates of components (such as volatile caches failing in case of power failure,
NVRAM failing in case of controller failure) can be handled within the developed framework. A
lot of work remains to be done in several areas, including

1. Evaluating the approach and validating the tool: how optimal is the configuration? are the
availability requirements met in practice?

2. Extending the concept of logical units to include weakly-consistent (and other dynamic)
replication schemes. In principle, the degree of consistency of the replicas can be determined
from the MWL availability requirement. Weakly-consistent replicas can be a much more
cost-effective high-availability solution for certain applications than expensive fully
redundant disk arrays.

3. Incorporating the impact of the storage management system itself on the user-perceived object
availability. Suppose there is a single storage manager (which performs functions such as
object name resolution and mapping, device management, etc,...) and that manager is
frequently unavailable. Then, the user-perceived availability of a certain object may be
much worse than the availability of the logical unit on which the object is stored. Assuming
that storage managers can be replicated, it is useful to determine what amount of replication
necessary to meet the objects’ availability requirements.

6  Conclusions
As storage system continue to grow, their configuration and administration will continue to be
costly and poorly done. This is because the configuration space is large and involves complex
trade-offs in cost, performance and availability. The attribute-managed storage project
[Golding94] proposes to reduce the difficulty of this problem by having end-users specify the
availability requirements of workload units to the storage system and let the system configure
itself to meet these requirements. We demonstrate the feasibility of this proposition by describing
an approach and developing a working tool to automatically design storage systems to meet the
availability requirements of a large set of workload units. The tool automatically synthesizes all
candidate storage logical units that match the input workload units and assesses their reliability,
availability and performance via automatically generated Markov chains. An Assignment engine
selects the appropriate storage logical units and determines the assignment of workload units to
storage logical units so as to minimize total storage system cost.

We introduced a more appropriate cost measure that we call the effective cost of a storage system
which incorporates the purchase cost of the system together with the cost (losses) incurred as a
result of data unavailability due to system downtime.
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8  Appendix A: availability computations

We model the availability of logical units via a Markov chain which we solve to get the probability
of the logical unit being in each fault-free or degraded mode state. When assigning a workload
unit to a logical unit, we need to evaluate the availability constraints to make sure they hold. Also,
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we need to determine the cost of downtime for the workload unit if it were assigned to the logical
unit.

This section shows how to derive the maximum outage duration, the maximum outage rate and
the cost of downtime for a workload unit assigned to a logical unit from the state probabilities and
durations of the unit.

Suppose w is a workload unit and l is a logical unit with states s=1...S. Without loss of generality,
we assume is admitted at the logical unit l in the first M states s=1...M, so that states M+1,...,S are
considered outages states for workload unit w.

Furthermore, let’s denote the steady-state probability of logical unit l being in state s by ps, and
let’s denote the duration of state s by rts.

All the values we use in this analysis are mean values (state duration).

1. Deriving the longest and mean outage durations if w were assigned to l

The data outage states for workload unit w are states M+1,...,S during which the workload
unit is not admitted at logical unit l. The maximum outage duration is therefore the duration
of the longest state.

Let the longest outage state be state m, then the mean duration of state m is given by rtm. So
formally, the longest mean outage duration is given by

Alternatively, we can use the mean outage duration as the availability requirement. The
mean outage duration for workload unit w when assigned to logical unit l can be computed
by averaging the duration of all outage states. The mean outage duration (MOD) is given by

2. Deriving the mean outage rate for w

The rate of outages as seen by a workload unit w is the sum of the rates of all outage states
for w. Suppose m is an outage state, the probability of being in state m is pm and the mean
duration of state m is rtm, then the annualized rate of occurrence RO(m) of state m related to
the mean time between outages as discussed in section 2.4. The mean time between outages
(occurrences of state m) is given by the ratio of the duration of the state to the probability of
its occurrence, thus

LOD MAX rts( ) for all outage states s = M+1,...,S,=

MOD w( )

pi
i M 1+=

S

∑
pi

rti
------

i M 1+=

s

∑
------------------------=

RO m( ) 100
HoursInOneYear

rtm

pm
--------

----------------------------------------------×=
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Therefore, the total outage rate for workload unit w is given by the sum of the rates of all the
outage states (the outage states are states M+1,...,S)

3. Deriving the mean cost of downtime for w

The cost of downtime for workload unit w over n years is given by the sum of the costs of all the
outages experienced by the workload unit over the n years. The cost of date outages over the
course of one year is equal to the product of the rate of outages by the cost of each outage.
Formally, if D is the annual discount rate then the cost of downtime for workload unit w over the
course of n years is

RO w( ) RO m( )
i M 1+=

S

∑ 100
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--------

----------------------------------------------×
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