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Abstract

An attribute-managed solvermakes assignments of workload units to devices based on attributes
specifications that describe the workload units and the devices. This paper presents the sets of
attributes that model workloads and devices. It also discusses the necessary formalization of an
attribute-managed solver in terms of objective functions and constraint expressions. These for-
malizations enable progress toward on implementation of an attributed-managed storage system.
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1 Introduction

An introduction to self-configuring self-managing storage systems and attribute-managed storage
can be found in [Golding95]. An understanding of this paper depends on an understanding of that
paper.

We begin with an overview on how attributes are specified in Section 2. We follow this
by descriptions of the models for workloads and devices that are needed for our approach in
Sections 3 and 4. We overview the mapping problem in Section 5 and formalize it in terms of
objective functions and constraint expressions in Section 6. We present a brief discussion of
previous work, future work, and our conclusions in Sections 7, 8, and 9.

This version of this paper (Rev D) has been updated from the previous version (Rev C) in a
number of important ways:

� The term “effective transfer rate” has been replaced with “long-term transfer rate”. Transfer
rate discussions throughout have been improved; 4 of the subsections presenting constraint
expressions for transfer rate have been removed.

� The discussion of last-byte latency jitter was removed.

� The figure references were fixed; something bad happened between Rev C and Rev B.
Figure 1 has also been fixed so that the two histograms are visible.

� The devices attributes have been split into two groups:capabilitiesandbehaviors. The
behavior attributes capture the way that a device responses to a specific workload; they are
workload dependent. The capabilities are the remaining set of attributes. This change is in
Section 4.1.

� The discussion of streams and objects in Section 3 was (hopefully) improved. The section
discussing the difference in attributes for streams and objects has been removed.

� Thedatabase random patternwas added as a spatial access pattern for workload units in
Section 3.1.1.

� The formulas for availability and reliability were corrected in Section 4.1.

� An additional constraint was added to support utility; see (9).

� We removed mention of request gap from Section 3.1.1.

� We added the definition ofdynamicsets/pools/seas to capture evolving workload units and
devices in Section 5.

� Composite deviceshad been mentioned a couple of things through-out this paper. Since
composition is our approach to modelingcomplex devices(i.e., ones with caches and
queues etc.), the term “composite” was replaced with “complex”.
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� The definition and discussion of slip rate has been removed and replaced with an open
problem in Section 4.2. Arif Merchant has worked on a different method of representing
the problem that slip rate was attempting to.

� Several typos were fixed and additional explanations were added. An example explanation
is how positioning time is workload dependent (Section 6.8).

There are some concepts in this paper that still have to have additional details added. A
partial list of what will have additional details or has additional details discussed in another paper
follows:

� availability and reliability

� streams and objects

� capacity as a distribution

� system goals

There are also concepts that are presented that are not used yet; a partial list of these follows:

� workload use patterns such as run length and run stride (These will be used in determining
the service time for complex devices.)

� zones on the devices

2 Attributes

Our basic method of describing workloads and devices is throughattributes. This section dis-
cusses what an attribute is, how we use them, and how are they specified. In attribute-managed
storage, attributes are the only things we use to map workload units to devices.

Attributes allow us to specify abstractly how the workload and devices behave and what are
the performance needs of the workload. The workload attributes are represented in terms of
requirementsanduse patternsand the device attributes are represented in terms ofcapabilities.

Some attributes are measured as single numbers, while others require more complex specifi-
cations for a more accurate representation. The complex specifications are not discussed here; at
this point, we assume attributes are specified as single numbers.1

A workload(respectively,device) specificationis one or more workload units (devices), with
values assigned to the attributes. Attribute values could either be specified (e.g., by a system
administrator for workload attributes and device manufacturer for device attributes) or they could
be derived from values that have been specified. As an example, reliability of a device can be
derived from the availability of the device.

Unspecified attributes that cannot be derived can be left blank in a specification. This implies
that the value of the attribute is not important.

1Simplification: Attributes are specified using only single values (i.e., no distributions).
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3 Workload specification

We use two items to model a workload—storage objectsand data streams. Storage objects,
which we refer to asobjects, are the basic persistent unit that applications access, and that must
be assigned to storage devices. These objects could be files, tables or part of tables in a database,
recorded continuous media streams, or blocks of a scientific data set.

Separately, applications access storage objects throughdata streams, which we callstreams.
A stream represents a group of data requests for the object.

The interaction between streams and objects has not been formalized, and is therefore not dis-
cussed here. We present this formalization using the termworkload units, which can be thought
of as a file that needs to be stored on disk with a single open access path. A workload unit com-
prises many requests. A device’s workload is zero or more workload units accessing data on the
device.

The relative importance of workload units is given by theimportance attribute, which supports
a ranking of workload units. This attribute represents the importance of the workload units in the
“grand scheme of things.” Importance is used to determine which workload units’ requirements
are the most important if all of the workload units’ needs cannot be met.

Similarly, the relative importance of workload unit attributes is given by a weight parameter,
wat, for attributeat; the weight parameter allows a ranking of the importance of the individual
attributes. For example, a high weight value for long-term transfer rate means long-term transfer
rate is important for that workload unit.

Grouping together similar workload units intoworkload unit classescan reduce the size of
the search space when assigned workload units to devices. It also makes the process of specifying
workload units easier. Workload units having the same specification can be in the same workload
unit class.

3.1 Our workload unit model

3.1.1 The attributes

We develop a workload unit model that captures the storage device needs of the application and
the behavior of the application. We divide the characteristics or attributes of a workload unit that
we are interested in into two groups:requirementsanduse patterns.

Requirement attributes Requirements define what the supporting device needs to deliver.
Long-term transfer rate and capacity are sample requirement attributes. The requirement at-
tributes of a workload unit are described in Table 1. (One of the attributes in the table is last-byte
latency; this is calledresponse timeby some.2) Since the availability and reliability can be spec-
ified independently as requirements, the effect of the device going down is not factored into the
long-term transfer rate and the last byte latency.

2We define thelast-byte latency jitterto be the variance in the last-byte latency. The last-byte latency jitter can
be modeled when the last-byte latency is modeled as a distribution.
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Table 1: The requirement attributes for workload units. A value of probability in the fourth
column in the table means the value is between 0 and 1. B refers to bytes and s refers to seconds.
attribute symbol description unit

long-term
transfer rate

long term transfer rate the amount of data that the work-
load unit needs generated or con-
sumed by the device per unit time
over the life time of the workload
unit

B/s

last-byte
latency

last byte lat the per-request latency for the last
byte to be received that can be tol-
erated by the workload unit

s

data capacity capacity the amount of data storage that the
workload unit needs on the device

B

availability availability the fraction of time that the device
is servicing requests that is needed
by the workload unit

probability

reliability reliability the probability needed by the work-
load unit that the device will be ser-
vicing requests continuously from
time0 to timet

probability (as a
function oft)

correctness
violation

correct viol the fraction of data that the work-
load unit can tolerate dropped or in-
correctly transfered

probability

Table 2: The requirement attributes derivations for workload units.
attribute symbol derived from/derived as

long-term transfer rate long term transfer rate request rate � request size
last-byte latency last byte lat buffer size (for some

applications)
reliability reliability availability
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There are four possible transfer rates that can be specified:

� burst transfer rate: the transfer rate that the workload unit is receiving data at once the
device starts to transfer data,

� request transfer rate: the transfer rate computed over interval from request issuance to
request completion, and

� interval transfer rate: the transfer rate computed over an interval of specified length, and

� long-term transfer rate: the transfer rate computed over the life time of the workload unit.

If we only model the storage system, we cannot accurately determine the burst transfer rate that
the device will be supplying because of the large impact of the communication network on this
measure of transfer rate; therefore, we do not have burst transfer rate as one of our requirement
attributes. The request transfer rate is equal to the request size divided by the last-byte latency,
thus either the medium-term transfer rate or the last-byte latency can be used as an attribute. We
have chosen the term last-byte latency since it is the more-commonly used measure. We currently
do not have a need for the interval transfer rate requirement.

Some of the requirements can be derived from other requirements or use patterns; the require-
ment attribute derivations of a workload unit are shown in Table 2. (Some of the attributes in the
“derived from/derived as” column in Table 2 are defined in Table 3.) Having the system derive
requirements allows the workload unit to be specified in terms of attributes that are important for
that workload unit. For example, it might be more natural for a transaction processing application
to be specified in terms of the requests per minute and the mean request size than in terms of the
long-term transfer rate.

Use pattern attributes Use patterns describe how the workload unit will behave once it is
running on a storage system. They are also referred to as theworkload behaviors. The use
patterns of a workload unit are described in Table 3.

We have a use pattern attribute that captures thetime access pattern—request rate.
Theaccess typeattribute is set to either “read” or “write” if the workload unit performs only

reads or only writes. If a workload unit performs both reads and writes, the read and write frac-
tions (read fraction andwrite fraction) tell us the fraction of requests that are reads and writes.
(By definition,read fraction = 1� write fraction.)3

Working set size, run length, run stride, data skew, andhot spot sizeare measures of the
spatial data access patterns. These attributes are similar to what [Patterson93] suggests for
applications to use as hints to the operating system for file system caching. The working set size
is the amount of data that is active in a specified time interval [Denning80].

A run is a group of bytes that are accessed consecutively across requests. For example,
for a video-on-demand application, a run is the entire video clip. Run length and run stride,

3Simplification: We assume in Section 6 that a workload unit can only have one access type, i.e., a workload
unit can either read or write.
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Table 3: The use pattern attributes for workload units.
attribute symbol description unit

request rate request rate the rate that individual re-
quests will be made from the
workload unit to the device

requests/s

request size request size the amount of data that is re-
quested at once

B

access type access type read or write
read fraction
and write
fraction

read fraction,
write fraction

the fractions of the requests
that are reads and writes over
the lifetime of the workload
unit

probability

working set
size

working set size the number of bytes accessed
in a time interval of specified
length

B

run length run length the number of bytes accessed
consecutively (A run is a
group of bytes that are ac-
cessed consecutively across
request.)

B

run stride run stride the number of bytes between
the beginning bytes of two
consecutive runs

B

hot spot size hot spot size the amount of contiguous data
that is accessed with a higher
probability than the rest of the
data

B

data skew data skew a mea-
sure of the non-uniformity of
the frequencies of accesses to
the data

� (from the
Bradford-Zipf
distribution)

6



as described in Table 3, define whether the workload unit patterns are sequential, consecutive, or
random. If the pattern is sequential, run length and run stride specify the strided or regular pattern
[Nieuwejaar95] if there is one. We use Nieuwejaar’s terminology for sequential and consecutive;
a sequential requestis one where the byte offset being accessed is at a higher file offset than the
previous request, and aconsecutive requestis a sequential request that begins where the previous
request ended.

We also define adatabase random patternthat models database accesses where the database
record is larger then the request size. In this pattern, a random record is read/written in
request size-chunks. Examples of run length and run stride for the various types of patterns are:

� random:run length = request size, run stride = 0

A zero value forrun stride means the value is undefined.

� consecutive:run length = the amount of data to be accessed in total,run stride = 0

� sequential: for some positive integers,x andy, s.t.y > request size � x

run length = request size � x, run stride = y

� database random: for some positive integer,x,

run length = request size � x, run stride = 0

Data skew, as described in Table 3, expresses the non-uniformity of the data accesses. The
measure of data skew,�, is computed from the histogram of the block accesses of the workload
unit, where the blocks are sorted by frequency; Figure 1 is a sample histogram for two work-
load units. We believe that the curve approximating the histogram is a Bradford-Zipf distribution
[Zipf49]; [Majumdar84] shows that the Bradford-Zipf distribution is a reasonable characteriza-
tion of file referencing behavior within a file.

Let pi be the probability of access to theith block. A Bradford-Zipf distribution is of the form

pi =
c

i�

whereB is the number of blocks that are accessed by the workload unit andc is a normalization
constant defined as

c =
BX
i=1

1

i�
:

A hot spot, as described in Table 3, is a group of contiguous bytes that the workload unit
accesses more frequently than the rest of the data. This can be representative of the meta-data of
a file or an index to a database. The probability of the hot spot can be determined by the data
skew value.

With this set of requirements and use patterns, we distinguish between the various types of
applications. For example, using theslip rate attribute, we can capture that a video-on-demand
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Blocks sorted by frequency

Probability
of being 
accessed
(p )i

Probability
of being 
accessed
(p )i

Blocks sorted by frequency

Figure 1: Sample histograms of the accesses of two workload units. The one on the left represents a
highly skewed access; the other represents a uniform access pattern.

application can tolerate only a small amount of variation in the long-term transfer rate. This is in
contrast to a database application that might be able to tolerate larger variations in the response
time.

Not stated in the tables are theaveraging intervals, which is the length of time that the values
are determined over. Request rate (request rate) needs an averaging interval.

If an attribute is not specified, then the value of the attribute is not important or it can be
derived.

3.1.2 Utility

When the requirements of a workload unit are being met, there are some attributes that can be
supported by any value in a range of values. The workload unit requirements are not always hard
requirements, i.e., if the workload unit is given less than its optimal value, it still might be able
to function. We have chosen to model this asutility.

Jensen [Jensen91] discusses real-time completion constraints of tasks being serviced by an
operating system in terms ofhard andsoft. A hard constraint signifies that a result has zero
or negative utility if produced after a certain time and a soft constraint means the result has a
corresponding utility which is a function of the time at which it is completed. Campbellet al.
[Campbell96] discuss three levels of service (deterministic, predictive, andbest effort) which are
ways to guarantee performance as hard, soft, and firm.

We use these ideas to determine how the values specified for the workload unit requirements
have to be meet. That is, each workload unit requirement attribute has a correspondingutility
function, which gives the utility of the various possible values of the attribute. The utility function
identifies the utility of values that the attribute can take.4 Figure 2 shows what the utility function
for long term transfer rate can look like if a workload unit needs at least 4 MB/s of bandwidth.
Figures 3 and 4 show possible utility functions for last-byte latency.

4Simplification: This discussion assumes that the requirement attributes are given as single values. This becomes
much more complicated when taking into account distributions.
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1  --

0

long-term transfer rate
|

utility

 4

Figure 2: The long-term transfer rate utility graph for a workload unit that needs at least 4MB/s of band-
width. (The capacity utility graph has the same shape as this curve.)

1  --

0
x2

utility

x1
||

last-byte latency

Figure 3: The last-byte latency utility graph for a workload unit that has very high utility for values of last
byte latencies of less thanx1, but can tolerate values of last byte latency (with decreasing utility) tox2.
(The availability, reliability, and correctness violations utility graphs can all have the same shape as this
curve.)

With the current set of attributes defined for workload units, we believe that the utility curves
will always be as simple as the examples presented in Figures 2, 3, and 4.

The utility function could be used to also represent the weight of the attributes discussed in
Section 3. The decision of whether utility and the weights be kept as separate values for user
input should be made based on the ease of user specification.

If a requirement attribute is not specified, the system can assume that the utility curve is
always 1.

3.2 Open issues for the workload model

The following are the current open issues for the workload model:

� It has been thought that the correctness violation attribute might be used to capture the
data lost if the data is stored on the device using lossy compression. How should this be
formalized?

� Spatial localityis the tendency of the workload to access data that is physically close to
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1  --

0 ||

utility

last-byte latency

| |
x1 x2 x3 x4

Figure 4: A possible last-byte latency utility graph for a workload unit that determines the last-byte latency
based on the size of the buffers.

other accessed data. The greater the spatial locality, the greater the gain in cache hits as the
cache line size is increased. We currently measure the spatial locality by run length, which
only has a value if the access pattern is sequential or database random. Should another use
pattern attribute be added?

� One application can have many differentphases, where the phases run sequentially and
have possibly different specifications. How can this be modeled? (Phases are seen as
long-term behaviour.)

One solution is to model different phases as different workload units and to create a worst-
case from these different phases where, if the requirements of the worst-case workload unit
were met, the requirements for each one of the phases would also be met. This solution
could possibility assign much too much resources to the application.

Another solution is to model different phases as different workload units and to assign the
“composite workload unit” to a device only when the requirements of each of the phases
can be supported. This solution seems to increase the number of constraint equations that
have to be checked when making an assignment.

� Workload unit requirements can vary over short periods of time (i.e., bursts). How should
this be modeled? ([Low93] might have some ideas.)

� We have looked at the following question: how is a mapping done so that the needs of the
Y workload units are met with a probability of 90% whenX workload unit specifications
are given (whereY < X)?

One solution to this is based on ordering the combinations of workload units. To be able
to order the combinations, we must be able to able to order the workload units. Thus, we
must define a relation between workload units and devices that is a total order. The logical
choice for a relation is the binary relation,G, on the set of workload units such thataGb if
any device meets the requirements ofb, it will meet the requirements ofa. But, in reality,
this is only a partial order. Does there exist another relation which is total order and has
the flavor of the above relation?
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� Would defining a grouping of “similar workload units” be useful? Currently, we have a
workload unit classwhich groups together workload units that have the same specification.
Can we group together workload units that have similar specifications? If so, how do we
define similar? What would this be used for?

� What should the system administrator be specifying? Garth Gibson has expressed some
concern that the attributes that we have specified are not values that a system administrator
can specify.

� How do streams and objects differ? How can they be used to model an application?
The different needs of streams and objects might be able to be captured byreservations
andpre-reservations(or reservations in advance[Wolf95]). [Degermark95, Plagemann96,
Sreenan96] might be useful to read.

4 Device specification

4.1 Our device model

Initially, our view of a device is very simple; it consists of device mechanisms only that only
services one request at a time. A request is specified in terms of an amount of data (i.e., the request
size) and the location of the data. There are no caching, queues with interesting scheduling
algorithms, groups of devices working as one, etc. (These will be addressed by the modeling of
complex devices.) The time to service a request is the time to position the head (Position Time)
plus the time to transfer the data. Multiple “transfer regions” can be modeled withzones.

Devices are specified in terms ofcapabilities, behaviors, and cost (Cost). The capabilities of
a device describe the device attributes that are not workload dependent and the device behaviors
describe the device attributes that are workload dependent. The capacity is an example capability
and last-byte latency is an example behavior.

The device capabilities are shown in Table 4. The device behaviors are shown in Table 5. A
number of these attributes are derived from attributes that are specified; the derived capabilities
of a device are shown in Table 6. In particular, we have [Gibson93]

Availability =
MTTR

MTTF+MTTR

MTTF =
Z 1

0
Reliabilityt dt:

If we assume that the reliability function is a exponential we have [Siewiorek92]

Reliabilityt = e�
t

MTTF :

Availability has also been defined in terms of mean-time-between-failures and mean-time-to-
failure [Gray86].

11



Table 4: The capabilities for devices.
attribute symbol description unit

transfer rate Transfer Rate the nominal rate that the device can
transfer data (i.e., the maximum trans-
fer rate)

B/s

data capacity Capacity the amount of data storage the device
can store

B

mean-time-to-
failure

MTTF the mean amount of time to failure of
the device

hours

mean-time-to-
repair

MTTR the mean amount of time to repair of
the device

hours

correctness
violation

Correct Viol the fraction of data that the device may
drop or incorrectly transfer

availability Availability the fraction of time that the device is
servicing requests

probability

reliability Reliability the probability that the device will be
servicing requests continuously from
time0 to timet

probability (as
a function oft)

cost Cost the dollar cost of the device $

Table 5: The behaviors for devices.
attribute symbol description unit

long-term
transfer rate

Long Term Transfer Rate the long-term rate that the work-
load is receiving transfered data;
this takes into account the posi-
tioning time; is a function of the
workload assigned to the device

B/s

last-byte
latency

Last Byte Lat the per-request latency for the last
byte of the requested data to be re-
ceived; is a function of the work-
load assigned to the device

s

positioning
time

Position Time the amount of time that the device
takes to position the head (based
on the seek time and the rotational
latency)

s

12



Table 6: Derived capability attributes for devices.
attribute symbol derived from

transfer rate Transfer Rate rotation speed, number of platters, number of sectors per
track in the zone, number of bytes per sector, zone layout

availability Availability mean-time-to-failure, mean-time-to-repair
reliability Reliability mean-time-to-failure

Table 7: The flavors of each capability attribute.
consumable generatable non-affected

transfer rate X
last-byte latency X
data capacity X
availability X
reliability X
correctness violations X

In addition to the attributes being divided into capabilities and behaviors, the device attributes
have three flavors:consumable, generatable, andnon-affected. If an attribute is consumable,
there will be less of that attribute available once a workload unit is assigned to a device. Transfer
rate and capacity are examples of consumable attributes. If there will be more of an attribute once
another workload unit is assigned, we say that the attribute is generatable; an example is last-byte
latency. If the value of the device attribute is not affected when a workload unit is assigned, the
attribute isnon-affected.5 See Table 7 for the classifications of the device capabilities.

Zones

The transfer rate of a device depends on whether the device has zones. If the device has zones,
the transfer rate depends on the zone, since the zone determines the amount of data stored in the
track. Let

Bytes per Track[i; zone] = the number of bytes on a track in thezoneth

zone on devicei; can be computed by

Sectors per Track[i; zone] � Bytes per Sector[i]

Rotation Time[i; zone; B] = the amount of time that it takes to rotate

devicei to passB bytes when the head on

a cylinder in thezoneth zone. This is based on the

revolution speed.

5Simplification: In our first approximation of availability, we assume that it is a non-affected attribute.
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We also can compute average values for a zoned device:

Ave Bytes per Track[i] = Bytes per Track[i; zone] averaged over all zones

Ave Rot Time[i; B] = Rotation Time[i; zone; B] averaged over all zones.

This allows us to also define the following which we will use as shorthand notation:

Bytes per Cylinder[i; zone] = the number of bytes on a cylinder in the

zoneth zone on devicei

Ave Bytes per Cylinder[i] = Bytes per Cylinder[i; zone] averaged over all zones

If the transfer rate of the device is not given by the device vendor or if the device has zones,
we can compute the transfer rate of data as follows:

Transfer Rate[i; zone] =

Bytes per Track[i; zone]

Rotation Time[i; zone;Bytes per Track[i; zone]]
:

We can approximate the transfer rate a number of different ways:

Average Transfer Rate[i] =

PNum of Zones[i]
zone=1 Transfer Rate[i; zone]

Num of Zones[i]

Min Transfer Rate[i] = min
1�zone�Num of Zones[i]

Transfer Rate[i; zone]

Max Transfer Rate[i] = max
1�zone�Num of Zones[i]

Transfer Rate[i; zone]:

If an equation does not specify which approximation should be used, assume
Average Transfer Rate[i].

4.2 Open issues for the device model

There are a number of open issues in defining the device model:

� John thinks that correctness violations are not needed for devices, but are needed for net-
work delay. Can theCorrect Viol[i] be used to model the network delay or data loss due to
the network?

� If an application is generating requests 24 hours/day, it is not clear when to back up the
data on the devices. Also, different applications (i.e., workload units) have different data
back up requirements. In this case, one of the reasonable ways to back up the data is, every
X requests, a backup read is sent out of the device to the backup device. This affects the
performance of the device and should be taken into account when computing the transfer
rate and the last-byte latency.
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Figure 5: A graph which shows how many seconds a workload unit can get behind for a particular device.
Each step coincides with an event. The line is an approximation of the graph.

� There are glitches in the transfer rate and last-byte latency from events such as thermal
recalibrations, slip sector sparing, seek misses, and read errors. This might be able to be
modeled byslip rate, the fraction of time lost due to the device processing these types of
events. As an example, the value of slip rate can be computed by summing all of the values
for the various events that cause performance variations such as thermal recalibrations.6

To compute an approximation of the slip rate of a device, we need to sum the durations
due to various events over the longest event interval. The cumulative effect of events can
be seen clearly in a graph that plots the amount of time a workload unit request could get
behind as a function of time; a sample graph is shown in Figure 5. The value of slip rate
line that best fits the graph:

Slip Rate[i] � slope: (1)

� How do we model complex devices?

– How do we model devices that are interconnected? This affects device availability,
i.e., if two devices share a power source, and the power is cut, both devices will fail.
One possible way is to have failure groups. (The solver can use data redundancy to
change the failure group of interconnected devices.)

– There exist devices that are a slow tape or optical jukebox fronted by a cache disk.
Can these be modeled as complex devices? (The access rate depends strongly on the
working set: if it fits/hits on disk, looks like a disk. Otherwise somewhere between
disk and tape jukebox.)

6In the case of eventEV , we get the following if we were to determine the expected values to sum:

E(delay fromEV in interval of lengtht) � tfreq
EV

durationEV

whendurationEV � t.

15



– [Louis95] has purge and migration policies as attributes where purge policies deter-
mine when and what data is purged and migration policies determine how and when
the data is moved. Should we have these as part of complex devices?

5 The mapping problem

Now that we have a model for the workload and devices, we need anassignmentfrom a set of
workloads to a set of devices. The purpose of the assignment is to associate a group of workload
units to a device, where the device will be able to service the I/O requests coming from the
workload units. Anassignmentis the list of the devices that should be able to meet the needs of
the workload. It also includes the mapping of workload units to devices, along with the amount of
each device attribute assigned to each workload unit. We sometimes refer to just the assignment
of one workload unit asworkload unit assignment.7

5.1 Input/output into the mapping problem

The mapping problem, as stated, is not well-defined. Do all of the workload units have to be sup-
ported? Do all of the devices have to be used? These questions can be asked best by determining
what the groups of workload units and devices identify. Think of a workload unit class having
one of the following “tags”:

� “Support all of the workload units in me.”

� “Support as many asx of the workload units in me.”

� “Support some of the workload units in me (with no upper bound).”

Similarly, a device can be tagged with one of the following:

� “Use me; I’m already bought.”

� “You can use me; I’m easy to get.”

� “You can use me, but I might have to be ordered.”

To support these different ideas, we have defined the following terms. Aset is a fixed number
of items where all are meant to be used or supported. Apool is a fixed number of items where
some are meant to be used or supported. Aseais a variable number of items. It can be thought of
conveniently for devices as a pool plus a manufacturing plant that can deliver devices on request.
(We havedynamicversions of each of the above terms that allow us to define a changing group
of workload units or devices. For example, a dynamic workload unit set represents an evolving
set of workload units.)

With the groupings of sets, pools, and seas, we can ask a number of different questions:

7Simplification: One or more workload units can be assigned to one device. That is, there are no partial workload
units assignments and workload units cannot span devices.
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� set of workload units/set of devices: Can the workload units’ needs be met by this set of
devices? The answer is yes/no.

� set of workload units/pool of devices: What subset of devices from the devices that I own
do I need to use to meet the workload units’ needs?

� set of workload units/sea of devices: What devices do I need to buy to meet the needs of
these workload units?

� pool of workload units/set of devices: How can I use my spare device capacity that is
currently on my machine, i.e., what extra workload units can I run? Help—I just lost half
of my machine—what set of workload units can I run?

� pool of workload units/pool of devices: How can I use my spare capacity? (This ques-
tion makes the most sense if being asked for a number of different workload units/device
configurations so that the best choice can be picked.)

� sea of workload units/set (pool) of devices: How much of my workload can I do with these
devices that I own?

� sea of workload units/sea of devices: What is the best cost performance I can get from
these devices with these types of workload units?

These questions can be seen in Figure 6.
An assignment is determined by a solver, which takes as input: the workload specification,

device specifications, and goals which identify the intent of the solver. A sample goal is “cost
is more important than performance.” The output will be the assignment of workload units to
devices, and the amount of resources assigned to each workload unit from the device that it is
assigned to.

6 Formalized mapping problem

We formalize our mapping problem by specifying constraint equations/expressions that
need to be meet and objective functions that need to be maximized. We use constraint
equations/expressions and objective functions since that is how the multi-constraint
knapsack problem is presented and we feel that approximation algorithms developed for the
multi-constraint knapsack problem can be used as the base algorithm for our solver. The
following sections present the constraint equations/expressions and objective functions for each
attribute. The discussion refers to workload units; the expressions should apply to both objects
and streams.
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Figure 6: Sample questions that can be asked with different types of input.

6.1 Basic definitions

We have the following definitions:

S = number of workload unit classes

size[j] = number of workload units in thejth unit class

D = number of devices

The output of the mapping problem will be the valuesx[i; j], d[i],8 andquantityat[i; j] where

x[i; j] = number of workload units from thejth workload unit class

assigned toith device

d[i] = 1 if ith device is used by some workload unit

0 otherwise

quantityat[i; j] = the amount of attributeat that a workload unit

in workload unit classj is assigned on devicei

The value ofquantityat[i; j] is discussed in Section 6.2.3.
We use the convention of workload unit attributes beginning with lower case and device

attributes beginning with upper case.

8If the input for the workload and devices is set/set, thend[i] = 1 for all i.
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We definex[I; J ] as a shorthand for the set ofx[i; j] for all i such that1 � i � D and for all
j such that1 � j � S. Similarly,x[i; J ] is defined as the set ofx[i; j] such that1 � j � S.

The definition ofx[i; j] implies that the number of workload units from a given workload unit
class assigned to all of the devices is equal to the number of workload units needed to be assigned
from that class. This can be expressed in the following constraint equation:

DX
i=1

x[i; j] = size[j] (2)

for 1 � j � S.
The value ofd[i] identifies whether devicei is used inx[I; J ]. This can be formalized as

either one of the following constraint expressions:

d[i] = 1 () 9 j such that1 � j � S andx[i; j] > 0 (3)

d[i] = 1 ()
SX
j=1

x[i; j] > 0: (4)

6.2 Objective functions

The following 3 sections present varying levels of complex objective functions.
In these sections, the valuez is an approximation of thevalue of the assignmentx[I; J ] (with

respect to an objective function), which is the expected value of the objective function across the
domain of workloads it will be faced with in real life.

6.2.1 Basic objective function

Let

importance[j] = importance of a workload unit in thejth workload unit class

Cost[i] = cost of theith device

Formally, our mapping problem can be defined as determining the set of values ofx[i; j]
where the value of “benefit” of the workload unit set is maximized, which is expressed as follows

z =
DX
i=1

SX
j=1

importance[j]x[i; j] (5)

and the cost of the devices is minimized, which is expressed as follows

z =
DX
i=1

Cost[i]d[i]: (6)

(5) and (6) can be written as one objective function wherew represents the weight between
the cost of the devices and the benefit of the workload units:

z =
DX
i=1

SX
j=1

importance[j]x[i; j]� w
DX
i=1

Cost[i]d[i]: (7)
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6.2.2 Support cost of devices

The physical cost of a storage system is not just limited to the cost of the devices. There are also
costs associated with the power, space, cabinet, etc. These costs do not have to grow linearly
with the number of devices supported. Let9

Support Cost[n] = support cost for the use ofn devices

DefineNumber Devices as
PD

i=1 d[i]. The objective function (7) can be replaced with the
following equation to take into account the cost of supporting the devices:

z =
DX
i=1

SX
j=1

importance[j]x[i; j]� w

 
DX
i=1

Cost[i]d[i] + Support Cost[Number Devices]

!
: (8)

6.2.3 Utility

We use the ideas presented in Section 3.1.2 to determine how the values specified for the workload
unit attributes have to be meet. As discussed in Section 3.1.2, each workload unit attribute has
a corresponding utility function, which gives the utility of the various possible values of the
attribute. (See Figures 2, 3, and 4 for sample utility graphs.) Let

wat[j] = the weight of attributeat for a workload unit in

workload unit classj

quantityat[i; j] = the amount of attributeat that a workload unit

in workload unit classj is assigned on devicei

utilityat[j;AT] = the utility of attributeat for a workload unit in

workload unit classj with the value of the

device attribute beingAT

All of the attributes for a workload unit must have a non-zero value for an assignment to be made.
This is formalized in the following constraint expression:

utilityat[j; quantityat[i; j]] < 0 (9)

for all workload requirement attributesat, 1 � j � S such thatx[i; j] > 0 where1 � i � D.
(This constraint could be implemented by making the zero utility values have the value negative
infinity.)

The utility of a given workload unit assignment is part of the “benefit” of the assignment.
Therefore, the sum over all of the requirement attributes is multiplied into the benefit summand

9Simplification: We assume that all devices have the same cost to support.
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of objective function (8), giving us:

z =
DX
i=1

SX
j=1

0
@importance[j]x[i; j] X

all attributesat
wat[j]utilityat[j; quantityat[i; j]]

1
A

� w

 
DX
i=1

Cost[i]d[i] + Support Cost [Number Devices]

!
: (10)

This function replaces (8).
It is not intuitive how to use the above objective function without having to explore all possible

values ofquantityat; we suggest that the following idea be implemented. The system should
determine what reasonable values are for each attribute for each workload unit class, set the
values and run the solver. The result of the objective function (i.e., the value ofz) should be
compared with the previous best value of the objective function and the best should be saved.
Then, the values of the workload unit attributes should be adjusted, and the procedure iterated.

The attributes are set (and adjusted) so that the only range tested is where the value of the
utility is non-zero. The adjustment mirrors the type of function that the utility function is, e.g., if
the utility function is linear for a specific attribute, then the value set will be increased at a linear
rate. The value set also should depend on the importance of the workload unit and the weight of
the attribute.10

6.3 Transfer rate

A method is needed to verify that a device has adequate bandwidth to support the workload units
assigned to it. Let

Transfer Rate[i] = the nominal transfer rate ofith device

Position Time[i; j] = the time to position the head of devicei

when it is servicing request from a workload

in workload unit classj

Position Time[i; j] is defined in (22).
The amount of time that it takes to service a request from the current workload unit is the

time to position the head and to transfer the data:

Service Time[i; j] = Position Time[i; j] +
request size[j]

Transfer Rate[i]
: (11)

TheLong Term Transfer Rate[i; j] is the rate at which devicei services requests from workload
unit classj:

Long Term Transfer Rate[i; j] =
request size[j]

Service Time[i; j]
: (12)

10Simplification: This maps, for every set of workload units that are part of a workload unit class, the same
amount of resources, i.e.,quantityat[i; j] is the same for alli. But, different devices should be able to support
different amounts of resources for the same workload unit class. Therefore, more work on the algorithm is needed.
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The workload unit long-term transfer rate equation. The long-term transfer rate that the
workload unit gets must be greater than or equal to what it needs. This gives us the following
constraint equation:

long term transfer rate[j] � Long Term Transfer Rate[i; j] (13)

for 1 � i � D and for1 � j � S such thatx[i; j] > 0. We call this constraint equation the
workload unit long-term transfer rateequation.

The service time utilization equation. The number of bytes needed by all of the workload
units in a time interval must not exceed what the device can produce in that time interval; this
constraint is just the simple utilization equation:

SX
j=1

x[i; j]request rate[j]Service Time[i; j] < 1 (14)

for 1 � i � D. We call this constraint equation theservice time utilizationequation. This
equation replaces (13) sincelong term transfer rate[j] = request size[j] � request rate[j].

The device long-term transfer rate equation. We also must verify that the device’s bandwidth
is not over-exceeded. That is, in any one second, the amount of data that all of the workload units
assigned to the device need can be produced by the device. To do this, we calculate the fraction
of time that will be spent positioning the head for the current assignments made to the device.
This is

SX
j=1

x[i; j]request rate[j]Position Time[i; j]:

If we multiply the above value by the transfer rate of the device, we compute the amount of
bandwidth that can be considered positioning time overhead for the current set of assignments.
This is

Transfer Rate[i]
SX
j=1

x[i; j]request rate[j]Position Time[i; j]:

The amount of data that all of the workload units need (in one time interval) is

SX
j=1

x[i; j]request rate[j]long term transfer rate[j]
request size[j]

Long Term Transfer Rate[i; j]
:

Therefore, to verify that the devices can service the requests without exceeding their band-
width, we have the following constraint equation:

SX
j=1

x[i; j]request rate[j]long term transfer rate[j]
request size[j]

Long Term Transfer Rate[i; j]
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� Transfer Rate[i]�

Transfer Rate[i]
SX
j=1

x[i; j]request rate[j]Position Time[i; j] (15)

for 1 � i � D. We call this constraint equation thedevice long-term transfer rateequation. This
constraint equation does not need to be supported; it is implied by (13) and (14).

6.4 Last-byte latency

We define thelast-byte latencyto be the amount of time that it takes from request time to the time
that the last byte is received.

Let

last byte lat[j] = last-byte latency that can be tolerated by

a workload unit in thejth workload unit class

Last Byte Lat[i; j; x[i; J ]] = the last-byte latency that is seen from a workload unit

from thejth workload unit class assigned to devicei

when the assignmentsx[i; J ] are made

request size[j] = the request size of a workload unit in the

jth workload unit class

Transfer Rate[i; j] = transfer rate of theith device given a

request from a workload unit in

workload unit classj

Position Time[i; j] = the time to position the head of

devicei so that a request from

workload unit classj can begin

Position Time[i; j] is defined in (22). (The termx[i; J ] had been defined in Section 6.1.)
When a new workload unit is assigned to a device, the last-byte latency of the device changes

for the workload units already assigned to the device. (This is because the last-byte latency de-
pends on the positioning time of the disk head and the positioning time is workload-dependent.)
So, the requirements for an assigned workload unit might not be able to be met anymore. There-
fore, the constraint expression must verify the requirements for all workload unit classes, not just
the one currently being considered. This is reflected in our constraint expression by “1 � j 0 � S.”
(We call this afeedback loop.)

A workload unit can only be assigned to a device if the current last-byte latency for the device
is less than or equal to the workload unit’s needsand if adding the workload unit does not violate
the latency-requirements for the workload units currently assigned to the device (as discussed
above). Thus we get the following constraint expression

last byte lat[j 0] � Last Byte Lat[i; j 0; x[i; J ]] (16)
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for 1 � j 0 � S such thatx[A; j 0] > 0, 1 � j � S such thatx[A; j] > 0, and1 � i � D.
The device last-byte latency is easy to model when just considering a simple device since the

last-byte latency is just the time needed to service the request (Service Time[i; j] as defined in
(11)):

Last Byte Lat[i; j; x[i; J ]] = Service Time[i; j]: (17)

If, for example, the device has a queue, the last-byte latency would include thequeue delay, the
time the request is on the queue.

6.5 Capacity

Devices have limited capacity to store data. Some workload units have well-defined requirements
for the amount of data that needs to be stored. Let

capacity[j] = the capacity needed by a workload unit in thejth workload unit class

Capacity[i] = the capacity of theith device

A device should have enough capacity to service all of the workload units’ data assigned to
it. This can be expressed as the following constraint expression

SX
j=1

capacity[j]x[i; j] � Capacity[i] (18)

for 1 � i � D.

6.6 Availability and reliability

Let

availability[j] = availability needed by a workload unit in thejth workload unit class

reliability[j] = reliability needed by a workload unit in thejth workload unit class

Availability[i] = availability of theith device

Reliability[i] = reliability of theith device

We treat availability and reliability as values that do not change based on the load on the
device. Therefore, the necessary constraint expressions do not depend on what workload units
are assigned to the device, but just on the absolute values for the device. We see this as follows:

availability[j] � Availability[i] (19)

reliability[j] � Reliability[i] (20)

for x[i; j] > 0, 1 � j � S, and1 � i � D.11

11Simplification: We do not discuss independent failure modes.
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6.7 Correctness violations

Let

correct viol[j] = the fraction of data that a workload unit from the

jth workload unit class can tolerate incorrectly transfered

Correct Viol[j] = the fraction of data that devicei incorrectly transfers

The correctness violations do not change based on the load on the device. Therefore, the neces-
sary constraint expressions do not depend on what workload units are assigned to the device, but
just on the absolute values for the device. We see this as follows:

correct viol[j] � Correct Viol[i] (21)

for x[i; j] > 0, 1 � i � D, and1 � j � S.

6.8 Position time

The time to position the head on the desired block is the seek time plus the rotational latency
delay:

Position Time[i; j] = Seek Time[i; j] + Rot Lat[i; j] (22)

whereSeek Time[i; j] is the time to move the device head into place andRot Lat[i; j] is the time
to rotate the device so that the desired block is under the head. Position time also includes the
protocol overhead and the time to perform a head switch if needed. The protocol overhead is
the time needed to decode the command and to check the ECC. We are not modeling either one
of these at this time; they are insignificant when compared to the seek time and the rotational
latency. For example, [Hospodor95] states that the time to perform a head switch is les than 1 ms
and the seek time was 3–25 ms.

The seek time and rotational latency are workload dependent. This can be seen by considering
two workloads—one where the requests are consecutive and the other where the requests are
random. The mean seek time for the consecutive workload will be very small since the device
head will not have to move very frequently; the mean seek time for the random workload is much
higher. The mean rotational latency for the both workloads depends on the request rate.

We analyze the values ofSeek Time[i; j] andRot Lat[i; j]12 based on the assigned workload
units’ access pattern attributes. We are limited by our lack of knowledge of which cylinders the
workload unit’s data will be located on. (We also do not know what zones the data are on.) We
assume the blocks of the file being accessed by a workload unit are stored consecutively on a
cylinder and then on neighboring cylinders.

12It would be more correct to represent the parameters ofSeek Time andRot Lat as[i; x[i; J ]] since we do not
think it is worth it to model seek time and rotational latency to the point that we could determine different values for
different workload units assigned to the same device.
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In the following sections, we analyze the seek distance, seek time, and rotational latency
based on the access patterns of the workload units assigned to the devices. The access patterns
that we consider are: uniform random access, consecutive access, sequential access, and single
hot spots.

6.8.1 Seek distance

The seek distance represent the integer number of cylinders traversed between the current cylin-
der and the requested cylinder. We represent it as a discrete random variable. In this section,
we formalize the expression of expected seek distance when servicing a request. (The following
analysis is similar to what is presented in [Chen92].)

Let Pr(dis = k) be the probability that the distance that needs to be seeked on devicei to
service a request from thejth workload unit class is equal tok tracks. We have the following
three cases:

� If the workload unit assigned to devicei has a uniform random access pattern, we have

Pr(dis = k) =

(
0 k = 0

2(Num of Cylinders[i]�k)
Num of Cylinders[i](Num of Cylinders[i]�1)

otherwise

(23)

The 2(Num of Cylinders[i]�k)
Num of Cylinders[i](Num of Cylinders[i]�1)

quantity comes from the fact that the location of
the first request and the location of the next request are randomly located on disk.

Note that the above discussion assumes that the data accessed is randomly distributed
across the device. This would only be true if the device has one zone. Since the zones
have varying amounts of data stored on them, a multiple zoned disk does not have the data
randomly distributed across the cylinders.

� If the workload unit assigned to devicei has a consecutive access pattern, we have

Pr(dis = k) =

8>><
>>:

1� request size[j]
Ave Bytes per Cylinder[i]

k = 0
request size[j]

Ave Bytes per Cylinder[i]
k = 1

0 otherwise

The above approximation does not take into account the time needed to settle the head
when moving between platters.

� If the workload unit assigned to devicei has a sequential access pattern, we have

Pr(dis = k) =

8>><
>>:

num left
Ave Bytes per Cylinder[i]

k = bnum skippedc

1� num left
Ave Bytes per Cylinder[i]

k = dnum skippede
0 otherwise
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where

num skipped =
run stride[j]� run length[j]

Ave Bytes per Cylinder[i]

num left = run stride[j]� run length[j] mod Ave Bytes per Cylinder[i]:

The above values forPr(dis = k) are based on one workload unit being assigned to a de-
vice. In reality, a device supports many workload units. We, therefore, need to approximate
the seek distance in such instances. Studies on interactive timesharing, office automation, trans-
action processing and financial batch systems [Bates91] have shown that the average seek dis-
tance isNum of Cylinders[i]

10
and about half of the requests result in seeks of less than one cylinder.

[Hospodor95] states that the average seek distances for a multi-user Unix system is .155 of a
stroke. Thus, we suggest that instead of using the analytic method of determining the seek dis-
tance, the empirical distance ofNum of Cylinders[i]

10
be used.

6.8.2 Seek time

There are two predominant methods used to specify device seek time: a single average seek time
(i.e.,Ave Seek Time[i]) or the seek time needed as a function of the number of cylinders being
seeked (i.e.,Measured Seek Time[i; dis] wheredis is the number of cylinders being seeked).

We discuss the seek time needed for one workload unit assigned to a device for uniform
random access, consecutive access, sequential access, and single hot spots. We then discuss the
seek time needed for the empirical method of approximating the seek distance when multiple
workload units are assigned to a device.

Uniform random access

We use standard approximation forSeek Time[i; j] when the values ofrun length[j],
run stride[j], anddata skew[j] of the assigned workload units identify the workload units as
having uniform random access.

If the average seek time is specified for the device (Ave Seek Time), we can use that value to
approximate our seek time:

Seek Timeran[i; j] = Ave Seek Time[i]: (24)

If the average seek time for the device is not specified, but the seek curve is, we can calculate
the average seek time. The average seek time is the weighted average of the seek time for each
possible seek distance:

Ave Seek Time[i; j] =
Num of Cylinders[i]X

k=1

Pr(dis = k) �Measured Seek Time[i; k]:
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Using the value ofPr(dis = k) from (23), we get

Ave Seek Time[i] =

2
PNum of Cylinders[i]

dis=1 (Num of Cylinders[i]� dis)Measured Seek Time[i; dis]

Num of Cylinders[i](Num of Cylinders[i]� 1)
:

Consecutive access

If there is only one workload unit assigned to the device, and the values ofrun length[j],
run stride[j], and data skew[j] identify the workload unit as having a uniform consecutive
access pattern, we can get tighter approximations to the seek time than for the case of uniform
random access.

Assuming that the disk must access all of the sectors on one track, and then access the sectors
on the next platter (same track), etc., the average seek time for all of the accesses to read the data
on one cylinder is

Seek Timecons1[i; j]

=
amount of time spent performing seeks

number of requests

=
Seek Timeran[i; j] + Num of Platters[i] � Head Switch Time[i]j

Ave Bytes per Cylinder[i]
request size[j]

k :

If the amount of data accessed is larger than a cylinder (i.e.,run length[j] �
Ave Bytes per Cylinder[i]), then there is a seek that occurs when the head moves to the next
cylinder. The amount of time spent performing seeks to read the data that is stored onn
cylinders is contributed by the seek to the first cylinder,n� 1 seeks to the next cylinder, and the
seeks within one cylinder for each of then cylinders. This is

Seek Timeran[i; j] + (n� 1)Measured Seek Time[i; 1]

+ n � Num of Platters[i] � Head Switch Time[i]: (25)

The total number of requests that can be serviced by the data stored on then cylinders is

n
�
Ave Bytes per Cylinder[i]

request size[j]

�
: (26)

We can put these together to get

Seek Timecons[i; j] =
formula (25)
formula (26)

(27)

wheren = run length[j]
Ave Bytes per Cylinder[i]

.
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Sequential access

If we have one workload unit assigned to the device and it has uniform sequential access (defined
by the values ofrun length[j], run stride[j], anddata skew[j]), our Seek Time[i; j] derivation
becomes more complex.

When analyzingSeek Time[i; j], we perform case analysis on the different possible sizes of
the runs.

� run length[j] � Ave Bytes per Cylinder[i] (i.e., the runs are contained on one or more
cylinders)

If the runs are contained on one or more cylinders, the amount of time spent performing
seeks to read one run that is stored onn cylinders is contributed by the seek to the first
cylinder, then� 1 seeks to the next cylinder, and the seeks within one cylinder for each of
then cylinders. Formally, we have

Seek Timeran[i; j] + (n� 1)Measured Seek Time[i; 1]

+ n � Num of Platters[i] � Head Switch Time[i] (28)

wheren = run length[j]
Ave Bytes per Cylinder[i]

.

The calculation of the number of requests that can be serviced fromn cylinders must take
into account that some of the bytes are skipped. Approximately,run length[j]=run stride[j]
of the bytes are desired, so the number of requests is6664

j
n�Ave Bytes per Cylinder[i]

run stride[j]

k
run length[j]

request size[j]

7775 : (29)

� Ave Bytes per Track[i] � run length[j] � Ave Bytes per Cylinder[i] (i.e., multiple runs
fit on a cylinder, but not on one track)

The amount of time spent performing seeks to read the data stored on one cylinder is

Seek Timeran[i; j] + Num of Platters Accessed[i; j] � Head Switch Time[i] (30)

whereNum of Platters Accessed[i; j] depends on whether the run stride is greater than the
number of bytes on a track or not. Ifrun stride[j] � Ave Bytes per Track[i], the number
of platters that are accessed is the product of the number of platters that a run is across and
the number of runs there are on the cylinder:

Num of Platters Accessed[i; j]

= run length[j]=Ave Bytes per Track[i]

� Ave Bytes per Cylinder[i]=run stride[j]:

If run stride[j] � Ave Bytes per Track[i], every platter is accessed:

Num of Platters Accessed[i; j] = Num of Platters[i]:
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Figure 7: A sample distribution of uniform accesses with a hot spot of sizeh.

The calculation of the number of requests that can be serviced from one cylinder must take
into account that some of the bytes are skipped. Approximately,run length[j]=run stride[j]
of the bytes are desired, so the number of requests is

j
Ave Bytes per Cylinder[i]

run stride[j]

k
run length[j]

request size[j]
: (31)

� run length[j] � Ave Bytes per Track[i] (i.e., multiple runs fit on a track)

The amount of time spent performing seeks to read the data requested from one cylinder is

Seek Timeran[i; j] + Num of Platters[i] � Head Switch Time[i]: (32)

The number of requests that can be serviced by the data stored on one cylinder is

6664
j
Ave Bytes per Track[i]

run stride[j]

k
run length[j]

request size[j]

7775Num of Platters[i]: (33)

Hot spots/highly skewed random access

If one workload unit is assigned to devicei and the spatial access patterns define the workload
unit as having a hot spot of sizeh = dhot spot size[j]=Ave Bytes per Cylinder[i]e cylinders, then
the amount of time spent doing seeks is the weighted sum of the time doing seeks when a request
and the following request are both in the hot spot and when the requests are not both in the hot
spot:

Seek Timehs-ran[i; j] = p �Measured Seek Time[i; h] + (1� p) � Seek Timeran[i; j]

wherep is the probability that both a request and the following are in the hot spot. If the proba-
bility density curve is as shown in Figure 7, the value ofp is ((b� a)h)2.
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Empirical seek time

If the average seek distance isNum of Cylinders[i]
10

as specified above, the seek time is:

Seek Time[i; j] = Measured Seek Time[i;Num of Cylinders[i]=10]: (34)

6.8.3 Rotational latency

The standard approximation for rotational latency is 1/2 the time to rotate the disk a full revolu-
tion:

Rot Lat[i; j] = Ave Rot Time[i;Ave Bytes per Track[i]=2] (35)

whereAve Rot Time[] andAve Bytes per Track[] are defined in Section 4.1.
If the access patters are consecutive or sequential, we can develop a closer approximation.

Consecutive access

If the workload unit has a consecutive access pattern, we must calculate the amount of time that
it takes to rotate the disk once the next request arrives to determine the amount of time spent for
rotational latency. Since the desired data is the next data on the disk, the disk has to at least make
a complete revolution before servicing the next read. Since the device is rotating during the think
time of the workload unit, we do not count this to the rotational latency needed to service the
request. We get

Rot Latcons[i; j] =

Ave Rot Time[i;Ave Bytes per Track[i]]

� (think time[j] mod Ave Rot Time[i;Ave Bytes per Track[i]]): (36)

Sequential access

There are two different cases to rotational latency: when the data is being accessed consecutively
(since a run can last for many requests) and when data is skipped.

If the data is being accessed consecutively, the rotational latency is what (36)
gives us. The number of bytes that is skipped that affects the rotational latency is
b = (run stride[j] � run length[j]) mod Ave Bytes per Track[i]. Therefore, the rotational
latency when data is skipped is

Rot Latseq-sk[i; j] =

Ave Rot Time[i; b]

� (think time[j] mod Ave Rot Time[i;Ave Bytes per Track[i]]): (37)

The rotational latency is the weighted average of the two cases:

Rot Latseq[i; j] = w � Rot Latcons[i; j] + (1� w) � Rot Latseq-sk[i; j] (38)

31



where

w =
# of requests that seem consecutive

# of requests
=

j
run length[j]
request size[j]

k
Ave Bytes per Track[i]

run stride[j]

:

6.9 Open issues for the mapping problem

There are a number of open issues in the mapping problem:

� How are blank workload units and device attributes handled when the mapping is being
done?

� How should disk quotas and roles be modeled?

� If there areX workload units specified but we know that onlyY of them will be run at
once, how can the mapping be done so thatpercentile percentile of the combinations of
workload units will have their requirements satisfied by the devicesprob probability?

� We feel that the specification of attributes for both workload units and devices should be in
the form of distributions. (Some work that has been done on distributions.) But, how to do
the mapping is still an open question.

� Garth Gibson mentioned that the jitter depends on the zone of the device that the data is in.
How should this be modeled?

7 Previous work

Our approach of specifying application attributes and mapping this to resources is similar to
[Franken95]; Franken et. al. define applications and resources in terms ofproperties, where a
property is a characteristic of an element that can be identified by examining the element. Prop-
erties of multimedia applications and computing and communication resources are used to de-
termine the computing and communication resources that maximize the probability that a failure
does not occur while the resources are being utilized for the stated applications.

7.1 Previous workload model work

Most people have developed workload models by examining workload traces and determining
what low-level operations can be used to distinguish between different trace results or by some
other method of determining low-level operations or commands ([Calzarossa94] is an example
of this). This type of approach is not helpful to us; we need a method that identifies the workload
by its requirements of the storage system.
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There has been recent work on characterizing the workload of scientific applications in terms
of file system usage on parallel machines [Nieuwejaar95]. Unfortunately, the results have not
included a general workload model.

One model that considers the I/O is SynRGen [Ebling94] which uses parameterizedmicro-
modelsto model user actions against a file system. Since SynRGen was developed to stress-test
a file system, the number of files, symbolic and hard links, and the directory hierarchy are impor-
tant; these things are not important to us.

The idea of specifying requirements of streams is not new; [Schill95] specifies thequality
of servicerequirements of various multimedia data streams to test high performance transport
systems.

7.2 Previous device model work

There has been some work in device modelling, with two major approaches: practical and the-
oretical. [Ruemmler94] and [Worthington94, Worthington95] are simulator-based methods of
disk modelling. [Ruemmler94] models sector size, cylinders, tracks per cylinders, data sectors
per track, number of zones, track skew, cylinder skew, among others. [Worthington95] presents
a disk drive simulator which simulates such features as zoned recording, spare regions, defect
slipping and reallocation, disk buffers and caches, various pre-fetch algorithms, fast writes, bus
delays, control and communication overheads and command queuing. Both of these models are
too detailed for our needs.

Louis and Teaff [Louis95] presents a storage class metadata structure which contains many
device-dependent attributes which are similar to the ones in our model as seen in the following
section.

The parallel disk model [Vitter94] is an example of a theoretical device model. It states
that the data are stored onD devices in a round-robin fashion in constant-sized blocks. Data is
accessed from the storage system in terms ofparallel I/Os, which reads or writesD blocks, one
per device. The model has been used to develop I/O-optimal algorithms where the number of
parallel I/Os was counted.

8 Future work

There are many areas that we have not yet had time to explore and that seem like interesting areas
for future work.

� How can the device model and mapping be enhanced so that theflexibility of the resulting
system can be measured (and maximized)? The flexibility of a storage system is some mea-
sure of the amount of resources that are not assigned—the more resources non-assigned,
the greater the flexibility. (It seems that the measure of flexibility should be summed over
the consumable attributes with the generatable attributes subtracted.)
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� How can this method of objective functions and constraint equations/expressions be used
to solve theself-managing storage system problem, i.e., some workloads units have been
assigned and new ones are coming in; how should it be determined if the assigned workload
units should be moved around?

The ideas for dynamic data placement from [Weikum90] might be helpful. [Wolf89] uses
a variable which they call tweak limit that presents the number of files which can be moved
from their current disks when their system is changing assignments as a result of a changing
workload; we might want to do something similar.

9 Conclusions

This document gives our current view on the workload and device models, and the necessary
objective functions and constraint expressions needed to formalize the mapping of workload
units to devices. An assumption made throughout is that single values are used to specify both the
workload and the devices. We state the instances where we are making simplifying assumptions.

We learned a number of things:

� Even though many parts of the problem seem hard, there are easy parts. (We think we
solved most of these.)

� The objective function and constraint expression approach seems like a good way to specify
and model the problem.

� There are a number of different questions that can be asked for attribute mapping; we
modeled these with sets, pools, and seas.
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