Published as Technica Memo HPL-SSP-2001-1, Hewlett-Packard Labs, Storage Systems Program, March 2001.

Towards Global Storage Management
and Data Placement

Alistair Veitch, Erik Riedel, Simon Towers and John Wilkes
Hewlett Packard Laboratories
{aveitch,riedel,stowers,wilkes}@hpl.hp.com

Abstract

As users and companies dependence on shared, net-
worked information services continues to increase, we will
see continued growth in large data centers and service pro-
viders. Thiswill happen both as new services arise, and as
services and servers are consolidated on one hand (for ease
of management, outsourcing, and reduced duplication), and
further distributed on the other hand (for fault-tolerance of
critical services and to accommodate the global reach of
companies and customers). This paper outlines the key
research issues associated with the deployment and man-
agement of a global storage system to support this infra-
structure. We build on our success in automatically
managing local storage systems, and discuss how moving to
a system of global data placement raises new challenges
and areas of research. We believe that one of the key
attributes of such a storage system is the ability to flexibly
adapt to a variety of application semantics and require-
ments asthey arise (many applicationsthat will drive Inter-
net data centers five years from now are only now being
sketched on napkins) and as they change over time.

1 Introduction

We believe that the near future will continue many of the
trends that we already see today. First, the size of data cen-
tersisincreasing, as services are consolidated and the num-
ber of services offered over networks (both over intranets,
and acrossthe Internet) increases. Additionally, we see con-
tinued growth in the market for outsourcing, where external
service providers take on the responsibility of managing
and provisioning servicestraditionally provided by compa-
nies own IT departments. We predict that extremely large
data centers will be built and connected by high capacity
networking links. A portion of these data centers will be
owned by large companies for their own use, but many
more will be owned by companies that will sell compute,
storage and application services. For reliability, fault-toler-
ance and performance, it will be necessary to replicate and
distribute both compute and storage capacity over anumber
of data centers. To meet changing demands, it will be nec-
essary to move computation and storage location within the
network. This will be facilitated by the fast and relatively
cheap network connections between data centers, which
alow data to move much more efficiently than the expen-

sive compute and storage elements could (much less their
attendant power, cooling, and physical infrastructures). We
also believe that technology may soon make feasible a util-
ity-like market in computing and storage services. We
believe that thiswill be necessary in order for companiesto
balance or trade resources to meet variable, and rapidly
changing, demands. The day-to-day management of these
systems must be automated, with software that is able to
design systems to meet an application’s expected needs,
configure the system without human intervention, provide
service continuity in the event of a failure, and adapt the
provisioning and design as the application’s needs change.
While there are many challenges to building such a system,
covering topics in networking, security, operating system
design, systems management, and economics, we concen-
trate here on those inherent to providing the storage system
abstractions and management. Section 2 describes our cur-
rent system for local storage system management. Section
3 examines the new research issues inherent in extending
the scope to aglobal scale, and describes some preliminary
results in characterizing the behavior of a variety of inher-
ently local applications in a global setting. Section 4 dis-
cusses related work and Section 5 concludes.

2 Local storage management

We have been working on the problem of storage system
design and management for some time [Golding95]. Our
recent work has demonstrated that it is possible to automat-
ically design and configure a storage system consisting of
one or more disk arraysto meet a set of application require-
ments and then to dynamically reconfigure the system as
application needs change, without any human intervention.
The steps that such a system goes through are to gather
workload requirements (e.g. number of I/Os per second,
bandwidth, phasing behavior, and capacity), automatically
provision and design (based on a constraint such as least
cost or highest performance), configure the system (provide
device settings and establish logical to physical mappings
between hosts and devices), monitor the system (to detect
when requirements change, redesign, and efficiently
migrate data), and a runtime system (to provide consistency
control and allow migration to proceed online). These steps
and the research items for each, areillustrated in Figure 1.

« automatically design a system
 assign data to devices
« plan data migration
[Alvarez01, Hall01]

reconfigurel

—)>
Monito e Run-time \

»what to measure
»what it means

Figure 1: Storage system lifecycle. The components for
automatic design and management of storage systems.

(Changing) business
requirements

Design /|
(edesign

« characterize app
» model devices
« predict device perf

Configure /

automatically
configure devices

« express QoS
[Borowsky97]

Obsolescence
« execute data migration
* QoS enforcement

« scalability

« file and block access
[Golding99, Amiri00]

3 Research issues

Our work on global data placement will extend thistechnol -
ogy for making local placement and optimization choices,
to expand the scope of the system into aworld of distributed
data centers. This will require extending the workload
attributes to make them true quality of service (QoS) spec-
ifications, including the effects of data streamsfrom outside
the data center, modelling the effects of global networks on
performance and extending the data placement algorithms
to take a much wider range of distribution into consider-
ation, ensuring that the storage is secure in a hostile envi-
ronment, designing means of replicating data, and choosing
appropriate algorithms for keeping it consistent. The fol-
lowing subsections describe each of these issuesin turn.

3.1 Quality of service measures

As computer systems and data become more critical to
users and businesses, there is an increased need to provide
stable and predictable responsesin the face of rapidly fluc-
tuating demand. Storage service providers must give QoS
guarantees in the form of service level agreements for pre-
dictable latency, throughput, availability, integrity and
security. To meet these, we need means of specifying and
enforcing each measure, which current storage systems do
not provide. Existing work on QoS provisioning has mostly
concentrated on networking and multimedia storage, with a
focus amost entirely on performance, whereas a much
richer set of measures are required for service providers.

3.2 Data location

Ensuring that dataisin theright global location isone of the
key focus areas for our research. Network performance is
constantly improving, but there are anumber of reasons, not
least of which isthe speed of light or the inevitable conges-

tion problems, that will result in latency and bandwidth
penalties to access data that is located outside of the local
data center. This means that data will need to migrate
between global data centers in order to have the data that
each application needs co-located with the processors that
are currently operating on that data. In a highly dynamic
and global system, itislikely that the access patternsfor any
given data set will change over time, perhaps following the
daily cycle as usersin different timezones become more or
less active. To accommodate this, the management system
must be able to transparently move data from one data cen-
ter to another while maintaining the quality of service estab-
lished for the system. This will require optimization not
only among resources with different performance or cost
attributes, but also trade-offs of workload changes against
migration costs. For many applications, it may be sufficient
to slowly evolvelocation as workload changes - in web ser-
vice, for example, with tens of thousands of users accessing
the samefiles - while other applications will be sensitive to
the metrics such as first-byte-latency that have been much
optimized in the case of local file systems with avariety of
prefetching schemes [Patterson95, Kimbrel 96].

One way of viewing such a system is as a network of
“cache” devices— each data center is merely apool of stor-
age, which at any one time happens to be caching a subset
of the global storage. Some of the most important problems
in this space are those of policy — deciding which of these
devicesto use, when to move datafrom one to another, how
many copies to keep and how to decide when to change the
current layout. If brokering needs to occur, it will be neces-
sary to develop means to allows systems to negotiate with
each other, and build this into the optimization engine.
Automating the placement of data to ensure that load is
equally balanced across both devices within a data center
and between data centers, while meeting QoS guarantees, is
the key issuein designing aglobal computing environment.

3.3 Data replication and consistency

A recent study of ASPs (Application Service Providers)
examined the kinds of applications that were being success-
fully deployed in an outsourcing model and found that
applications that are not “designed for the Web” are being
poorly received due to performance and scalability con-
cerns. This report argues that the most effective applica-
tions for outsourcing are those that have been designed or
explicitly adapted to be distributed [Cherry00]. One of the
key challenges for global data placement is to provide
mechanisms where applications not explicitly designed for
distributed access can still be effectively supported.

For many applications, the most efficient solution for the
data location problem will be to maintain multiple replicas
of a particular piece of data. This, along with the core
requirements of high availability in the event of local fail-
ures, will make it necessary to store the same data item in

metadata
% reqg/s

total updates

synchronous | sync metadata _

% req/s % reqg/s % comment

application req/s req/s

cello/tracing 75.3 41.5 55% 01 0% 55 7% 0.03 0%

cello/backup 297.5 77.9 26% 73.5 25% 127.2 43% 52.8 18%

cello/netnews 20.2 15.1 75% 9.1 45% 75 37% 3.0 15% high update rate
cello/compile 0.6 0.5 79% 0.2 29% 0.3 55% 0.1 19% high sync meta
cello/clearcase 5.1 3.2 63% 0.6 12% 3.7 T72% 05 9%

cello/email 2.1 1.6 78% 0.2 8% 0.4 19% 0.1 7%

cello/httpd 0.1 0.03 31% 0.03 34% 0.03 26% 0.02 16%

cello/netscape 0.6 0.5 85% 0.2 28% 0.2 39% 0.1 12% high write rate
cello/others 21.4 12.5 58% 0.3 48% 12.0 56% 6.9 32%
openmail/server 17.0 12.7 75% 8.7 51% 11.8 69% 5.3 31%/ high sync meta
tpc-h/query 1,289.5 34 0% 0.5 0%| 1,289.5 100% 0.5 0%/|read-only
tpc-h/update 9,122.5| 3,056.2 34%| 1923.8 21%| 9,122.5 100%| 1923.8 100%
tpc-h/throughput | 2,326.8 388.9 17% 0.5 0%| 2,326.8 100% 0.5 0%/ read-mostly
tpc-c/oltp 537.9 265.6 49% - 537.9 100% -

web/hp.com 8,002.9 0.1 0% 110.7 1%] 8,002.9* 100% 100% |read-only
web/cello 5.7 0.0002 0% 0.003 0% 5.7* 100% 100%

Table 1. Application access characteristics. Disk request breakdowns for a number of server applications. All the cello traces are
from atimesharing server used by the 20 members of our research group, a 4 processor HP-UX server with 4 GB of memory and
atotal of 500 GB of storage. All of the 1/0Os performed by this machine over a 24 hour period are broken down by the applications
that produced them. tracing isthe I/O done by the tracing system itself, backup is running anightly incremental, nethewsis aninnd
server and associated processes, compile is all the compiler, make, linker, and editor invocations, clearcase is a source code
management system that maintains a constantly updated version of the HP-UX source tree on our server, email is al 1/0O due to
sendmail and the various email reading programs used in the group, httpd is our group web server, netscape is all the browsers
running on the system, and others captures all 1/0 not included in any of the previous categories. openmail is atrace of 1 hour of
an OpenMail server with 3,000 usersin one of HP's data centers. The tpc-h is Q5 and RF1 from the Power Test, and one hour from
the Throughput Test of a 300 GB benchmark running of an 8 processor N-class server with over 1 TB of total storage. tpc-cisa
116 warehouse benchmark run on a K-class server with about 50 disks. Finally, the web loads are based on access logs of the
HP.com web site and our group web server. Note that all rates are averages over an hour or more of trace, so the pesk loads on the
systems are significantly higher than this. *we have assumed that all requests to web servers are synchronous because there is
someone waiting for the result, on the other hand, many users of the web have been trained to accept delays in accessing pages, so
perhaps these should be classified as largely asynchronous instead.

multiple places and keep it consistent. The ability to adapt
the consi stency management within the system to the (vary-
ing) requirements of individual applications is a key to
making global data placement viable. We believe that there
is sufficient variety in application requirements to make a
flexible system possible and efficient. A short list of well-
understood access semantics includes:

« read-only — data that is written once and then read by
many clients has the simplest consistency regquirements
and allows aggressive replication to match the location
and frequency of reads.

read-mostly — if the data is only written infrequently,
then the overhead of requiring synchronous updates of a
number of global replicas may be acceptable.

single-writer or partitionable —if thereis only asingle
writer for agiven piece of data, then consistency can be
maintained with token schemes that follow a primary
replica or schemes such as publish consistency
[Burns00] or optimistic methods [Amiri00, Adya95]
that assume interference-free updates, but provide
schemes for rolling back or re-applying changes in the

rare case that conflicts do occur. If some amount of in-
consistency can be tolerated, than schemes for asyn-
chronous updates and mirroring also apply.
multiple-writers — in applications with high degrees of
sharing, maintaining consistency will be more expen-
sive, and optimistic mechanisms may begin to degrade
in favor of more pessimistic schemes such as locking.
One of the challenges of our system is to minimize the
amount of multiple-writer sharing that occurs - to elim-
inate false sharing wherever possible, and be able to de-
tect the effective partitioning of data items, even when
thisis not explicitly present in the application.

Ideally this would be done transparently, without any
changes to existing application code, and we feel that a
large amount of the necessary information and flexibility is
available even with today’s storage interfaces that were
designed assuming resources are local. There are three lev-
els at which consistency among replicas can be maintai ned:
« within the block storage interface - this capability has
been explored for the wide-area case as synchronous
mirroring, where data is mirrored between a primary

and a secondary site for disaster-tolerance. Fully syn-
chronous mirroring can be quite expensive, so many in-
stallations employ some form of asynchronous mirror-
ing where updates propagate more sowly. The asyn-
chronous technique also alows some degree of
coalescing of requests and captures some of the rapid
overwrites that are common in many workloads. In or-
der to begin to evaluate the cost of such schemes across
different applications, Table 1 shows the characteristics
of anumber of block-level I/O traces. All of these traces
were taken on a local file system that assumed disks
were local to the processing node. The challenge for
global data placement is to determine how these appli-
cations can be supported in the global case without be-
ing explicitly designed for it. Much of the data is not
very promising - ahigh fraction of requests are updates,
as most reads hit in the file system cache [Baker91],
most applications have a high proportion of metadata
accesses [Ruemmler93], and a high fraction of requests
are synchronous, where the storage system does not
have much leverage in scheduling or delaying. The most
promising datais the final column which shows that the
amount of synchronous metadata (which would incur
the highest latency penalties in a distributed system),
while still high in several applications, isquitelow ina
number of them, making a adaptive consistency mecha-
nisms attractive. To more closely examine how much
actual sharing takes place within these applications
Table 2 shows a subset of the same applications and

‘ block sharing

‘ metadata sharing
‘(OOOS)‘ pids ‘interlv‘ (0008)‘ pids ‘interlv
1,722 43% 4% 619 43% 11%

application
cello/netnews

cello/compile 43 12% 0% 7 21% 0.1%
cello/clearcase | 1,170 65% 0% 23 58% 12%
cello/email 463 30% 0% 17 32% 3%
cello/httpd 68 37% 8% 7 41% 18%
cello/netscape 32 9% 3% 5 14% 2%
cello/others - - —| 743 90% 1%

openmail/server 117 25% 1% 29 26% 0.1%

Table 2. Application sharing. Sharing of data and metadata blocks
for a number of the traced applications. The number of unique
blocks accessed, the fraction of blocks accessed by more than one
process id over the period of the trace, and the fraction of blocks
accessed by interleaved process ids (where two accesses by the
same process are interrupted by another process). The columns to
the right show the same data considering only metadata blocks.
The durations of the trace are one day for al the cello applications
except httpd which is ten days, and one hour for openmail.

quantifies the degree of sharing. Adaptive consistency
has already been studied in the area of distributed shared
memory systems [Mosberger93, Amza99] where pages
are kept consistent across remote nodes. We hope that
some of the mechanisms from thiswork will be applica-

blein the context of storage and the more storage- inten-
sive applicationsin the data center.

within the file system —there isalarge body of work on
consistency in distributed file systems [Kistler92,
Anderson96, Thekkath97, Peterson97, Bolowsky0Q].
These systems are applicable for network file system
workloads, where users are explicitly aware that their
datais stored remotely. The large majority of datatoday
isstill storedinlocal file systemsthat are slowly becom-
ing distributed to some degree by the growth of storage
area network technology [Phillips98]. This means that
applications designed for local file systemswill now be
forced into adistributed context. Depending on how the
distribution of applications is accomplished, this may
mean that many of the benefits currently provided by
large file system buffer caches will be challenged. An
outline of this problem is shown in Table 3 which com-

requests/s
app | disk

updates/s
app | disk

pid sharing

application
cello/netnews 59.6 20.2| 226 15.1| 25% 43%

cello/compile 274 0.6 4.0 05| 42% 12%
cello/clearcase| 89.0 5.1| 31.7 3.2 6% 65%
cello/email 170 21| 44 16| 17% 30%
cello/httpd 0.1 0.1/ 00 0.0 38% 37%
cello/netscape | 41.9 0.6 165 05| 1% 9%

Table 3. Local caching. The total request rate, update rate, and
degree of sharinginto thefile system cache (file system calls), and
how much of it filters down to the disks (as block requests). The
request rate to the disk is always reduced from the rate into the
cache, by factors of 10 and more in many cases. In addition, the
sharing behavior changesdrastically in several of the applications
between application and storage system. Sharing is defined asin
the previous table: the fraction of the blocks or files accessed by
more than one unique process id over the course of the trace.

paresthe number of requests madeto thefile system and
the number of requeststhat eventually filter into the disk
sub-system. Local caches provide a big benefit, and
maintaining consistency across distributed caches will
require additional system overhead.

by the application itself — applications that have been
designed to operate in a distributed environment can
manage their own consistency through the use of spe-
cialized protocoals. If this were generally true, it be the
most efficient for global data placement as well, since
applications can exactly expresstheir needs, rather than
relying on limited interfaces, but it will often consider-
ably increase the complexity of the application. Recent
work on such an approach proposes middleware which
can manage consistency based on application-specific
criteria and provide a spectrum of consistency guaran-
tees [Yu0Q]. The challenge for global data placement is
to provide such arange of semanticsto arange of server
applicationswithout major (or any) changesin the code.

Global data placement will have to offer arange of consis-
tency levels and protocols across all three of these layersin
order to most efficiently support both existing and emerging
applications. Consistency levels and mechanisms might be
explicitly specified as part of an application's QoS
attributes, but - as with many of the performance attributes
we use today - in many cases they will have to be inferred
by observing the applications' access patterns.

3.4 Security

Data must be secure at all times, especialy in a system
where facilities are shared amongst many different organi-
ations. Storage providers need to make guarantees that only
those who are authorized to access the data can do so. This
requires strong authenti cati on, authorization and encryption
mechanisms, none of which are necessary in the context of
local storage systems. A very basic version of this has got-
ten somerecent attention in the zoning functionality of fibre
channel switches [Brocade00], but more comprehensive
mechanisms are needed in the context of the genera -pur-
pose networks that future storage devices using iSCS
[Satran01] will be subject to. Recent work in survivable
systems [WylieO0] has begun to focus on the trade-offs for
a storage security infrastructure. Table 4 shows some of the

objects (000s) principals
application files blocks pids users
cello/netnews 296, 1,722 434 2
cello/compile 3 43 968 11
cello/clearcase 16| 1,170 3,542 3
cello/email 6 463 1,385 18
cello/httpd 0.4 68 9 1
openmail/server - 117 1,166 -
tpch/throughput - - 123 6
web/hp.com* 70| 2,974 —| 129,351
web/cello* 0.8 56 9 272

Table 4. Security metrics. The key parameters are the number
of objects being protected, and the number of principas
accessessing these objects. The table shows the total count of
files and blocks, and the number of unique process ids and
usernames over the course of the trace period. *users in this
case is defined as unique host names making accesses.

key drivers that determine the cost of a security system for
a particular application, which are the number of objects
being protected, and the number of different principals
accessing the set of shared objects. The question for bothis
which level of abstraction to provide for different classes of
users and data.

3.5 Overall system management and control

The management system described in Section 2 is able to
determine appropriate data placement in the local case. We
anticipate ahierarchy of such systemsaswe movetoamore
global system, with some optimization best done within the

data center, and a global view to control movement among
distributed replicas. The combined systems would operate
at alarge range of time scales and granularities, but both
will depend on the ability to accurately and efficiently
model the behavior of al the components and links across
the system in order to optimize appropriately.

4 Related work

The Coda work at CMU [Kistler92] and Bayou at Xerox
[Peterson97] explored semantics for applications operating
in the presence of disconnected or loosely connected clients
accessing aconsistent central store, and Odyssey [Noble97]
explored the adaptation of individual user applications to
changes in the level of connectivity.

OceanStore [Kubiatowicz00Q] proposes an architecture for
creating a persistent global store that relies on large num-
bers of encrypted replicas, distributed around the world, to
provide security and availability. The OceanStore update
model is relatively expensive, requiring a large number of
network messages, and would be strained by applications
requiring fine-granularity update semantics. The target sys-
tem for OceanStore is only loosely coupled and covers a
different set of applications - managing the data of alarge
number of individual users persistently - than the data-
intensive processing of large applications and databases.

The founders of Akamai have built a successful company
by distributing web content using servers positioned at stra-
tegic pointsin the Internet and intelligent distribution algo-
rithms [Karger97, Harchol99]. These systems work well
due to the relatively weak consistency guarantees and low
update rates of web content. A comprehensive system must
encompass all data types, and provide a much richer range
of functionality for both distribution and consistency.

5 Conclusions

We have presented our vision of the future as a set of large,
distributed data centers that provide servicesto a global set
of clients. These data centers enhance the maintainability of
the systems and provide the cost effectiveness of service
consolidation. However, centralization will always havethe
disadvantage of “ putting all the eggsin one basket”. For this
reason, and in order to efficiently support large and fluctu-
ating demands, we believe that data centers must be able to
automatically manage replicated storage and computation
resources among themselves. Such a system would also
support trading of resources among data centers owned by
different organizations. In this paper, we have identified
some of the key research issues in extending current sys-
temswhich do local storage management to the global case.
For several of these issues, we have provided initial mea-
surements of applications that illustrate the potential bene-
fitsof ausing aflexible and adaptive approach supported by
automatic system design and optimization.

Acknowledgements

We have benefitted from discussions with various members
of the HP Labs Computer Systems and Technology L abora
tory, particularly John Janakiraman, Magnus Karlsson,
Lance Russell and Hans Stork aswell asall the members of
the Storage Systems Program. We also thank Magnus for
providing the excellent log analysis tool we used for the
web workloads.

References

[Adyad5] A. Adya, R. Gruber, B. Liskov and U. Maheshwari.
Efficient optimistic concurrency control using loosely
synchronized clocks. SGMOD, May 1995.

[Alvarez01] G Alvarez, E. Borowsky, S. Go, T. Romer, R. Becker-
Szendy, R. Golding, A. Merchant, M. Spasojevic, A. Veitch and
J. Wilkes. Minerva: an automated resource provisioning tool
for large-scale storage systems. Submitted for publication. A
tech report version will be available by May.

[Amiri00] K. Amiri, G Gibson and R. Golding. Highly concurrent
shared storage. Intl. Conference on Distributed Computing
Systems, April 2000.

[Amza99] C. Amza, A. Cox, S. Dwarkadas, L. Jin, K. Rajamani
and W. Zwaenepoel. Adaptive Protocols for Software
Distributed Shared Memory. Proc. of the IEEE 87(3),
March 1999.

[Anderson96] T. Anderson, M. Dahlin, J. Neefe, D. Patterson, D.
Roselli and R. Wang. Serverless Network File Systems. ACM
Trans. on Computer Systems 14(1), February, 1996.

[Baker9l] M. Baker, et a. Measurements of a distributed file
system, SOSP, October 1991.

[Borowsky97] E. Borowsky, R. Golding, A. Merchant, L.
Schreier, E. Shriver, M. Spasojevic and J. Wilkes. Using
attribute-managed storage to achieve QoS. Proc. 5th Intl.
Workshop on Quality of Service, June 1997.

[Bolowsky00] W. Bolosky, J. Douceur, D. Ely, M. Theimer.
Feasibility of a Serverless Distributed File System Deployed on
an Existing Set of Desktop PCs. SGMETICS, June 2000.

[Brocade00] Brocade Communications. SilkWbrm 6400 product
specification, October 2000.

[BurnsO0] R. Burns, R. Rees and D. Long. Consistency and
locking for distributing updates to web servers using a file
system. Workshop on Performance and Architecture of Web
Servers, June 2000.

[Cherry00] Cherry Tree & Co. 2nd generation ASPs — Spotlight
Report, September 2000.

[Golding95] R. Golding, E. Shriver, T. Sullivan and J. Wilkes.
Attribute-managed storage. Workshop on Modelling and
Soecification of 1/0, October 1995.

[Golding99] R. Golding and E. Borowsky. Fault-tolerant
replication management in large-scae distributed storage
systems. Proc. Symposium on Reliable Distributed Systems,
October 1999.

[Hallo1] J. Hall, J. Hartline, A. Karlin, J. Saiaand J. Wilkes. On
Algorithms for Efficient Data Migration. 12th Annual ACM-
S AM Symposium on Discrete Algorithms, January 2001.

[Harchol99] M. Harchol-Balter, T. Leighton and D. Lewin.
Resource Discovery in Distributed Networks, 18th Symposium
on Principles of Distributed Computing, May 1999.

[Karger97] D. Karger, E. Lehman, F. Leighton, M. Levin, D.
Lewin and R. Panigraphy. Consistent hashing and random
trees: Distributed cachine protocols for relieving hot spots on
the World Wide Web, 29th ACM Symposium on Theory of
Computing, May 1997.

[Kimbrel96] T. Kimbrel et. al. A Trace-driven comparison of
adgorithms for paralel prefetching and caching. OSDI,
October 1996.

[Kistler92] J. Kistler and M. Satyanarayanan. Disconnected
Operation in the Code File System. ACM Trans. on Computer
Systems 10(1), 1992.

[KubiatowiczO0] J. Kubiatowicz, et a. OceanStore: An
Architecture for Global-Scale Persistent Storage. ASPLOS
December 2000.

[Mosberger93] D. Mosberger. Memory Consistency Models.
Technical Report 93/11, University of Arizona, 1993.

[Nobled7] D. Noble, M. Satyanarayanan, D. Narayanan, E. Tilton,
J. Flinn and K. Walker, Agile Application-Aware Adaptation
for Mobhility. SOSP, October 1997.

[Patterson95] R. Peatterson, G. Gibson, E. Ginting, D. Stodolsky
and J. Zelenka. Informed Prefetching and Caching. SOSP,
December 1995.

[Peterson97] K. Petersen, M. Spreitzer, D. Terry, M. Theimer and
A. Demers. Flexible update propagation for weakly consistent
replication. SOSP, October 1997.

[Phillips98] B. Phillips. Have Storage Area Networks Come of
Age? |[EEE Computer 31(7), 1998.

[Satran01] J. Satran, e a. iSCSl draft
www.i etf.org/inter net-drafts/dr aft-ietf-i ps-iscsi-03.txt

[Thekkath97] C. Thekkath, T. Mann and E. Lee. Frangipani: A
Scalable Distributed File System. SOSP, October 1997.

[Wylie0Q] J. Wylie, M. Bigrigg, J. Strunk, G. Ganger, H. Kiliccote
and P. Khoda. Survivable information storage systems. |EEE
Computer, August 2000.

[Yu00] H. Yu and A. Vahdat. Design and evaluation of a
continuous consistency model for replicated services. OSDI,
October 2000.

standard.

