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As users’ and companies’ dependence on shared, networked data continues to increase,
the protection of this data from prying eyes or malicious hands becomes more and more
critical. There are a variety of ways to ensure the security of data and the integrity of
data transfer, depending on the set of anticipated attacks, the level of paranoia on the
part of the data owners, and the level of inconvenience data users are willing to tolerate.
This paper reviews all the previously proposed systems for secure, networked storage,
and combines these ideas to describe a system for the “most paranoid” data owners. We
show that the two main classes of systems in the existing design space are not really as
far apart as they seem; one is essentially an optimization of the other. We outline the
space of possible design choices and quantify the costs associated with each one using
a trace from a time-sharing UNIX server used by a medium-sized workgroup. As we go
along, we introduce a number of optimizations that have not been explicitly considered
before.
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1  Introduction
Much of the focus of recent storage security work has
been on protecting communication between clients and
servers in a hostile, networked world [Gobioff98,
Kent98, Mazieres99, Satran01]. The focus is on prevent-
ing snooping of data on the network, modification of
requests in transit, and replaying of requests at future
points. The most comprehensive treatment of this topic is
the Network-Attached Secure Disk work [Gobioff99a],
which protects the integrity (preventing unauthorized
modification of commands or data) and, optionally, pri-
vacy (preventing the leaking of data in transit) of data
transfers between clients and servers. The system uses
capabilities provided to users by a file manager separate
from the storage server which piggybacks the distribu-
tion of capabilities on namespace traversal. A major bar-
rier to wide acceptance of the NASD scheme is the
performance cost of the encryption and checksum oper-
ations required at both clients and servers. In order to
reduce the cost of protecting integrity, the NASD design-
ers proposed a scheme using partially-precomputed,
hierarchical checksums with secure hashes [Gobioff99],
but there is no comparable scheme to optimize privacy
since this would require pre-computed encryption.

However, if data were stored on the server in already-
encrypted form, then it would not be necessary to encrypt
them for each transfer on the network. The difficulty
with using such a scheme in NASD is that encryption is
done using session keys generated for each client/server
interaction, while pre-computation would require choos-
ing a longer-lived key. From the client point of view,
these two schemes are identical - it receives encrypted
data and must pay the cost of decrypting it. From the
point of view of an adversary, they are also equivalent -
the data he sees is encrypted and unintelligible. The dif-
ference is only whether the server has to bear the encryp-
tion cost each time a new session key is chosen, or
whether it can take advantage of data already stored in
encrypted form and not have to doubly encrypt it.

As it happens, the storing of data in encrypted form on
disk was originally proposed in Blaze’s Cryptographic
File System (CFS) and expanded in later systems
[Blaze93, Cattaneo97, Zadok98, Hughes99], where it is
used for a very different purpose - in order to protect data
from untrusted servers. If data is stored on the server in
encrypted form it is protected from leaking by the server
(who does not know the key), and there no need to
encrypt the data again when it passes on the network.
Encryption is done by the original owner of the file, and
updated by subsequent writers, but the server performs
no encryption or decryption. The secure checksums of
NASD are still needed in order to ensure the integrity of
the communication, but privacy is ensured without per-

byte encryption1. In order to use the data, the client must
still decrypt it, but now using a longer-term file key that
is must obtain apriori instead negotiated on the fly.

The problem then becomes simply one of key distribu-
tion, how users can obtain these long-term keys. This can
be done via a centralized key server similar to the NASD
file manager or an NIS server in today’s system. The
alternative uses a distributed scheme where data owners
provide keys to eventual users directly. A variant of such
a scheme using self-certifying pathnames is proposed in
SFS [Mazieres99, Fu00]. This system is further
expanded in the Cepheus file system [Fu99], with addi-
tional support for key management.

The duality between a simple optimization to secure stor-
age communication and what is usually considered the
“most paranoid” storing of encrypted data directly by
users illustrates that NASD and CFS are really two
points along a continuum of possible solutions, which
simply trade off performance to guarantee a chosen level
of security. The contention of this paper is that all the
existing systems for storage security can be seen as vari-
ants on a basic set of considerations: they simply explore
different points in the same solution/performance space,
often without knowing they are doing so.

Section 2 outlines the axes of this solution space for a
range of design options and describes the possible
choices in a single, general model. Section 3 describes
the behavior of a “most paranoid” system that combines
the most restrictive of all of these choices - essentially
the best, most secure - of all worlds. Section 4 describes
how each of the systems proposed elsewhere fit into the
general model, and how the choices they make reduce
the security or improve the performance of the “most
paranoid” scheme. Section 5 evaluates the decisions
made along each of these axes using a traced workload
from a UNIX time-sharing server to concretely quantify
security costs in normal usage. Section 6 considers a
number of issues that arise from the general model and
proposes solutions that fill several gaps unaddressed by
any of the existing work: key distribution from data own-
ers, the large number of keys required in a key-per-file
system such as CFS, the logical extension of untrusted
servers for the “most paranoid”, and the problem of
space management.

1. privacy of arguments (hiding which data is being
requested by whom), to limit knowledge of access
patterns, still requires encryption of requests and
message headers, but file data - the vast majority of
bytes transferred - would be transferred in the same,
encrypted form in which it is stored.
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2  Model of storage security
This section describes the core set of problems that must
be addressed by any secure storage system, and outlines
solution alternatives in a general way. The intention of
this list is to condense all of the solutions used in previ-
ously proposed systems into a single framework, Section
4 will show the mapping of existing systems into this
model. Figure 1 shows all of the entities described
below, as well as several options for protecting data and
data transfer. We start with a very simple definition:

valid data - data created by owners as modified by
writers (any other data is invalid)

and then add the complexity needed to protect it.

2.1 Players
The following defines the terminology we use in the rest
of the paper. We believe that this list covers all of the pos-
sible players that need to be considered for protecting
stored data - all other entities can be mapped to equiva-
lence with one of these. All actions not explicitly listed
for a particular player are not allowed by that player (and
a secure system must prevent this), handling of items
listed as might will depend on the user’s choice of the
security level they expect from their storage system.

owners - create and destroy data, delegate read and
write permission, perform revocation.

readers - read data, might delegate read permission.

writers - modify data, can read, can destroy (unless
versioning), might delegate write permission, might
delegate read permission, might be able to convince
others that invalid data is valid.

storage servers - store data, can always destroy data
(e.g. by storing only zeros - such destruction might be
detectable), might deny updates (by not actually
changing the stored data), might modify data (e.g.
writing zeros when not requested to), might read data.
These might be file servers as in NFS or SFS-RO, or
disks as in NASD, or disk arrays as in iSCSI.

group servers - authenticate principals and authorize
access based on membership groups as defined by
owners. Owners decides who may access their data,
and they might choose to delegate this decision to a
centralized server. These could be explicit group
servers as in Cepheus, NFS with NIS, and AFS
[Howard88] or they may be bound with the
namespace server as in NASD.

namespace servers - allow traversal of hierarchical
namespaces - lookup of directories and files in
directories, might authenticate principals to authorize
traversals. These could be explicit servers separate
from the storage servers, as with the file manager in
NASD, or bound together as in NFS and AFS.

adversary

client
storage server

namespace server

group server

data block
&^%$#&!

filename -> data blocks

&^$#%^%&**&$#@

group -> alice, bob
authentication server

alice -> password

unprotected cleartext

integrity protected

privacy and integrity

data
<34>

data
<%*>

*@^#
<&$>

data
<34>

owner local system

*@^#
<&$>

data

*@^#
<34>

%&#!
<&$>
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1

2

3

A

B

network
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Figure 1. Diagram of all the potential players in a secure storage system. The three options for exchanging messages labelled 1
through 3 show different levels of protection from adversaries on the network - either unprotected with a simple checksum,
integrity protection with an encrypted checksum, or privacy with data encryption and an encrypted checksum. The two options
available to data owners are also, they can either (A) provide plaintext data to their local system which the system will
potentially encrypt for transfer on the network, or (B) encrypt data before handing it to the local system which may then choose
to encrypt it again for network transfer. We argue in the text that this second encryption is almost always superfluous, and allows
an optimization that essentially provides “pre-computed” encryption to reduce system overhead.
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principals - any of the above six groups.

revoked principals - had permissions of principals at
some previous point in time, but do not now.

adversaries - attempt to read, write, or destroy data
when not authorized, might interfere with requests.

2.2 Actions
The following basic operations are defined:

creation - generate new data

read - present data to a user in cleartext

write - modify data in a way that both readers and
owners will observe the change

destroy - cause data to become unreadable by readers

revocation - cause a principal to be revoked

2.3 Authentication
The purpose of authentication is to strongly establish the
identity of a particular principal in order to authorize
their actions against a known set of permissions for
access or modification as determined by data owners.

distributed authentication - owners explicitly
authenticate each principal and authorize access to
the data they own (as in Blaze’s CFS, or the use of
server public keys in SFS).

centralized authentication - owners delegate
responsibility for authentication and authorization to
a group server (as accomplished through the
checking done by the file server in NFS or the file
manager in NASD).

The usual concern is about authentication of owners,
readers, and writers to servers, but there may also be con-
cern about authenticating servers to users to prevent
improper service [Mazieres99].

2.4 Authorization
Authorization can be done in one of two general ways:

server-mediated authorization - servers receive
actions and perform them on behalf of readers,
writers, and owners (as in NFS and AFS).

explicit distribution of keys - owners provide readers
and writers with keys that they can use to authorize or
perform actions (such as the capabilities in NASD,
and the server keys in SFS).

2.5 Group membership
The purpose of group membership is to compactly repre-
sent the permissions on a particular set of data by simply
verifying the membership of a principal in a group, and
then authorizing access based on group permissions.

distributed group membership - owners explicitly
determines who is authorized to share data and
distribute the necessary keys (as in Blaze’s CFS).

centralized group membership - owners delegate
group-based authorization to a group server that
distributes keys (as in NFS w/ NIS, NASD, and
Cepheus).

Access control lists are a variant of group membership
that might explicitly list all the principals, but these lists
must still be stored somewhere and essentially provide
the group membership function [Howard88, Hughes99].

2.6 Granularity of keys
The keys used to encrypt and decrypt a particular set of
data may be short-term (smaller window of vulnerability,
less data encrypted with a single key) or longer-term
(more efficient to manage).

session keys - last for the duration of one principal
and one session (as in NASD and iSCSI or IPsec).

long-lived keys - last across sessions, might last
across principals (as in Blaze’s CFS and SFS), a
critical choice is which granularity of data to
associate a key with (choices include per-file, per-
directory, or per-file-group).

2.7 Protecting communication
Mechanisms for ensuring reliable and secure passing of
messages have been worked on for some time in net-
worked systems and several mechanisms are popular,
including SSL to protect http traffic, SSH to protect
remote terminals, and IPsec to more generally protect
Internet traffic [Kent98]. A variant of such a system for
storage was described in the NASD work [Gobioff98]; a
similar scheme is used in the self-certifying file system
[Mazieres00]; and IPsec has been proposed as the pri-
mary security mechanism for iSCSI [Satran01]. Some
scheme involving keyed checksums1 will always be
needed, irrespective of the design chosen, as long as stor-
age operates in an open, networked environment. This is
the only way to protect against unauthorized replay or
server impersonation (man-in-the-middle) attacks.

2.8 Key distribution
In order to facilitate authorization, keys (shared secrets)
must be distributed from owners to readers, writers and
possibly servers. These keys include:

authentication keys - for authenticating principals
(such as usernames and passwords in NFS w/ NIS,
Kerberos keys in AFS, certificates in SSL, public
keys in SFS-RO).

session keys - for protecting communication (such as
the session keys in NASD or IPsec).

1. the key is needed to tie the checksum to a particular
principal, and the checksum is needed to tie the key to
a particular set of data.
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data keys - for protecting stored data (such as the file
keys in Blaze’s CFS).

2.9 Revocation
When a principal is revoked - e.g., a user leaves a partic-
ular workgroup - the keys to which this principal had
access must be changed, and in systems where data is
stored encrypted, data may have to be re-encrypted:

re-encryption - might have to re-write data with new
key, data distributed under the old key in the past will
always remain readable, data written under old key
might remain readable.

lazy re-encryption - might do only future updates
with new key [Fu99].

periodic re-encryption - change of keys might be
done periodically- perhaps nightly or weekly - to
limit the window of vulnerability [Gobioff99a].

2.10 Versioning
The only way to completely prevent destruction of data
by modification or overwrites is to maintain data pages

as copy-on-write or use logging, while never deleting old
versions of data, as in self-securing storage[Strunk00].

2.11 Space Management
The allocation and deallocation of storage blocks.

denial of service - an attack might be possible where
adversaries can write useless data and fill the storage
device.

garbage collection - the difference in design arises in
who has the ability to traverse the directory and file
structures to reclaim this space.

3  Most paranoid storage system
We now outline a system that provides a fully secure
storage system with a superset of the properties dis-
cussed above, making the most restrictive, or “paranoid”
decisions at each point (we realize the design will seem
redundant as described, please bear with us, and we will
clear up the redundancies in the next section).

The lifetime of a single file in a “most paranoid” storage system:
(1) a file secret-notes is created by user wilkes and encrypted with a secret key WK1(secret-notes,wilkes) chosen specifically for

this file (this file creation and encryption might be repeated 1,000 times over the course of a day)
(2) the encrypted file is transferred to a shared server cello and stored - the communication between wilkes and cello is protected

by a session key SKi(wilkes,cello) generated for purposes of this single write request (the generation of a session key between
wilkes and cello will be repeated 100,000 times during the day, cello may perform up to 5,000 such operations per second
during the busiest time of the day)

(3) the write of the file is authorized by wilkes authenticating to cello using his password PK(wilkes, cello) and cello checking the
mode bits of the parent directory /home/wilkes to verify that wilkes has write access

(4) user wilkes now tells his colleague alice about the file (repeated 3,000 times during the day)
(5) user alice retrieves the encrypted file from cello - the communication between cello and alice is again protected by a session

key SKi(alice,cello) generated for purposes of this single read request (the generation of a session key between alice and cello
might be repeated 40,000 times over a day)

(6) the read of the file is authorized by alice authenticating to cello using her password PK(alice, cello) and cello checking the
mode bits of the file to verify that alice has read access

(7) to decrypt the file, alice must obtain the read key, RK1(secret-notes, wilkes) corresponding to the write key that encrypted the
file (wilkes might have to distribute such keys for reading 6,000 times, and alice might obtain 4,000 such read keys over a day)

(8) if alice now wants to modify a few lines of the file, she can make the change in her local plaintext copy, but must obtain
WK1(secret-notes, wilkes) in order to encrypt the file for storage and future decryption (this modification of files owned by
another user might occur 300 times over the day)

(9) this encrypted file is transferred to the shared server cello by alice and stored, the communication between alice and cello is
again protected by a session key SKi+1(alice,cello) generated for purposes of this single write request

(10) the write of the file is authorized by alice authenticating to cello again using her password PK(alice, cello) and cello checking
the mode bits to verify that alice has write access

(11) user cathy is also interested in reading the file, so she obtains the key RK1(secret_notes, wilkes) as well
(12) at some future point, alice receives a better offer from a startup and leaves the company - since she still knows the keys

RK1(secret-notes, wilkes) and WK1(secret-notes, wilkes), the file must be re-encrypted with a new key WKi+1(secret-notes,
wilkes) and the corresponding read key must be distributed to cathy (this revocation and re-encrypting may occur once every
few months in a medium-sized user population, and could affect several thousand files and gigabytes of stored data)

Figure 2. Scenario for file creation and access in a “most paranoid” storage system. The steps required to handle operations on
a sample file, with each step providing an idea of how often each operation might happen over the course of a day in a real
storage system, based on the trace data introduced in the next section.
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The description in Figure 2 follows the lifetime of a sin-
gle file through a “most paranoid” storage system. All of
the numbers mentioned are example per-user values
from a 10 day file system trace taken on a UNIX server
with about 25 active users and close to 500 gigabytes of
data in over 10 million files (see Section 5).

4  Less paranoid storage systems
The first widely-known discussion of security for storage
systems is the Cryptographic File System (CFS) by Matt
Blaze of Bell-Labs [Blaze93]. He proposes a system that
uses a secret key to protect a directory in a file system.
The underlying data is stored as a single file in the host
file system, and “attached” as a cleartext directory under
a /crypto mount point. This allows the host file system to
treat the encrypted data as just another file, so normal
utilities such as backups work unchanged, but do not
have access to the cleartext data. The system is imple-
mented as a user-level NFS loopback server. The key
characteristics of this system, using the terminology
introduced above are:

• owners, readers and writers are indistinguishable,
the storage server is the host file system, group
membership is handled by owners, namespace
traversal is handled by readers

• owners handle authentication by distributing keys
to encrypted directories and files

• owners do group membership by distributing keys

• authorization is done by passing keys to readers and
writers

• long-lived keys are used on a per-directory basis

• no protection of communication is done (this is
essentially a local system)

• authentication is possible only by having the key,
one key protects everything

• trusts readers and writers, but not the storage server

• revocation requires re-encrypting all data

As an additional consideration, a later paper by Blaze
[Blaze94] introduces a key escrow system to recover
keys after an owner has left the organization.

The CryptFS system from Columbia [Zadok98] extends
the Blaze system to:

• use process and user session keys, rather than
usernames (this expands owners to be individual
user sessions, rather than users as in CFS)

• be more efficient as it is built as a stackable file
system rather than a user level server

The Truffles system from UCLA [Reiher93] uses an
alternative method of key-management to handle the
problem of generating keys when owners are not avail-
able by splitting keys such that any n members of a group
can collude to generate the key of a missing owner.

All of the above systems assume untrusted servers, i.e.
keys are known only to the owners and readers, and not
trusted to the system itself. The key escrow system of
Blaze depends on trust of the key database, but not trust
of the storage servers. The Truffles system distributes
this trust among a group of owners.

A number of systems - including AFS and DFS - address
the problem of untrusted clients by using a system such
as Kerberos to authenticate users to servers [Neuman94].
A system such as this, or a similar one relying on certif-
icate authorities is required by any storage system in
order to strongly authenticate users.

The work of Mazieres at MIT addresses the problem of
securely authenticating servers to readers by:

• associating a public key with a set of files to allow
a reader to verify that a particular set of data were
those created by the original owner of the
corresponding private key

• adding these public keys to file pathnames in order
to easily distribute them

• using a central database of revocation lists to track
revoked keys

in terms of the concepts introduced above:

• there are only owners and readers, no writers

• authentication of readers is not done, namespace
traversal is done by the readers who know the
server name and key

• group membership is also done by knowing the
server public key and name

• authorization is done by key distribution

• granularity of keys is per-file-system

• communication is protected via the server key

• key distribution is via self-certifying pathnames

client/storage server

*@^#

owner

*@^#

reader
writer

Figure 2. Diagram of Blaze’s Cryptographic File System.
This is essentially a local system, with client and storage
server on a single machine. Namespace service and group
membership are both managed directly by owners
distributing keys. Owners pass data to the system in
encrypted form, and that is exactly how it is stored.
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• servers or owners do not trust readers, but readers
can verify servers

• revocation of servers requires readers to check for
revocation of any key before use

This allows the wide sharing of read-only files, even
when servers are untrusted.

The Cepheus file system uses this infrastructure to add:

• sharing of files by associating a user key and group
key with each file

• delayed re-encryption to make revocation of keys
less costly

[more description needed here, lock boxes, etc.]

[need a section for the system described in Hughes99]

The work of Gobioff on Network-Attached Secure Disks
(NASD) proposes a system that:

• handles key distribution by having file managers
distribute capabilities to untrusted clients for
particular storage objects

• handles authorization by having clients present
these capabilities to servers

• using checksums and message authentication codes
(MACs) to ensure the integrity of requests and data
transfer to/from the servers

• encryption may be used to ensure the privacy of
request and data transfer to/from storage servers

• introduces a scheme of pre-computed checksums to
reduce the computation of generating checksums
on each individual request

Finally, the recently proposed iSCSI standard for net-
worked storage [Satran01] suggests:

• the use of IPsec to protect communication between
clients and storage servers

• negotiation of session keys on a per-login basis

• key distribution by an external mechanism for user
authentiation

[more description needed here for iSCSI and IPsec, also
consider the Klein proposal]

[also consider - Secure NFS, more details on AFS]

Two research projects currently underway attempt to
address data security and long-term protection on a much
wider scale - Oceanstore is considering a world-wide set
of encrypted replicas of user’s data [Kubiatowicz00] and
PASIS is considering a similar direction, but very differ-
ent approach, with survivable storage where data integ-
rity must be maintained in the face of loss or destruction
of some number of replicas [Wylie00].

storage server

data block

filename:<key> ->
data blocks

integrity protected data
<%*>

data
<%*>

owner local system

data

reader

Figure 3. Diagram of Self-Certifying File System.
Owners store data with secure checksums, checksums are
distributed using the server’s public key, allowing clients
to verify that data came from the server. Namespace
traversal is done by the reader.

storage server

group server

*@^#%^!

&^$#%^% group -> <key>

integrity protected

*@^#
<&$>

owner local system

*@^#
<34>

*@^#
<&$>

*@^#
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Figure 4. Diagram of Cepheus File System. Data is
encrypted by owners before it is stored. Data transfer is
protected by secure checksums. Namespace traversal is
done by clients, and key distribution is handled by a
centralized group server using lock boxes for revocation.
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5  Evaluation
This section explores the cost of implementing the vari-
ous design choices discussed above. The context for
evaluation is a 10-day trace of all file system accesses
done by about 20 users of a 4-way HP-UX time-sharing
server attached to several disk arrays and a total of 500
GB of storage space1. The trace was collected by instru-
menting the kernel intercept and logging all file system
calls at the syscall interface. Since this is above the file
buffer cache, it means that the numbers shown will be
pessimistic to a system that attempts to optimize server
messages or key usage based on repeated access. A later
section attempts to quantify this effect for a selected set
of files. Table 1 provides an overview of the trace.

5.1 Dimensions of Comparison
The purpose of presenting this data is to compare the rel-
ative costs of the systems discussed in the previous sec-
tions using numbers from a realistic system. This allows
us to see how often expensive operations such as full-
bandwidth encryption, key distribution, or key genera-

tion would occur in practice. We consider a number of
these metrics in turn.

5.2 Session vs. per-file keys - readers & writers
Table 2 gives counts for the total number of keys used in
each of the two high-level classes of designs - using ses-
sion keys or long-term, per-file keys. The table shows the
number of keys on a per-user basis for several represen-
tative and several system userids during the trace period.

Table 3 considers a per-group key scheme, showing the
number of keys each user would need to obtain during
the trace period if keys were created only for each “per-
mission group” of files - i.e. where all files that have the
same owner, group, and permissions bits share a single
key. Note that the number of keys required is orders of
magnitude lower than in the per-file scheme.

disk

file manager

data block

filename -> data blocks

&^$#%^%&**&$#@

group -> alice, bob

integrity protected

privacy and integrity

data
<%*>

*@^#
<&$>

data
<34>

owner local system

*@^#
<&$>

data

network

reader
writer

Figure 5. Diagram of Network-Attached Secure Disks. Two options for data protection: integrity which protects
against modification in transit, and privacy which ensures data is not seen in transit. Data is presented as plaintext
by owners and stored in plaintext on the disk. Namespace management and group membership are handled by a file
manager separate from the disks via distribution of long-term capabilities (keys).

data transfer

key distrib
ution

1. due to time constraints, we only analyze a subset of the
total trace for this paper, so all further numbers in the
paper will refer to the 12-hour trace (8am to 8pm on a
single day). The entire 10-day trace will be complete in
time for the final paper, and will also give enough data to
allow study of a revocation scenario.

12-hour 10-day

hours 12 240
requests 11.5 million ?
data moved 23 GB ?

active users 23 32
user accounts 207 207
active files 111,000 ?

total files 3.6 million 3.6 million
file systems 24 24

Table 1. Overview of file system trace.
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5.3 Per-file vs. per-group keys - owners
Considering the complexity for owners, as opposed to
readers and writers, Table 4 looks at the number of keys
that would have to be managed by data owners in a key-

per-file system. The table shows the total number of keys
needed by owner. The static column gives a count of all
the files in the entire file system owned by the given
owner. The dynamic numbers show the number of keys
the given owner would have had to distribute in the time
of the trace, both to readers and to writers. We can see
from these numbers that a system requiring direct user
involvement for key distribution such as Blaze’s CFS
would be prohibitively cumbersome (imagine typing in
4,000 keys - from a possible list of 200,000 - in several
hours at your desk).

Table 5 shows the change in number of keys required by
individual owners if we move to a key-per-file-group
scheme. In this case, there is not a separate key for each
file, but a key for each class of files, as in the previous
section. This produces a much more manageable list with
roughly 20 keys per owner, and 10 of them distributed
during a 12 hour period. Note that these numbers are also
skewed high since we assume the readers and writers do
not already have any keys cached when the trace starts.
In practice, or in a longer trace, the number of keys to be
distributed each day would be even lower.

session keys per-file keys

user per request
per 

open/close
per 

filesys/lv total owner
non-

owner
newly 

created
wilkes 15,600 1,632 8 251 25 226 13
alice 113,400 10,705 15 2,145 1,290 855 1,073

bob 11,300 1,410 4 272 83 189 64
root 6,590,000 393,000 17 11,728 3,350 8,378 7,761
news 1,667,000 264,000 3 103,218 103,176 42 79,248

Table 2. Per-user dynamic metrics - number of keys used. The number of keys needed if encryption is done
on a per-session basis (using three different definitions for session - a session per request, a session per
open/close pair, and a single session per file system or logical volume) as in NASD, SFS, or iSCSI vs. on
a per-file basis (as in CFS). Total number of per-file keys by username is separated into the total keys used,
number of those keys owned by the user, the number that would have to be obtained from another owner,
and the number of new keys created.

per-group keys

user total owner
non-

owner
newly 

created
wilkes 28 4 24 0
alice 55 6 49 0

bob 34 7 27 0
root 233 30 213 0
news 13 6 7 0

Table 3. Per-group dynamic metrics - number of keys used.
The number of keys that a user needs if per-group keys are used
instead of per-file keys. No new per-group keys were created
during the course of the 12-hour trace.

per-file static dynamic

user files owned
read keys 
distributed

write keys 
distributed

wilkes 54,520 274 8
alice 19,413 375 218
bob 216,462 4,381 32

(top 10 users) 84,479 834 36
(all users) 5,508 49 3
bin 191,466 6,331 19

root 240,366 2,170 54
news 1,574,260 19 2

Table 4. Per-user static metrics for per-file keys. Assuming a
system that uses per-file keys, how many keys must a particular
owner be aware of. The static column shows the totals for all
the files that exist in the file system, and the dynamic column
shows the number distributed during the 12-hour trace.

per-group static dynamic

user
groups 
owned

read keys 
distributed

write keys 
distributed

wilkes 28 14 1
alice 13 6 4

bob 17 13 3
(top 10 users) 23 10 3
(all users) 7 3 1

bin 33 28 3
root 129 34 7
news 15 8 1

Table 5. Per-group key static optimization. The number of keys
that a user needs to handle if per-group keys are used (because
of files that the user owns).
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5.4 Runtime cost - design comparison
The total number of operations and amount of data trans-
ferred by several users and the two busiest system use-
rids, as well as the system-wide total for the entire 12-
hour trace is shown in Table 6.

Table 7 shows the total number of cryptographic opera-
tions required to provide different levels of security. The
table also shows which of the systems introduced in the
previous section incur which of these costs.

6  Potential optimizations
This section summarizes a number of potential optimiza-
tions that arise in the model and from the data presented
in the previous section. These should be considered
extensions to the systems already described in Section 4.

6.1 Distributing owner keys
A logical extension to the key distribution scheme used
in Cepheus that would make it closer to the purely
owner-managed scheme of CFS is to distribute key and
group management directly to data owners, as shown in
Figure 6. In order to obtain a read key for a particular

file, a reader sends a message to the file owner requesting
the key. The owner returns the key to the reader if he is
authorized - perhaps consulting a group server to deter-
mine group access, or perhaps authorizing the reader
directly. As shown in Table 5, the number of keys that the
average user would have to distribute in a day under such
a scheme would be quite low, only 15 for the busiest
owner, and 40 for the root owner (which would likely be
handled as an automatic server). For the paranoid, this
means that owners could interactively authorize the keys
sent to readers and writers - without having to trust a soft-
ware agent even on their local system. Alternatively,
owners might use external systems such as smart cards to
manage access to their keys [Hughes99].

6.2 Sharing via public-private key pairs
The same file data can either be read or written, depend-
ing on authorization, so a mechanism is required to sep-
arately authorize read and write to the same encrypted
data. Public-key cryptography can be used to design a
simple scheme that allows shared access while differen-
tiating between the capabilities of readers and writers.

The private key can be used as a write key to encrypt the
file during a write and the public key can be used as a
read key to decrypt the file for reading. The keys them-
selves are generated and maintained by the owner, as
described above. With such a key pair, handing a princi-
pal the read key authorizes that reader to read the data,
and handing a principal the write key authorizes that
writer to modify the file in a way that allows other read-
ers to successfully read the changed data. 

Though the read key is equivalent to the public key in a
standard public-key system, it is not publicly dissemi-
nated. The owner of the file will issue this read key only
to what it considers as authorized readers. Similarly, the
write key is handed to writers only after appropriate

requests (000s) data bytes

user total read write read write
wilkes 16 4 0.2 8 MB 450 KB
alice 113 54 8 149 MB 28 MB

bob 11 4 0.7 8 MB 12 MB
root 6,590 2,999 1,522 9 GB 15 GB
news 1,667 274 614 202 MB 19 GB

total 11,588 4,868 2,946 41 GB 42 GB

Table 6. Per-user and total requests and data moved. The
number of messages and number of data bytes moved by the
server (total) and by several individual users in our trace.

number of ops NASD CFS SFS Cepheus

operation
messages

(000s)
bytes
(MB)

integrity

MACs 11,588 - X - X X

checksums 7,814 82,543 X - X -
pre-computed checksums 7,814 11,655 optional - - X

session 
privacy

encryptions - server 4,868 40,930 X - - -

decryptions - server 2,946 41,613 X - - -

file privacy
decryptions - client (avg) 212 1,780 X X optional X
encryption - client (avg) 128 1,809 X X optional X

Table 7. Number of cryptographic operations for each design. The number of cryptographic operations performed by the
server, and the average client (user). The key cost difference between the systems can be seen in the resources required for
session privacy. Integrity must be provided in one form or another whenever adversaries might intercept or modify requests
in transit. The choice between session privacy and file privacy comes down to performance cost vs. simplicity of centralized
management. With appropriate key distribution schemes, file privacy can provide a much more computationally efficient
means of achieving the same level of security.
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authorization by the owner. In the basic variant of this
design, there is no protection from a malicious writer
who changes the write key used to encrypt the file: the
readers and the owner would not be able to decrypt this
newly written file and would read only garbage.

6.3 Precomputed encryption
Storing files encrypted has the obvious benefit of secur-
ing the contents from unauthorized access. In addition, it
reduces the load on the server which would otherwise
have to perform encryption on-the-fly to protect data
during network transfer. This can be quantified by com-
paring the amount of encryption and decryption done by
the server in NASD and the Cepheus file system as
shown in Table 7.

On the downside, this makes the write key of the file a
long-term key. The difficulty with using a long-term key
is that much larger amounts of data are encrypted with
the same key and can be seen on the network, making it
more vulnerable to snooping and attacks that depend on
large amounts of available cypertext. This risk may be
reduced if each block of plaintext is extended with some
amount of random padding before encryption. It may
also be reduced by periodically refreshing the keys used,
and potentially re-encrypting the underlying data (per-
haps using a lazy scheme, as discussed below). This
would incur an additional encryption cost, but would still
be less costly than re-encrypting the file contents with a
session key each time they are sent to a reader.

6.4 Reducing the number of keys - file-groups
Pre-computed encryption together with owner-managed
key distribution implies that the owner must maintain
and distribute the keys to all their files. The most para-
noid design would require one key per file that the owner
owns in the system. This would result in an manageably

large number of keys for the owner to handle, as shown
in Table 4.

The number of keys can be reduced dramatically while
still maintaining the semantics of current UNIX file shar-
ing by observing that if two files are owned by the same
owner, the same group, and have the same permission
bits, then they are authorized for access by the same set
of users. We place all such files in the same file group,
and use the same key to encrypt all the files in that group.

Using file groups dramatically reduces the number of
keys that readers and writers need to keep track of (as
seen in Table 2 and Table 3 in the previous section), as
well as the number that owners are required to manage
(as shown in Table 4 and Table 5). Additionally, this
scheme reduces the number of requests for keys that an
owner must process, and the number of keys that a prin-
cipal must obtain from a remote owner. When a principal
needs to access a file it can check if the file’s ownership
and permissions match that of any other file for which it
already has a key, and simply use the cached key. 

Again, using the same key to encrypt multiple files has
the disadvantage of making more data that has been
encrypted with the same key visible on the network, as
mentioned in the previous section. 

Additionally, using the same key for different files makes
revoking a principal an expensive operation: all files in
the file group will need to be re-encrypted with a new
key. If a different key were used to encrypt each file, then
only the files to which a revoked user had access are
required to be changed (although this would require log-
ging of all key distributions, as it would degenerate to the
same cost as the group-key scheme if all files the princi-
pal potentially had access to had to be re-encrypted).

storage server

&^%$#&!

&^$#%^%&**&

group -> alice, bob

integrity protected

*@^#
<&$>

owner local system

*@^#
<&$>

*@^#
<34>

*@^#

network

reader
writer

Figure 6. Diagram of owner-managed key scheme. The owner writes the data in encrypted form, and it is stored in encrypted
form. Namespace management is done by readers and writes, and directories are also stored encrypted. Key distribution is
handled directly by data owners, rather than by a centralized group server. Each owner is responsible for distributing read and
write keys when queried.
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6.5 Lazy re-encryption
Using file-groups drastically reduces the number of keys
in the system, but complicates revocation. To make revo-
cation less expensive, one can perform re-encryption
only when a file has been updated. In this way, expensive
re-encryption occurs only when new data is created, the
concept of lazy re-encryption [Fu99].

When a principal is revoked, other principals must be
informed to begin using a new key. The protocol to
inform readers is different from that used to inform writ-
ers. Readers can notice that a file has been re-encrypted
when the checksum of the decrypted disk block does not
match the checksum stored in the block. If the check fails
the reader can request a new key from the owner.

If writer’s keys were renewed periodically (e.g. once per
day), then writers could be informed that they now need
to use a new key. The first writer to update the file also
re-encrypts it with the new key. This opens a window of
vulnerability between revocation and re-encryption. If a
higher level of security requires revocations to take
effect immediately, the owner could proactively perform
the re-encryptions and writers would detect key changes
in the same way as readers.

Since revocations occur infrequently, the expense of re-
encrypting all the files to which the revoked principal
could have had access is justified by the reduction in the
number of keys in normal usage. A revoked principal
who has access to the server will still have access to the
files which haven’t been updated since the principal’s
revocation. This may be acceptable since it is equivalent
to the access the principal had during the time that they
were authorized (when they could have been copying the
data to floppy disks, for example). No matter what,
revoked principals will never be able to read data created
since their revocation.

[this revocation must be better explained earlier on - in
the basic model section - so that we use the same termi-
nology. better explain what types of scenarios we are
worried about]

6.6 Central authorization with untrusted servers
The logical extreme to not trusting storage servers to
read the data they store, is not to trust servers with
namespace traversal or write authorization. Readers
must be able to get a listing of all the filenames in a direc-
tory in order to traverse the namespace. At the same time,
we would like to prevent writers from destroying the
contents of a file (e.g. by writing with an invalid write
key). Since writes make changes to persistent data, the
server must authenticate each write to make sure the
writer is authorized to modify that particular data block.

6.6.1 Cascaded keys
Instead of using a heavyweight authentication protocol
on each write, we simply require the writer to provide the
encrypted filename of the file being updated, encrypted
using the write authorization key of that file. The writer
obtains this key from the owner together with the usual
write key. Since the write authorization key is secret, the
encrypted filename serves as a certificate to the server
that the writer has the write authorization key. The server
checks if the encryption is valid by searching the direc-
tory for the encrypted filename before proceeding with
the write. The server can do this comparison without
itself knowing the key used by the writer.

6.6.2 Directory management
We propose a simple scheme, illustrated in Figure 7
based on encrypting the filenames with two keys. The
directory file contains the information required by the
server. The directory contains a table of names of the
files in the directory, each encrypted first with the write
authorization key and then with the write verification
key. The directory does not contain the plaintext filena-
mes at all, preventing an unauthorized user from even
performing a directory lookup. The directory is main-
tained such that the index of a filename in the encrypted
table matches the index of the data structures associated
with that file. The directory file itself is not encrypted;
that is, the server can access the block addresses of files
in the directory. The server is also provided with the
write verification key so that it can verify the write
authorization certificates presented by the writers.

To allow a reader to access the names of files in the direc-
tory, the owner gives readers a key which corresponds to
the product of the write authorization key and the write
verification key. The reader can use this key to com-
pletely decrypt the filenames and obtain the plaintext
names. However the reader cannot obtain a valid write

block addresses 
(not encrypted)

filenames 
(doubly encrypted)

Figure 7. Diagram of directory storage on untrusted
servers. The right-hand table stores pointers to the data
blocks corresponding to the named file. The left-hand
table is encrypted in such a way that it can be decrypted to
plaintext by readers, searched by the storage server on
behalf of writers, but written only by writers.
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certificate from the filename because it cannot factor the
key obtained from the owner into the two constituent
keys. This scheme allow readers to cache the file data
block addresses to use in future accesses. On receiving a
certificate from the writer, the server decrypts the doubly
encrypted filenames using the write-verification key and
verifies that the certificate provided by the writer corre-
sponds to a valid entry. The server can cache the
decrypted filenames of active directories to make this
validation fast.

The critical point is that this scheme uses the encrypted
filename to indicate to the server that the writer is autho-
rized. Hence it is important that this certificate be pro-
tected during transmission, using the privacy of
arguments scheme as proposed by NASD [Gobioff99].
Such a design allows an untrusted server to verify that a
principal has the required authorization, while mediating
writes to protect data from malicious modification. The
scheme also makes it easy for the server to manage the
space on the storage system by decoupling the informa-
tion required to determine allocated space from the data
itself. Though the actual data and filenames are
encrypted and hidden from the server, the list of physical
blocks allocated is visible to the server for allocation
decisions.

6.6.3 Alternate design
For each file in a directory, along with the (plain text)
table of filenames, the directory contains an additional
table corresponding to the filename encrypted with a
write authorization key. The entire directory file is then
treated as any other file: it is encrypted with a write key.
To allow readers to perforn name lookup, they are
handed the read-key to the This scheme is illustrates in
Figure 8.

There is no reason why the private key of a directory
needs be handed out, unless you want to authorize a user
to create new files in that directory. In this case the autho-
rized user will be able to delete any file from the direc-
tory as well.

6.6.4 Who knows what
wilkes: PrK(notes), PuK(notes), PrK(notes-dir),
PuK(notes-dir)

alice: PuK(notes), E[PrK(notes-dir)](notes)

bob: PrK(notes), E[PrK(notes-dir)](notes)

cello (server): E[PrK(notes-dir)](notes),
E[PrK(notes)](notes), E[PrK(notes-dir)](notes-dir)

6.6.5 Potential Attacks
This scheme is vulnerable to the following denial of ser-
vice attacks: 

• the server can delete files (e.g. by zeroing a disk)

• an anonymous user can cause the disk to be
unusually loaded by requesting arbitrary data
blocks

There is no reason why the private key of a directory
needs be handed out, unless one wants to authorize a user
to create new files in that directory. In this case the autho-
rized user will be able to delete any file from the direc-
tory as well. A malicious attacker:

• cannot decrypt (read) a file because he does not
have the corresponding public key.

• cannot forge a file because he does not have the
corresponding private key.

• cannot overwrite the file notes because he does not
possess the encryption of notes. 

Similarly, a revoked reader:

• cannot decrypt the file because the encrypting key
has been changed.

Finally, a revoked writer:

• cannot read the file because the encrypting key has
been changed.

• cannot overwrite/forge the file because the
encrypting key of the directory has been changed.

7  Putting it all together - file ops
This section combines all of the most paranoid choices in
the schemes discussed above and presents the protocols
used to perform the basic file system operations. Mutual
authentication is required before undertaking any of the
following operations, and a session key is exchanged as
a result of the authentication. All messages (other than
the file data) are encrypted with this session key for pri-
vacy, and include a checksum for integrity during trans-
mission. The server must not perform any authentication

inode addresses 
(not encrypted)

filenames 
(not encrypted)

filenames 
(encrypted)

Figure 8. Diagram of alternate directory storage. The
right-hand table stores pointers to the data blocks
corresponding to the named file. The left-hand table is
encrypted in such a way that it can be decrypted to
plaintext by readers, and the center table is encrypted so
that it can be searched by the storage server on behalf of
writers, but written only by writers.
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prior to reading data blocks. The data is secured using
long-term encryption and pre-computed checksums.

7.1 Directory lookup
To traverse the namespace, a user must have keys to
decrypt the entries in the directory. As described in Sec-
tion Section 6.1, this key is obtained from the owner of
the directory and allows the user to determine the names
of all files in that directory

7.2 Reading a file
When a user, bob, needs to read a file, he must first obtain
the read key for that file. He determines the owner of the
file from the directory entry, and obtains the read key
after authenticating himself with the owner. Subse-
quently reads proceed with bob requesting particular
data blocks and decrypting them with the read key.

7.3 Updating a file
Two keys are required to update an already existing file:
the write key and the write authorization key. The write
key is the key with which the file has been encrypted.
The write authorization key is used by the writer to prove
to the server that the writer has been authorized to write
that file. The writer, alice, obtains these keys from the
owner of the file and the owner of the directory respec-
tively. She then presents the name of the file encrypted
with the write authorization key to the server as a certif-
icate to prove authorization. The actual file data is sent
after encrypting it with the write key. After checking the
certificate, the server proceeds with the write as
described in Section 6.6.

7.4 Updating a directory / Creating a new file
To create a new file, the user must have authorization to
write to the directory dir in which the file notes is to be
created. Note that the authorization to write to a directory
recursively implies the authorization to update the con-
tents of the directory above.

The writer request the directory dir, which is stored
encrypted in the server. On receiving it, the writer
decrypts it with the key, adds an entry with the name
notes and data block number null. He then re-encrypts
the filename table in dir with the same key and sends it
back to the server together with the encrypted filename.

The server uses this encrypted filename to determine the
index of notes in dir, and fill in the data block value cor-
responding to notes. After this, there will be an entry in
the directory dir correctly pointing to an empty notes file.

7.5 Deleting a file from a directory
The writer requests the directory dir from server. On
receiving it, the writer decrypts it with the read key,
removes the entry notes and adjust the other data block

pointers. It then re-encrypts the filename table in dir with
the same key and stores it back to server.

7.6 Revoking permissions
Revoking readers is straightforward: keys must be
renewed every day.

On the other hand, revoking writers is more involved.
The owner generates two new public-key and private-
key pairs. It then, re-encrypts notes with a new private
key and store it. Finally, it re-encrypt the directory dir
with a new private key and stores it. The owner returns
the new keys to any readers or writers who request keys
as their previous keys expire.

8  Conclusions
This paper has developed a common model and set of
design considerations required for any secure storage
system. We have reviewed all the previously proposed
systems for storage security, and mapped them into this
core set of components and design choices. For integrity,
any system for secure, networked storage must provide
some variant of signed checksums that strongly tie par-
ticular data to particular principals. For privacy through
encryption, we have shown that the two main classes of
systems previously described - 1) those that seek solely
to protect the communication between servers and users
and 2) those that allow for encryption and decryption
only at user endpoints, with untrusted servers in between
- are actually very similar. The second systems can be
seen as providing a form of “pre-computed encryption”
for optimizing the encryption work done by the servers
in the first class of systems. We have quantified the costs
of these various systems using a trace from a UNIX time-
sharing server and shown that significant optimizations
are possible that both reduce complexity and reduce
server encryption load - sometimes by orders of magni-
tude. We have identified and begun to quantify a number
of additional design choices that improve security and
performance: fully owner-based key distribution, key
pairs for read and write, precomputed encryption, file
groups, lazy re-encryption, and authorization and space
management with completely untrusted storage servers.
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