
HPL–SSP–2001–4: Simple table-based modeling of storage
devices

Eric Anderson∗

July 14, 2001

Abstract

Trace driven simulations are too slow for use in solvers.
Analytic models require work from a person to under-
stand the array enough to model it. Table based models
offer the possibility of automatically measuring the per-
formance of an array for use in a solver. We explain a
simplistic way of generating the input points in the table.
We then explore three different ways of performing the
interpolation of nearby points from the points within the
table, and comment on future directions the work could
go.

1 Introduction

Traditional approaches to building disk array models in-
volve either slow trace-driven simulation, or analytic
models [UAM01, MA01] which rely on understanding
the underlying behaviour of the disk array. Both of these
approaches mean that creating the model for a new array,
or even just an updated model for a new revision of an
array is a human-intensive process. We propose instead
an almost entirely automatic method which requires lim-
ited understanding of the disk array, yet still gets perfor-
mance predictions of the same quality as analytic mod-
els. These analytic models are useful for performing fast
searches through many different possible configurations
[AKS+01].

Our methodology consists of two parts, first a measure-
ment technique for sampling the different possible perfor-
mance values of the array, and then a algorithm for taking
the resulting performance table and estimating the perfor-
mance for arbitrary inputs.

The resulting model takes as input a series of param-
eters, and returns the maximum estimated throughput
available for those parameters. Some of the parameters
specify the device information. For our models these pa-
rameters are the raid level, and the number of disks in the

∗Storage and Content Distribution Department, Hewlett-Packard
Laboratories, 1501 Page Mill Road, Palo Alto, CA 95014; email:an-
derse@hpl.hp.com.

raid group. The second set of parameters are a summary
of the request pattern, or stream as done in [ABG+01].
For our models, these parameters are the request type
(read or write), the request size, the sequentiality of the
requests, and the average queue length.

2 Building the performance table

For the purposes of this initial tech-note, we use the sim-
ple grid approach to building the performance tables. In
this approach, for each of the parameters we specify the
possible values for the parameter, and measure the per-
formance at those parameter points. A better approach
would be to do additional sampling at those places where
the estimated performance is changing quickly, and/or
where the performance estimation is greatly off.

Taking these measurements is straightforward. We
configure the array to have LUs of all the different types
we wish to measure, and then for all of the stream param-
eters, we measure the maximum performance that can be
achieved for those parameters by issuing I/Os as quickly
as allowed by the parameters (limited by the queue length
and the completion rate of the device). We chose to sim-
ply take measurements for a fixed amount of time because
that is what our synthetic I/O generator supported. A bet-
ter approach would be to take measurements until the con-
fidence interval for the measurement becomes sufficiently
small.

3 Estimating the performance

Given a table of measured values, there are many ways
of estimating the performance at an arbitrary point. We
chose first to partition the table based on parameters we
did not expect would be usefuly predictive. In our case,
that meant creating separate tables for each raid level,
number of disks in the raid group, and each operation
type. This choice is ok because we have an exhaustive
list of all possible values for those parameters, so we will
not have to interpolate between them. We leave to fu-

1



ture work the question of whether interpolations between
these parameters can be done.

Given a table restricted to the relevant measurements,
we must now estimate the measurement at points not in
the table. Assume we have a pointp := (p1, p2, p3) ∈
R3 representing the request size, sequentiality and queue
length. We first start by restrictingp to the ranges that we
have measured. For example, if the range on the queue
length is[8,64], we setp3 to 8 if it is less than 8, and 64 if
it is greater than 64. We can now more safely interpolate
between the points in the table for our estimated value.
All of our algorithms use a notion of closeness. To get the
distance, we took the euclidean distance after normalizing
all of the points to be in the range[0,1]. The normaliza-
tion was necessary because some parameters have a wide
range, and some have a narrow range, but we wanted the
contribution from each axis to be the same.

We have explored three methods for doing the interpo-
lation.

• Closest point. Given the euclidian distance between
p and the each point in the table, assume the maxi-
mum throughput atp is the maximum throughput at
the closest point.

• Nearest neighbor averaging. Chose thek nearest
neighbors. Weight the contribution of each neigh-
bor by it’s distance fromp such that the sum of the
weights add up to one. Estimate the utilization atp
as the weight of each neighbor times the utilization
at that neighbor.

• Hyperplane interpolation. Chose nearby points
which form a non-degenerate hyperplane. Estimate
the performance atp as the value of the hyperplane
at p.

We found that the closest point algorithm worked sur-
prisingly well. The nearest neighbor averaging algorithm
had a fatal flaw which rendered it unworkable for our
set of measurements. The hyperplane interpolation was
tricky to get working, but in the end performed better
than the closest point interpolation. We believe in the fu-
ture that trying spline interpolations is likely to work even
better than hyperplane interpolation.

For our simplistic evaluation, we took a random frac-
tion of the table, and used that random fraction to predict
the values which were not in the table. We use that metric
to estimate the quality of the estimation algorithm. A bet-
ter approach of course would be to sample at additional
points, but we did not have the time to take additional
measurements.

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.4 0.5 0.6 0.7 0.8 0.9 1

R
el

at
iv

e 
er

ro
r

�

Fraction of table entries retained

Closest Point Estimation
Nearest Neighbor Estimation

HyperPlane Estimation

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4 0.5 0.6 0.7 0.8 0.9 1

R
el

at
iv

e 
er

ro
r

�

Fraction of table entries retained

Closest Point Estimation
Nearest Neighbor Estimation

HyperPlane Estimation

Figure 1: Only a fraction of the measured points are used
to estimate the performance at the excluded points. 50
measurements were taken at each point. Error bars are the
95% confidence intervals. Top graph is from the RAID-1
measurement data, and the bottom graph is the RAID-5
measurement data. Nearest neighbor estimation is clearly
the worst. Hyperplane estimation does somewhat better
on the RAID-1 table, and slightly better on the RAID-5
table.

3.1 Closest point

The closest point algorithm is convinient in its simplicity.
It also works surprisingly well. Figure 1 shows how the
quality of the estimation drops off as the fraction of the
retained table is dropped.

3.2 Nearest neighbor averaging

Nearest neighbor averaging works poorly to estimate the
performance. It’s fatal flaw comes at estimating values
near the edge of the measured space. Figure 2 shows this
problem graphically. If the data tends to be sloping in one
direction from the edge, then any system which takes a
group of points near the edge and averages them together

2



Predicted Range

Predicted
Point

Figure 2: Illustration of the problem with nearest neigh-
bor averaging. The point being predicted (open circle) is
in the lower left, and all the nearby points found in the
table (filled circles) are up and to the right. Any possible
averaging of the points in the table will end up somewhere
in the range indicated on the far left, well outside of the
actual y value of the predicted point

(by whatever means) will get fairly poor results.
In our implementation, we chose the nearestn := 6

points. The distance to each neighbor from the point
being estimated isdi . We then calculated the non-
normalized contribution(ci) to each neighbor asci := 2∗
max j∈1..n(d j)−di . The normalized contribution for each
neighbor is thenci/sum j∈1..n. Figure 1 shows how the
quality of the estimation is worse than for the closest point
algorithm.

3.3 Hyperplane estimation

Our final, and best algorithm of the ones we implemented
was hyperplane estimation. The idea is to choose a set
of nearby points, calculate the hyperplane which runs
through them, and use that hyperplane to estimate the
maximum performance at the target point. Figure 3
shows how this works for an interpolation in two dimen-
sions.

The biggest problem with this algorithm was avoiding
degenerate hyperplanes. Given the input data we had, it
was very common when estimating the performance of a
large I/O, say 240k, that all of the nearest points would
be ones at 256k. As a result, the hyperplane would be
degenerate.

Our first attempt at avoiding degenerate hyperplanes
was to keep track for each axis, the point which is near-
est and on that axis, nearest and smaller on that axis, and
nearest and larger on that axis. Unfortunately, this ap-
proach lead to a high duplication of points in the final set.
Consider the case where you are estimating the value at
(1.1,1.1,1.1) and you have nearby points at(1,1,1) and

Predicted
Point

Hyperplane

Hyperplane
inputs

Figure 3: Illustration of hyperplane interpolation. First
the algorithm selects 1 nearby point (black ones) per di-
mension out of the complete set (gray points). Then the
hyperplane which passes through all of those points is cal-
culated. Finally, the prediction is done as the point on the
plane above the input point. In this example, the predic-
tion would be slightly too high.

(1.5,1.5,1.5). It is likely that those two entries will oc-
cupy most of the closest set, again leading to a degenerate
matrix.

Our second approach was to extend the first approach
such that if a point had been selected for an earlier axis,
it was not checked for the later ones. The one disadvan-
tage of this approach is that in our single-pass algorithm,
the strictly nearest point might not be retained for all of
the entries in the set. Consider the case where the first
point is the overall best on the third axis. It will get se-
lected as the nearest for the first axis, and never consid-
ered for the third. However, as the scan over the table
continues, it will be overwritten as the nearest point on the
first axis. There are assuredly more complex algorithms
which could fix this problem, we did not investigate them.

As a final addition to our second approach, we also re-
tained the strictly nearest point.

Given the set of points, the next problem is to choose
the hyperplane through them. One approach would be to
do a least squares fit to the points. We instead chose to
do a perfect fit to the nearest points, assuming that those
would best describe the shape of the hyperplane. For this
purpose, we sorted the nearest points in order of their
distance to the target point. We then started iteratively
adding them to a hyperplane matrix. Any point which
was redundant with the earlier points was eliminated. We
tested redundancy using gaussian elimination. Eventually
we would either get to 4 entries in our matrix, which is
sufficient to define a hyperplane in a 4-dimensional space
(size, queue length, run-count, measured performance),
or we would give up. We also retained the minimum and

3



maximum performance seen at any used point.
If we failed to generate a hyperplane, then we simply

fell back to our closest point algorithm. If we generated a
hyperplane, then we used it to estimate the performance.
As a final sanity check, we forced the estimated perfor-
mance to be bounded by[1/2∗min used,2∗max used].

Figure 1 shows the performance of the hyperplane es-
timation is better than the performance of the other two
algorithms as the number of points excluded increases.

3.4 Combining together multiple measure-
ments

For the purpose of a solver, we need to be able to esti-
mate the utilization of a device with multiple simultane-
ous accesses to it. However, we know that two different
access streams will interfere with each other. In partic-
ular, having multiple streams will increase the average
queue length and decrease the average sequentiality. We
used the same algorithms as in [UAM01] to calculate the
inter-stream adjustments. We then estimated the utiliza-
tion for each stream as the rate of that stream divided by
the maximum at the adjusted point. Finally we combined
the inter-stream estimates using the algorithms found in
[BGJ+98] to handle inter-stream phasing.

4 Conclusion

We have shown that the hyperplane interpolation algo-
rithm performs better than the closest point algorithm and
the nearest neighbor averaging algorithm. We have shown
that regardless of the data, the nearest neighbor algorithm
is unlikely to perform well. In the future, we would like
to refine our methodology for choosing the points to mea-
sure. In particular, we would like to take more mea-
surements in the regions where the performance changes
rapidly and fewer where it does not. We would also like
to change the hyperplane interpolation to be spline inter-
polation. We believe splines will work well as they do
not give wildly varying predictions the same way high-
dimensional polynomials do. We would also like to find a
faster way of selecting the nearest points. We suspect that
the R-tree algorithms [Gut84] may form a basis for this,
although the implementation may be somewhat different
as we have an entirely in-memory database.

References

[ABG+01] G. A. Alvarez, E. Borowsky, S. Go, T. H.
Romer, R. Becker-Szendy, R. Golding,
A. Merchant, M. Spasojevic, A. Veitch, and

J. Wilkes. Minerva: an automated re-
source provisioning tool for large-scale stor-
age systems. Technical Report HPL-2001-
139, Hewlett-Packard Labs, June 2001. To
appear in ACM Transactions on Computer
Systems.

[AKS+01] E. Anderson, M. Kallahalla, S. Spence,
R. Swaminathan, and Q. Wang. Ergastulum:
An approach to solving the workload and de-
vice configuration problem. Tech. rep. XXX-
YYY, Hewlett-Packard Labs, June 2001.

[BGJ+98] Elizabeth Borowsky, Richard Golding, Patri-
cia Jacobson, Arif Merchant, Louis Schreier,
Mirjana Spasojevic, and John Wilkes. Capac-
ity planning with phased workloads. InPro-
ceedings of the First Workshop on Software
and Performance (WOSP’98), pages 199–
207, Oct 1998.

[Gut84] A. Guttman. trees: A dynamic index struc-
ture for spatial searching, 1984.

[MA01] A. Merchant and G. A. Alvarez. Disk ar-
ray models in Minerva. Technical Report
HPL-2001-118, Hewlett-Packard Labs, April
2001.

[UAM01] M. Uysal, G. A. Alvarez, and A. Merchant.
A modular, analytical throughput model for
modern disk arrays. InProceedings of Ninth
MASCOTS, August 2001.

4


