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Providing high performance, low-overhead inter-processor communication is a necessity if
the promise of scalable distributed-memory multiprocessors is to be achieved. This paper uses
a characterization of three different types of interconnect traffic to drive the development of
an innovative high-speed interconnect interface. This uses sender-controlled message
placement at the recipient, which has the effect of greatly reducing the cost and complexity
of message handling.

The contributions of this work are in (a) elucidating the traffic model; (b) in defining the
sender-driven communication scheme; and (c) in the detailed description of an efficient,
protected interface to the interconnect hardware that allows applications running in non-
privileged mode to access the interconnect directly, without operating system intervention.

This version of the paper contains a complete high-level design for the first version of
Hamlyn—a hardware interface that accommodates all the Hamlyn functionality. Future
work on the protocol stacks and implementation work will doubtless improve and modify this
interface. Until then, this description serves as a functionally complete snapshot of the
Hamlyn approach.

Hamlyn — an interface for sender-
based communications

John Wilkes
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scale up to large numbers of nodes (only the explicit inter-
node traffic needs to be supported, not every single
memory access). So far, UMA machines have scaled
successfully only up to a few tens of relatively slow
processors (e.g., the Sequent machines, which use the Intel
80x86 family), and less than about eight with faster
processors (e.g., IBM 3090s, Crays).

Compared against non-uniform-access-cost shared
memory systems (NUMA), the additional isolation
between the processor nodes in a multicomputer makes it
easier to provide fault-tolerance, since the interconnect acts
to isolate failures and limit the spread of damage from a
faulty process or processor.

Because the internal multicomputer interconnect is
enclosed in a cabinet, along with the other multicomputer
components, it is not subject to replay or masquerade
attacks, so there is no need for encrypting data traffic on it.
Moreover, it is reasonable to expect exceedingly low error
and failure rates because of the controlled environment in
which it operates. Finally, its small scale translates into
greater freedom in choosing a topology that can provide
good scalability, as well as sufficient redundancy so that
partitioning cannot occur.

None of these properties are valid for LAN-connected
multiprocessors, and their performance is much lower as a
result.

1.2 Multicomputer interconnect
The performance of a multicomputer interconnect fabric is
obviously a major determining factor in the performance of
the whole machine, and in how far this can be scaled up.
Table 1 presents some performance figures for recent
interconnect types used in various kinds of non-shared-
memory multiprocessor. It shows small-message round-
trip latencies and large-message bandwidths for a number
of interconnect/platform combinations. As the table
suggests, the trend is clearly towards higher bandwidths
and—at least as importantly—lower latencies for small
messages.

Unfortunately, bandwidths are going up faster than
latencies are going down—due in large part to the relative
lack of attention that has been paid to the interface between
processors and interconnects. With processor speeds
climbing steadily, the penalty in application-instruction
opportunities of increased latencies are getting worse.
Latency is the main enemy, not bandwidth.

1.2.1 Delivery order
To ensure that the proposed solution covers the widest
range of interconnect characteristics, the proposal here is
based on a deliberately weak set of assumptions about the
properties of the interconnect as far as its delivery
guarantees and failure modes go.

The multicomputer interconnect fabric is constructed from
a set of packet switches, with individual packet-level
routing. Because each packet is routed individually, the
packets from a single message can be delivered out of order
at the recipient. Worse, because there is no low-level
acknowledgment on the delivery of a message at the

1  Background
A distributed-memory multi- or parallel-processor, variously
called a multicomputer, “shared nothing machine”, or
“DMPP”, is composed of a set of processing nodes
(processors and local RAM) with no memory physically
shared between the nodes (Figure 1). A high-speed
interconnect fabric supports communication between the
nodes. The interface to this fabric is the subject of this paper.

The main contribution of this paper is a new scheme for
managing memory-to-memory communication: one in
which the sender determines the address at which a
message will arrive in the receiver’s memory. A complete
set of the mechanisms necessary to achieve this are
described, together with a short description of the software
protocols that could be layered on top of it.

1.1 Multicomputer properties
A single node in a multicomputer may be a uniprocessor or
a shared-memory multiprocessor in its own right. The
nodes may be homogeneous or heterogeneous, although
for simplicity this work assume that the nodes use
homogeneous data formats. Nodes may vary in their
memory size, processor counts and their speed, IO
capabilities, and so on.

Nodes in a multicomputer basically trust one another, since
they are all collaborating to provide a common resource.
(Individual applications operating on the nodes of the
multicomputer still need to be protected from one another’s
actions: the analogy aimed for is that of a timesharing
system.)

The intended application domain for the work described
here is moderately coarse-grained parallel computations—
for example, a distributed database for online transaction
processing (OLTP). In this environment, multicomputers
offer the potential for smooth incremental scalability in
performance and capacity—changes that require a
processor replacement in a uniprocessor system. Compared
with tightly-coupled shared-memory systems,
multicomputers offer a wider range of cost-effective
scalability with greater fault tolerance.

By comparison with uniform-access-cost shared memory
systems (or UMA), the multicomputer model is easier to
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interconnect level, entire messages can be delivered out of
order.

The interconnect will never replicate data of its own accord.

The interconnect may make available a circuit-switched
mode for transferring large amounts of data.1 Because a
circuit-switched connection will always deliver packets in
order, the difficulties associated with out-of-order arrival at
the recipient are removed. However, it introduces a
complication at the sending node’s interface, since true-in-
order sending would prevent a node from transmitting any
packets if the virtual circuit locked up for some reason—
e.g., if an attempt was made to establish a connection to a
dead node. It is important that the sending node be able to
continue work during the potentially long timeout
necessary to detect such a case, and this will require some
form of non-FIFO packet send ordering.

1.2.2 Interconnect failures
Individual components of the interconnect fabric—
switches, links, and connections to their nodes—can fail
independently, but there will be sufficient redundancy in
the interconnect fabric to prevent a partition occurring: that
is, no two parts of the fabric can continue operating
independently after a failure.

The interconnect fabric must not deadlock or livelock if one
or more of the system components (nodes, switches or
links) fails—to do this, it must have a mechanism by which
packets destined for a broken or unreachable node are
eventually garbage-collected. (This could mean deleting
such a packet, or sending it to a “dead-letter office” for
examination.)

Failures (and subsequent repairs) will be very rare events.
This means that managing failures and recovery at upper
levels of the software will be adequate from the point of

a. Paper design only.

1. Notice that the boundary between large and small is not necessarily
the same as that used by the OS to distinguish bulk data transfers.

Table 1 : some multicomputer interconnect
performances expressed as round-trip latencies and

bandwidths to and from a node.

System Interconnect Latency
(us)

BW
(MB/s)

HP-DUX/68030 Ethernet ~300 1

VAXcluster (780s) CI 1000 8

HP 9000/700
“Snake farm”

FDDI (Medusa
card)

~350 12

DECstation 5000 Fore Systems
ATM card

~70 4

Tandem cluster internal bus ? 2×20

HP Mayfly hexagonal mesh 30 48

Intel Paragon
(Touchstone)

rectangular
mesh

76 25

Inmos T800 T8 link 100 1.6

Inmos T9000 T9 link+C104 ~10 10

PageServera 100m fiber 10 125

view of performance, and no low-level error recovery or
retries will be necessary. In particular, individual messages
may be lost or discarded, if they are sent to a failed node, or
through a broken or unreachable switch. However, this
happens only during those (rare) intervals during which an
interconnect or node failure has occurred but has not yet
been detected.

The corrected bit error rate of the interconnect will be
exceedingly low: so low that software checksums over
messages are not required. This suggests that error rates of
less than 1 in 1020 bits transmitted are probably required:
the model that software should assume is that the
interconnect is as reliable as a computer backplane, except
in those very rare, few moments between occurrence and
detection of a hardware error, during which messages may
get discarded as a result of being mangled in a detectable
way.

The interconnect fabric may be able to provide information
on congestion and failures. Obviously this will be put to use
if it is available, but it shouldn’t be necessary for correct
operation.

1.3 Node failures
Individual nodes fail independently: there is sufficient
redundancy in power supplies and cabling to prevent
system failure as a result of a single component failure.

When a node fails, it can do so in a clean manner (fail-stop:
the node stops sending messages as soon as a fault occurs—
no bad messages are ever sent out), or a messy one, with no
constraints at all on the messages sent out after the fault
occurs before it is detected and the node shuts itself down.

Most existing work on fault-tolerance has assumed the fail
stop model because it is so much more tractable, and
because truly unregulated behavior seems to be overly
pessimistic for all but the most rigorous, life-critical
applications. In particular, the costs of addressing the
arbitrary failure mode case, or of providing true fault-stop
processors, are exorbitant [Cristian91, Perry86,
Schneider84, Gray88b].

However, a gradually-deteriorating node is unlikely to
exhibit truly fail-stop behavior, so the model that will be
used here is of fail-fast nodes. In this model, a failing node
emits a sequence of good messages, followed by a bounded
(possibly empty) sequence of bad ones. The bound can be a
number of messages or an elapsed time. In either case, it can
be used to determine how often to perform internal self-
tests.

The resulting design constraint is a need to protect against
a few bad messages from a failing node rather than a long-
lived malicious attack. The expectation is that the
interconnect hardware will catch (and discard) completely
garbled messages, but that software (or interface) may be
able to emit a few messages that look valid at the per-packet
hardware checksum level, but are in fact meaningless. The
fail-fast model being used means that we don’t have to
defend against arbitrarily-prolonged attack under such
circumstances, which reduces the strength of the protection
measures needed.
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1.4 Expansion and repairs
An attractive feature of the multicomputer model is the
support it provides for smooth, incremental growth. For
this to be possible it is important to be able to add
individual nodes and the portion of the interconnect fabric
that supports them, as well as to repair and replace failed
components—while the system is online. For example, the
requirements for certain database systems used in
telecommunication applications include minute-per-year
total downtime sustained over a 30-year mission life. This
can only be achieved by adding and replacing hardware
without shutting the system down. (This has significant
implications on the kind of connectors and physical
packaging, as well as on the software.)

One approach would be to bind a switching element to each
node, and add and remove these as a pair. (There may have
to be a passive backplane-like component into which the
nodes are plugged; each backplane unit will support a few
such nodes.) Another approach is to provide complete,
redundant switching fabrics, so that one can be taken down
for repair or expansion independently of the other.

2  Message traffic in DMPPs
There are three different classes of message traffic
important to efficient operation of a multicomputer.
Together, these represent the operations that a
multicomputer interconnect needs to support well.
(Particular applications outside the scope of OLTP, such as
very fine-grain parallel computations, may require
additional support that is not addressed here.)

The traffic types are as follows:
• atomic operations
• short requests
• bulk data transfer

These are elaborated on below, together with some remarks
on desirable semantics for hardware-assisted multicast.

First, here is some terminology that will prove useful later
on:

• sender: a node that is transmitting a message
• receiver: a node that a message is being sent to
• originator: a software entity (e.g., OS, user-level

application, or subsystem) that is sending a message—
necessarily from a sending node

• target: a software entity that a message is being sent
to—necessarily on a receiver node.

2.1 Atomic operations
The atomic single-word memory operations available in a
shared-memory multiprocessor are very convenient for
some applications. Such operations (if used carefully) are
ideal for low-latency concurrency control [Anderson89,
Anderson90h], and for low cost communication between
cooperating processes. It would be nice if these could be
extended to the multicomputer environment.

Consider the case of lock management in a distributed
database. Most accesses do not conflict, so claiming a lock is
only a couple of memory operations. In the shared memory

case, this is easily achieved. In a software implementation
of message-passing, even the best implementations take
hundreds of microseconds [Spector82].

The cost is so high because performing a remote lock
operation in software involves a message send, and then (at
the receiver) an interrupt and two context switches and the
reply processing, followed by a message reply. With
hardware support, this could all be reduced to a couple of
round-trip interconnect times plus the execution time of an
atomic memory operation at the remote node—perhaps 5µs
(for small values of 5), almost all of which would be
interconnect transit time.

Such high-performance atomicity operations would be of
considerable value in allowing control-intensive operations
(e.g., lock management) to scale to large numbers of
processors.

2.2 Short requests
Atomic operations are fine for single-word updates, but are
not particularly appropriate where the goal is to send a
multi-word message to a remote node. Instead of incurring
a round-trip interconnect delay for each word, it would be
faster to pipeline the transfers. This is typically done by
sending one or more packets of data through the
interconnect, each several words in length.

Packet sizes vary widely: from a few bytes (48+5 bytes for
ATM), through tens or low hundreds (e.g., 128 bytes for
Mayfly [Davis89]), up to thousands (FDDI) or even millions
(HIPPI) of bytes.

The real goal is to transmit messages: arbitrarily-sized units
of data. If a message is larger than a packet, dividing it up
into packets and reassembling them at the receiver can be
done by software (the traditional approach for LANs) or
with hardware assistance. The costs of software
assembly/disassembly can be large, and much effort has
been expended in the OS and communications
communities to find ways to streamline these processes.

It is convenient to divide the use of messages into two
classes: short requests and bulk data transfer. This is consistent
with various measurements of existing network traffic on
both wide-area and closely-coupled systems, which show
strongly bimodal distributions: most messages are small,
but most bytes are shipped in large messages [Bershad90,
Caceres91, Cheriton87a, Mogul91, Pawlita81].

The prototypical interaction for short requests is client-
server remote procedure call (RPC) [Nelson81, Birrell84].
RPC is usually dominated by small argument and result
lists; the amount of processing required is often quite small,
so efficient transport and delivery is very important; high
priority transmission and handling is often useful, since
RPC requests may carry urgent information about the state
of a computation; and the overheads of memory
management and multiplexing in the receiver are
significant factors in the execution cost of such requests
[Schroeder90, Scott87a, Thekkath91, vanRenesse89].

RPC, which is by definition synchronous, can be
generalized to allow asynchrony at the client and server
[Lampson82]. This can support a wide variety of interaction
models [Cohrs88, Otway87a, Gammage87, Gifford88,
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LeBlanc83, LeBlanc84a, Lin85, Liskov87, Liskov87b,
Liskov91b, Stamos90].

All these uses have similar message delivery requirements
from the interconnect: low overheads at the sender and
receiver, and low interconnect latency.

2.3 Bulk data transfer
It will often be necessary to move large amounts of data (up
to several megabytes at a time) between the nodes of the
multicomputer. Examples of this include inter-node
paging, access to non-local storage devices (e.g., disks,
tertiary storage hierarchies), and distributed join
operations on large tables in a relational database.

In a traditional interconnect, bulk data transfers are
managed in just the same way as small messages: the
components of a large transfer arrive piecemeal, and are
put together by the receiver, and (most likely) copied into
their final destination. This can be expensive: processor
memory-copy speeds have not kept pace recently with
improvements in their instruction execution rates
[Ousterhout90].

One technique to avoid the copy is to use optimistic packet
placement schemes: assume that the next packet to arrive is
next one in the current bulk data transfer, and place it
accordingly. Although this has been shown to work quite
well on a LAN [Carter89], the cost is high when the
prediction is wrong. It is also not clear how well the
consecutive-packets assumption will apply to the
multicomputer environment, where computations are
likely to use much more communication than in a LAN.

A second kind of bulk data transfer is typified by a pipeline
between a producer and consumer. Each element of the
stream is processed as it arrives (depending on the
semantics, this may be possible even if the elements arrive
out of order). This stream-mode bulk data transfer
combines the need for efficient bulk data movement with a
tight integration of inter-processor scheduling. Such a
model is supported in the bulk data transfer model of the
Xerox Courier RPC system [Xerox84g].

In summary: copy avoidance is crucial for bulk data
transfer, and it is useful to support a stream-based
producer-consumer model in addition to simply handling
large one-shot data transfers.

2.4 Multicast
There are some algorithms where the same data has to be
sent to a subset n>1 of the N nodes in the multicomputer in
a short period of time. Although such dissemination can be
achieved in log n time through the use of a software-based
multicast tree, the latencies involved at each step include
delivery of a message, fielding an interrupt and the
forwarding of the message to further sites, so the constant
of proportionality is large.

In all cases, some mechanism for identifying the list of
recipient nodes is required. techniques that have been used
include:

• true broadcast (send to everybody);
• filter at the recipient (as in an Ethernet, where the

recipient matches a multicast address against a set that
it is willing to accept);

• partial sub-setting by address, followed by recipient-
filtering;

• exact list of recipients.

There is an obvious trade-off between hardware complexity
(e.g., for managing variable-sized lists of addresses) against
execution-time costs such as discarding packets that
incorrectly survive the filtering process, which must
necessarily be conservative.

2.4.1 Reliability-insensitive applications
For some classes of applications there are calculations in
which large-n multicast is valuable (e.g., communicating
the result of a global sum to all the nodes for the next step
in a relaxation calculation), even if it is not 100 percent
reliable: if the data is not received at all the nodes, some
form of slower out-of-band signalling mechanism can be
used to indicate this fact, and the data resent to those nodes
that did not receive the first time.

In such systems, even unreliable multicast may be
worthwhile: if the likelihood of successful delivery is
sufficiently high. The cost may still be lower than a
sequence of individual message sends if only a few nodes
need explicit retransmission of the lost message.

2.4.2 Reliability-sensitive applications
For a database OLTP application, however, the number of
recipients in a multicast will commonly be fairly small
(perhaps in the range 2–6, bearing in mind the need for
replication to a backup for redundancy). For this
application, hardware multicasting support may be an
unnecessary complication.

In this environment it is essential that the hardware
multicast provide a reliable service: either it delivers the
message, or the sender gets told in a timely fashion that one
or more recipients did not receive it. The sender needs to
know that the recipients got the message before proceeding
to the next step. Note that the typical problem is not lost
packets, but receiver buffer overruns.

Few hardware-supported multicast systems meet this
reliability test: usually they provide no way for the sender
to tell whether the message was successfully delivered to
the memories of all the receiver nodes. Without a reliable
count of the number of successful deliveries being made
available to the sender, it is likely that slower software-
based techniques will have to be used anyway, thus
abrogating any possible benefit.

One approach to providing the kind of reliability needed is
to deliver multicast messages via a spanning tree
embedded in the switching fabric (e.g., DEC’s Autonet
network [Schroeder90a, Rodeheffer91]). During the fan-out
stage, the multicast value is propagated down the tree to
the leaf nodes. Once leaves are reached, the spanning tree
can be “rolled up”, passing data about the success or failure
of delivery at each lower level back towards the root. A
simple messages-delivered count would suffice: when it
reached the root, the number of successfully-delivered
messages could be communicated to the sender.
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2.5 Summary
The three kinds of messages (atomic operations for
concurrency control, short requests, and bulk data transfer)
have significantly different requirements.

Multicast is orthogonal to these, and could be useful for all
three message types, provided it has support for indication
of successful delivery of messages. Since it is likely to be
most useful for the short-request case, a restriction in the
interconnect that limits reliable broadcasts to single packets
may still be acceptable.

3  Sender-directed interconnect
This section presents a new proposal for interfacing to the
multicomputer interconnect. It is explicitly designed to
support the kinds of traffic identified above.

The approach taken here can be described as having:
• remote Fetch-and-Op;
• message-send operations (possibly with multicast);
• sender-controlled message placement at the recipient;
• mapping tables to eliminate the need for global

address-space management and to provide protection
against rogue accesses;

• hardware-provided multiplexing at the sender for very
low latency.

These are discussed in more detail below. Figure 2 is a
diagrammatic overview of the interconnect model.

Some key assumptions of this model (by comparison to
regular LAN networking, for example) are that the number
of senders per node is relatively small, and that memory is
cheap. The result means that it is cost effective to have each

Sender nodes

Figure 2 : interconnect component overview.
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Messages
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receiver node dedicate a page or two of memory to each
sending node.

3.1 Atomic operations
The model for atomic single-word operations is that of
remote Fetch-and-Op: the operation is transmitted to the
remote node, acted upon there, and the (possibly null)
result returned once it is known.

Because the atomic operation is performed only once the
request has been transmitted to the receiving node, it is a
purely local request, and there is no need to hold a lock on
the memory location for the duration of an interconnect
round trip. Only once the result of the atomic operation has
been determined, and the memory lock released, is the
result returned to the originator.

Multiple outstanding Fetch-and-op requests may be in
flight from a single sending node. There are no restrictions
on where these are sent: they can all go to the same node, or
even to the same memory address. Each request is treated
as an individual atomic operation at the receiver. there is
one minor complication: the potential for packet reordering
in the interconnect means that the requests may not be
executed in the order that they were issued at the
originating node. If this is undesirable, additional software
protocols will be needed to enforce a restriction to at most
one outstanding Fetch-and-op per target (receiver, receiver
slot, or address). Note that a combining interconnect is
completely orthogonal to this arrangement.

3.2 Message send
The other main primitive is message-send.

All messages are sent to or from message areas—logically
contiguous memory areas allocated at both sender and
receiver. All the pages that are used in message areas are
pinned in memory, and not allowed to be paged out.
Although a message area is logically contiguous, it can span
many physical pages that may not be physically
contiguous. The length of a message area is not restricted to
be integral multiples of a page, and nor is the start of a
message area required to be on a page boundary. A message
area is named by a tuple of the form <node,slot> at both the
sender and receiver. There is no difference between
“outgoing” and “incoming” message areas, other than
through software convention.

Message areas are mapped to physical memory addresses
by the interconnect hardware using a mapping table,
described in more detail below. The local OS on each node
is responsible for allocating message areas, and making
sure that an originator is appropriately authorized to access
them.

A message resides (or is delivered to) a range of addresses
within a single message area. The address of the first byte of
the message in its enclosing message area is referred to as
its offset.

An originator sends messages from a source message area
to a destination message area on a different node. It does so
by identifying the source (its message area and offset), the
target (another message area and a possibly different
offset), and the message length. The key part of this is that
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the sending node specifies where messages are to be placed
at the receiver.

The outgoing data is written into the message area directly
by the application: it doesn’t need to be copied into an OS
or networking buffer, and the OS doesn’t need to be
involved in validating virtual-to-physical address
translations on each DMA message-send.

As data arrives at the receiver, it is placed into the chosen
message area. This area can be mapped directly into the
target process’s address space. No copying need ever be
done. (In the case of permanently-mapped areas on a non
cache-coherent IO system, either the application will have
to be cache smart, or the OS will need to purge the data
cache after a message arrives.)

The use of the message areas at both senders and recipients
means that applications can quote a form of “logical”
address that is understood by the interconnect interface:
they do not have to go through the local OS to have their
virtual addresses converted into physical addresses, as is
the case with other forms of IO. Furthermore, the message
areas represent portions of memory that the OS has pre-
approved for access directly by the application. No further
checks are necessary at runtime (e.g., on every send- or
receive-message call).

Multiple priorities (at least two) are provided, to allow
urgent traffic to be sent out before less urgent data. (For
example, so that high-priority control traffic can bypass a
large bulk data transfer.)

3.3 Remote get
The message-send primitive described above is always
sender-initiated. This means that doing a remote read (or
get) requires that a message be delivered to the remote
node, a context switch occur, and the required data be sent
back. By this time, the requestor has also probably
performed a context switch to a new activity, and so
continuing the original processing will require a further
one. Summary: two sends, two message deliveries and two
context switches in the critical path.

The following remote-get mechanism would avoid one of
these message deliveries and context switches (that at the
receiver) by allowing the interface to perform the data
retrieval directly. The mechanism works as follows:

• The sender transmits a special remote-get packet
describing the data to be retrieved:
– where it comes from (a message area, offset and

length).
– where to put it on the requesting node—again, in

terms of a message area, offset and length.
(The data-return protection key is the same as the one
used to send the request to prevent one application
masquerading as another.)

• The packet is sent to a slot at a remote node. When the
packet arrives there, it is recognized as a special
remote-get operation, and put it into a bin reserved for
this kind of packet.2

2. There needs to be one bin per priority level. There could be many
more—perhaps as many as one per slot in some implementations.
This would require additional logic to chain the packets together in
order of execution, however.

• When all higher-priority outgoing traffic is completed,
any remote-get operations at the next-lower priority
level are executed. The data portion of the packet is
interpreted as a send-work descriptor (to be described
further below). Once the remote get is complete, the bin
is marked as empty, and the next-highest-priority
message will be sent—remote get or otherwise.

Since there is only one bin per priority level, a second one
cannot be accepted until the processing of the previous one
has completed. This means that the interface may have to
refuse to accept any incoming packets until the current
remote-get operation finishes. There are potentials for
deadlocks here. Two steps are used to reduce the danger of
this problem, although it cannot be completely eliminated.

The first is that remote-gets are executed with (logically)
higher priority than sends initiated at the remote node. This
has the advantage of emptying the remote-get bins quickly,
but the associated potential disadvantage of denying
service to the sender.

Second, the size of the data that can be retrieved by a remote
get is restricted to bound the time that a bin can be locked
up. To control this, the receiving interface has a register that
contains the size of the largest allowed incoming remote-
get operation. Any request that exceeds this value will be
declared in error, and not processed. Since the primary
intention of a remote-get assist in the interface hardware is
reduced latency for small transfers, this should not be an
excessive burden.

3.4 Notification and completion
Once a message (one or more packets) arrives, it may be
necessary to indicate to the receiver that there is work to be
done. The traditional way to do this is to deliver an
interrupt on every incoming message (or packet!). This can
obviously be expensive, and it is desirable to avoid it if
possible. The goal is to minimize the number of interrupts
while minimizing the response time to an individual
request.

The approach taken here is to define a set of interesting
events called notifications, and then to provide a mechanism
by which only the minimum number of interrupts result
from a stream of notifications.

Here is the set of notification events supported:
• message-completed: all of the packets in a message have

arrived;
• set-of-messages-completed: a bundle of related messages

(e.g., responses to a multicast) have arrived;
• resource-exhaustion: some resource (e.g., space for more

notifications) has run out. (With a sender-initiated
memory management scheme, this does not happen
for data-space buffers.)

• protocol error: a Bad Thing has been detected.

Instead of causing a processor interrupt on each
completion, the interconnect interface maintains a list of
notifications—the notification queue in the processor’s main
memory. When a notification occurs, an entry is added to
the notification queue identifying the incoming message
and/or other cause. If the processor is still processing an
earlier notification, nothing more need be done. Otherwise,
if it has gone off to do something else, it is interrupted.
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As a result, the number of interrupts decreases with
increasing message traffic: under light load (when the
disruption is lightest), most incoming messages will cause
an interrupt. Under heavy load, when the need to suppress
interrupts is greatest, it is quite likely that the processor is
still processing a previous request, and does not need to be
interrupted: it will find the new notification as soon as it has
processed the earlier ones.

3.5 Mapping tables
Messages are sent from and delivered into message areas.
These are just simple linear address spaces that occupy one
or more physical pages in a node. The interfaces need to
convert addresses in message spaces into physical
addresses. They do this through per-node tables called
mapping tables (Figure 3).

A mapping table is an array of tuples indexed by a slot
number (a smallish integer). Each tuple describes one
message area, although multiple tuples can describe the
same message area, if needed. The tuple provides three
distinct functions:

• an indirection between message addresses and
physical ones;

• a protection mechanism to prevent malicious or
accidental contamination of one message area by
another;

• a (pointer to a) place where notification data can be
stored.

The fields required to represent these functions are
described here in turn. They are diagrammed in Figure 4.

3.5.1 Address mappings
Each slot describes a message area. The following fields are
used for this:

• byte length (32 bits);
• page-map pointer (32–64 bits): the physical address of

a vector of physical page addresses (the page-map); one
entry for each page that this message area spans;

• start offset (32 bits) of the first byte in the message area
from the start of the first page in the page-list.

The page-map entries are established at the time the
physical pages are allocated to the message area and pinned
into memory.

The page-map vector is outside the tuple so that it can grow
to an arbitrary length, and so that it can be shared by

Figure 3 : mapping table and message areas

Mapping
table

Message
 areas

Node main
memory

multiple slots. The start-offset field allows a message area to
be smaller than a page, and multiple message areas to share
a single physical page.

The indirection provided by the page-map simplifies the
management of the logical to physical address mapping. In
particular, the interconnect interface doesn’t have to be able
to read the processor’s TLB, nor does it need to have the
mapping loaded on demand (e.g., by generating an
interrupt for a miss). One or other of these would be needed
if packets contain addresses in the receiver’s virtual
address space. At the same time, the page map at the
receiver relieves the sender of knowing the virtual to
physical translations in use at the receiver—indeed, the
sender does not even have to knbow the receiver’s physical
page frame size.

If desired and available, the page-map can be set up to map
some or all of a message area onto non-volatile memory.
This may be useful for avoiding copies in nodes that
manage response-time sensitive traffic that must be made
non-volatile before a response can be given (e.g., responses
to a multicast prepare-to-commit request).

The page-map is used as follows. Suppose an incoming
packet has been validated and should now be written to the
receiver’s physical memory. Its logical start offset into the
message area is contained in the packet itself—suppose this
is address Sp. If the message space start offset is Sm, the
index in the page-map of the relevant physical page is given
by Np = (Sp+Sm)/page_size. The packet is written starting
at offset (Sp+Sm) mod page_size within the page pointed to
by this slot in the page-map. At each subsequent physical
page boundary crossing, the next physical page address is
retrieved from the page-map.

3.5.2 Protection
The goal of the protection mechanism is to provide a
simple, lightweight scheme to protect against rare,
accidentally-misdirected messages. As previously
described, it is not necessary or intended that it be capable
of withstanding a determined assault by a malicious
adversary.

Protection is provided by requiring that each incoming
packet have the same protection key as the slot. Keys are
moderately sparse (32 bits), since this represents a

Figure 4 : contents of a mapping table slot
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reasonable compromise between ability to detect accidents
cheaply and the cost of storing and transmitting the keys.

Packets are assigned their keys by the sending interface. To
prevent an untrusted originator process “faking” keys, the
key value can be set only by the trusted OS. Because of this,
they can be relatively small integers.

An alternative scheme would be to have capability-like
keys that could be wielded by application-level code.
This scheme has two main disadvantages: (1) the keys
would need to be much sparser to avoid malicious
attempts at application level to subvert security; (2)
distribution of the keys used for bootstrapping would
become very hard, since they would have to be
transmitted by some out-of-band mechanism.

The message area in each slot is marked read-only or read-
write for both incoming and outgoing traffic. This could be
done by designating one of the bits in the key field a “write-
enable” bit.

3.5.3 Notification
The main problem encountered with notification is not the
notification mechanism itself, but the difficulty of
determining when a message has arrived given that
packets—including those intended for a subsequent
message to the same message area—can arrive in any order.
Determining completions—all the packets for one message
have arrived—is the main challenge.

Consider first a restriction to have just one message at a
time being in flight to a given slot. The notification data in
each slot consists of a packets-to-go counter and a
messageID field. As each packet arrives it decrements the
counter; once the count reaches zero, a notification occurs.

The arrival of a new message is detected by the packets-to-
go count already being zero, and a new packet arriving
(which will always have a non-zero packets-in-message
count). It causes the packet counter (and the messageID) to
be reloaded: the packets-to-go counter is set to 1 less than
the number of packets in the new message (each packet
contains this value).

Note: all such counting schemes rely on the
interconnect not duplicating packets, and the sender
not retransmitting a message without the receiver first
having reset the packets-to-go count.

The messageID field is used to avoid errors during message
re-sends. If a packet from the first attempt has simply spent
a very long time in the interconnect and eventually comes
out of the woodwork just as the new message is arriving, it
must not be allowed to decrement the packets-to-go
counter. To make sure that this situation is detected, a
messageID is included in every message. This is compared
against the value stored in the receiver’s slot: only if they
match is the packets-to-go counter decremented. The
messageID slot is reloaded at the start of a new message.3

Now, let us generalize this to allow multiple messages to be
in flight to the same slot. This is done by keeping a vector of
message descriptors: one for each outstanding message that
is allowed to be in flight at a time. This allows delivery of a
notification only after multiple messages have arrived at a

3. Another term for this is incarnation number—a value that is changed
each time a new message is started.

slot, which will be of use in certain classes of multicast-
reply protocols.

The per-slot data structure consists of a (pointer to a) vector
of message descriptors, indexed by the low-order bits of the
messageID transmitted in every packet. When a packet
arrives, its messageID is extracted and the appropriate
message descriptor determined. This descriptor contains
the full messageID (to detect long-lost packets that
suddenly appear) and the packets-to-go counter for this
message. Once the message descriptor has been identified,
the two fields are treated just as described above.

In addition, there is a messages-to-go counter in the slot.
The receiver uses this to declare how many messages must
arrive before it is given a notification. The default value
(zero) means “notify on every incoming message.” If it is
non-zero (only non-negative values are allowed), a
completion merely decrements the counter. Only when it
reaches zero is the notification delivered. A typical use for
this counter would be to have notification delayed until all
the (fixed-size) responses to a multicast had returned.

3.5.4 Multiplexed receive areas
One of the disadvantages of the “plain” notification scheme
described here is that it is not enormously efficient for
multiple senders trying to communicate variable-sized
results back to the same place. The example I will use here
is the multiple responses to a multicast. Some will be simple
acknowledgments; others will be arbitrary amounts of
data. This section discusses several potential solutions to
this issue.

1. A purely sender-based scheme could achieve the right
effect by using a different slot for each response. The
disadvantage would be the number of notifications
generated: one per message, rather than one to indicate
that all the responses were in. (This is because we do
not have cross-slot counting mechanisms.)

2. If the senders trust one another, the equivalent effect
can be achieved by a form of receiver-controlled
memory management. In the initial request (or by
some convention previously agreed), the node sending
out the multicast assigns areas fixed-size chunks of
memory inside a single multicast-receive slot. Each
multicast recipient is given a different chunk; when
they reply, they put the fixed-length portion of their
reply here. If they have a longer variable-length
portion, they first send that to a separate slot, and
include a pointer to it in their fixed-length response.
This corks much better: the messages-per-slot counter
can be used to delay a notification until all the fixed-
length responses are in.
Note: with our current out-of-order message delivery,
there is the (slightly irksome!) possibility that the
variable-length portion has not yet arrived, even
though the fixed-length portion is in.

3.6 Protocol errors
There are various things that can go wrong—and be
detected as having gone wrong—with this interface. Such
protocol errors (e.g., sending a message to a message area
that is too small to receive it all) will generate an error
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notification on the interface that detects them, and the
operation will be aborted.

For example, when a packet arrives at the interface at its
receiving node, a set of validity checks are performed.
Violation of any check will cause an error notification to be
delivered to the receiving node.

1. The slot number in the packet is compared against the
length of the mapping table.

2. The keys in the packet and the slot are compared to see
if they match.

3. The start and length of the packet is compared against
the size of the message area.

If the error is detected at the receiver, the receiver OS will
then be given a chance to determine whether the sending
node should be shut down or otherwise reprimanded. This
is much easier to implement than telling the sender that it
has committed an error. It may also help to slow down the
sender (which is presumably awaiting some form of
response) and so give the rest of the system more time to
disable and reboot the faulty node.

3.7 Lost packets
What happens in either of these schemes when a packet is
lost in the network for some reason? The problem is that the
packet-count will be stuck at some non-zero value
(probably 1), and never get decremented to zero: the
missing packets simply don’t arrive. Letting the system
hang in this state is obviously undesirable.

One approach would be to have the receiver expect
“heartbeat” messages if there is nothing else to send, and
clean up the mess after a timeout if one of these doesn’t
arrive. Advantages: none. Disadvantages: receiver-
initiated; the time-outs are likely to be quite long.

An alternative approach is to preserve the sender-manager
nature of the protocol, and do one of the following:

1. Have the sender timeout and send a separate message
to a different place in the receiver’s slot saying “clean
up the mess, please”. Advantage: sender-initiated.
Requires no extra hardware support. Disadvantage:
there may be no extra space, and this scheme is also
vulnerable to repeat failures, which could cascade and
use up all the space.

2. Have the sender timeout and send a special one-packet
message, flagged so that it would generate an error
notification. (It would reuse the same messageID as the
original message, be sent to overwrite the start of the
original message, and bypass the packets-to-go
counter.). Advantage: sender-initiated; disadvantage:
timeout is expected length of service invocation.

3. As in the previous case, but have the hardware
generate an ACK packet back to the sender on receipt
of a complete message. Failure to get an ACK would
then be grounds for proceeding as above. Advantage:
faster time-outs (expected message delivery time, not
service time), may be necessary for in-sequence
message delivery; disadvantage: requires extra
message in normal case.

I suggest that the second of these approaches is the best.

4  Paying the piper
The protocols that will be used on top of the Hamlyn
interface are the subject of a separate document. A very
brief outline of some of the issues that need to be addressed
is provided here.

The sender-managed memory management will streamline
a great many protocol issues—in particular, it will eliminate
the need for a data copy. (This is particularly important for
a storage server, where the data will typically not be looked
at, but merely passed along to its ultimate consumer.)

The largest issue in protocol design is that of memory
management of the message areas. The sender needs
feedback from the receiver to know if the memory it has
sent to can be reused. The obvious approach to use here is
some kind of sliding-window protocol. Note that the “this
is free ACK” can (and should) be piggybacked on top of the
normal response to a synchronous RPC—i.e. the cost
should be near zero, since such responses are needed for
other purposes as well. (If desired, the same ACK can be
used to indicate that a saved copy of the message being sent
can be discarded, although the failure assumptions used
here are probably such that recovery is needed so rarely
that it can more cost-effectively be provided at a higher
level.)

For short-message protocols like RPC, the expectation is
that an approach like that of Bershad’s LRPC [Bershad90]
will have constructed the argument vector for the common
(intra-node) case in a way that makes it trivial to convert it
into a short message. This is most easily done by building
the argument vector directly in a message area, leaving
enough slack at its head for the inter-node RPC header to be
added.

A technique known as active messages [vonEicken92] has
pioneered the technique of embedding the addresses of
software protocol handlers in the messages themselves: a
couple of simple base/limit checks, and the callee can be off
and executing code related to exactly the kind of message in
hand in no time!

By mapping the message areas for such responses directly
into non-volatile RAM, we can bypass an additional copy
step needed to achieve fault tolerance support.

4.1 Bulk data transfer
The model of sender-managed memory management
espoused above requires that there be physical memory
pinned down at the receiver for each valid sender. This is
reasonable for the memory needed for small requests
(because it will only be a few pages), but is not sensible for
large data transfers, where space would have to be pre-
allocated for the largest possible transfer from each sender.

Instead, “large” transfers like this are managed by pre-
negotiating space immediately before sending. (The
meaning of “large” is defined by the receiver since it is the
one that has to make the memory allocation decisions.) A
large send might consist of the following steps:

1. sender: request space to send into;
2. receiver: allocates space; fills out a new slot in mapping

table; returns slot number and key;
3. sender: performs transfer;
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4. receiver: processes data and then discards mapping slot
and buffer once it is done.

The first step can be omitted if the receiver is initiating the
transfer: it can supply the mapping table information at the
same time that it requests the data.

The last step can be removed if the sender and receiver
expect to be performing some more complex buffer
management protocol than a one-shot send. Indeed,
arbitrarily complicated buffer management protocols can
be devised. For example, the sender and receiver may be
operating in a streaming producer/consumer mode, in
which case they may choose to use the allocated space as a
circular buffer, and not discard it until the entire connection
is finished with.

4.2 Software multiplexing
Where performance is critical (as assumed for much of this
discussion), application-level protocols with direct access
to the interface and message areas will give the best results.
Where resource conservation is more important than raw
speed, traditional protected multiplexing mechanisms can
be used to provide multiple virtual channels across a single
OS-provided node-to-node connection. This looks a lot like
regular message passing, with the difference that the sender
still has some control over how the memory allocation is
done at the receiver: in particular, there is no need to do a
copy at the receiver if all the recipients of a multiplexed
channel trust one another.

4.3 Bootstrapping
At start-up time each node allocates a single page of
memory to each other node in the system, and initializes
the first N slots in the mapping table to point to these pages.
This way, each node is ready to receive messages from
every other node, and further communication across these
channels can establish more specialized connections.

The keys chosen for the bootstrap slots will be a function of
the sending node address the slot is being set up for, rather
than just the node number itself. (The function will be well-
known, but require sufficient effort to compute to limit the
likelihood of a bad node accidentally trampling on data it
should have no access to.) The first action of a new node
should be to negotiate a change to these keys to ones that
are derived in a less predictable way.

Dynamic addition of nodes to a running system can be
handled in the same way as the regular bootstrap: a node
cannot tell the difference between a node that isn’t
communicating with it and one that has been unplugged
(or never added). To use the bootstrap protocol described
above, each node simply reserves a single-page message
area and slot for all the nodes that might potentially exist in
the system.

If the maximum number of nodes is large, but the number
active is small, this can represent a waste of memory. To
eliminate this problem, a few nodes can be designated as
“boot servers”, who are willing to tie down the memory
required to communicate with any new node. The other
nodes reserve slots only for the nodes known to be active
(as determined by the boot servers). If a new node is
plugged in, it searches the system for a boot server willing

to listen to it, and announces its presence. The boot servers
vet the new arrival, and communicate its existence to the
other nodes, which then proceed to allocate a slot for OS-to-
OS communication.

5  Termini
This section provides detailed descriptions of the data
structures and control registers needed to drive the
interface at both senders and receivers.

All Hamlyn communication is done through termini—end-
points for communication. There is one receiving terminus,
and one or more sending termini per node (Figure 5).

Termini are established by trusted OS software, which
loads the privileged registers (those referring to physical
addresses and the protection key). Other values are set by
application-level software. All the termini share a single
mapping table.

Each sending terminus has an associated priority. Our first
prototype will have just two priorities: one for high-priority
traffic (e.g., control messages), the other for low-priority
messages (e.g., bulk data transfer). The priority scheme is
simple: a higher-priority message will take precedence over
a lower-priority one at the next packet boundary—i.e., it
will preempt the lower-priority message send.

5.1 Establishing termini
The number of termini can vary dynamically up to a
maximum set by the hardware. This number is
intentionally not architected: this allows large systems, or
ones where low-latency interconnects are particularly
important, to use interfaces with more termini, while
simpler ones can get away with only a few termini per
node. (Once the hardware-provided termini have been
handed out, software multiplexing—with its higher costs—
will have to be used to provide further service.)

To establish a terminus in a PA-RISC system, the following
need to be done:

• reset the hardware to clear its internal state (in case the
terminus is being reused);

Interface
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Figure 5 : multiple termini

Notification
queue

Termini
DMA
input
queue

Interconnect

Direct
(FIFO)
 input

Receiving
 terminus

Mapping
table



11

• set the soft physical addresses of the terminus’s
hardware registers (by writing a register in the
interface’s hard physical address space [James86]);

• load the protection key and the DMA input queue
address and length (trusted OS code is required to do
this, to avoid potential protection and/or security
breaches);

• map the terminus into the originating application’s
address space, and make it readable and writable by
the application’s protection domain and privilege
level.

5.2 The sender’s interface
There is a single kind of sending terminus, but it can be
used in two different ways: (1) to transfer messages from
the processor’s memory, (2) to perform very low-latency
operations by accepting data directly from the processor’s
registers. The former interface style is called DMA, the
latter direct.

The sender interface needs to support very low-overhead
access for time-critical operations (especially Fetch-and-
Op). It is also important that application programs can not
be able to subvert the memory protection model of the
sender OS. (Although they cannot damage memory by
writing over it because of our send-only model, they could
potentially transfer sensitive data to the outside if they
were allowed to quote physical addresses to the hardware
interface.) The use of message areas and the sender’s
mapping table provide this protection. This means that
there can be a single sort of DMA terminus for use by both
application-level code and the trusted OS and system
components.

There are two kinds of hardware resource that need to be
considered: the number of sending termini that the
hardware can support (this is a function of the number of
control register sets it is willing to handle), and the number
of DMA engines that the interface contains. The latter can
be smaller than the former if the hardware does software-
transparent multiplexing behind the scenes. (In fact, this
will be common: the standard configuration would
probably multiplex a single DMA engine amongst multiple
termini.)

5.2.1 DMA interface
With the DMA style of interface, the terminus is given a list
of work items in main memory. Each work item represents
a message send, so they are called, perhaps rather too
predictably, send-work-descriptors. The contents of a work
item are shown in Table 2.

Control of the terminus in its DMA mode is achieved by the
set of registers described in Table 3.4

The list of work items is formatted as a circular vector in
contiguous physical addresses (e.g., in a single page). The
terminus operates by starting at the first work-item,
processing it, and then proceeding on to the next one. When
it reaches a work-descriptor with nodeID=0, it ceases work
and awaits a prod from the processor before continuing. If

4. It may prove valuable to re-examine these in the light of the P1212
and P1212.1 IEEE standards in the area of interfaces and DMA
control protocols.

the terminus ever reaches the end of the vector, it simply
wraps around again to the first address in it.

The combination of the current position register and the
active bit lets a processor to perform a race-free insertion of
new work into the vector using the following protocol:

1. write the send-work-description, leaving the special
marker set to “no work”;

2. atomically write the special marker to indicate “work
to do”;

3. if the active bit is not set, and the current-position
register shows that the interface stopped before
executing the new work item, start it (write go into the
control register).

The costs of sending a message are very low. In particular,
there is no need for a protection domain switch into the OS
for the message address and length to be checked and
converted to a list of physical pages for the IO system—this
has already been precomputed and stored in the mapping
table.

5.2.2 Direct interface
The direct interface provides additional control registers in
the interconnect interface. These registers are mapped into
the address space of the application, and accessed directly
by it with load/store operations. To send a message using
the direct interface, the message destination and contents
are written directly into the terminus, and then the send
command is given. This mechanism is also the one used for
Fetch and Op.

The direct-interface registers are listed in Table 3.

Doing a send operation involves the following steps:
1. wait until the sending terminus is idle;
2. write the receiver’s node, slot, start address, and

notification data into the control registers;
3. write the packet to send into the FIFO—this can either

be a sequence of single-word stores into a single

Table 2 : contents of a send-work-descriptor

field size
(bits) function

receiver

nodeID 32 identifies receiver node

message
area 32 number of a slot in the

receiver’s mapping table

offset 32
address of this message in

the receiver message
space

sender

message
area 32 number of a slot in the

sender’s mapping table

offset 32
address of this message in

the sender message
space

control function 4+ send  or remote-get

message

length 32 the number of bytes to send

ID 32 used for notification

sw_tag 32 for software protocol’s use
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address, or a cache-line-flush to emit several bytes at
once;

4. write send into the control register.

In all cases, if the values have not changed since the last
operation, they need not be rewritten into the control
registers.

A remote Fetch and Op is quite similar to a send, except that
the operands are provided in place of a message body, and
the result of the operation will usually need to be retrieved
once it has completed:

1. wait until the terminus is idle;
2. write the receiver node, slot, address, and notification

data into the control registers;
3. write the operands to the remote operation into the

FIFO (this can either be a sequence of single-word
stores into a single address, or a cache-line-write to a
range of addresses);

4. write Op into the control register;
5. wait for the status register to read result available, and

then retrieve the result from the remote operation.

A terminus can be active in both direct and DMA mode
simultaneously. Direct-mode transfers are treated as if they
were inserted at the head of the DMA queue.

The number of bytes sent in the message is the number that
have been written into the FIFO. The size of the FIFO
restricts the sizes of messages that can be sent by a direct
terminus. As usual, a trade-off between cost and
performance has to be made. The obvious size to pick is one
large enough to contain the most common control
messages: 256 bytes would certainly be adequate; 128
probably enough; 64 conceivably sufficient.

Table 3 : DMA control registers

register size
(bits) function

DMA
vector

start 64 Physical address of start of
vector (writable only by OS).

length 32 Byte-length of the DMA vector
(writable only by the OS).

current
position 64

Physical address of the last
send-work descriptor that
the interface looked at.
(This will be an empty work
item if the active bit is clear.)

Read-only by the application.

status

active 1 A Fetch-and-Op is in flight, or
a send is still in progress.

priority 1+ Priority level for this terminus
(writable only by the OS).

error data ?? Various forms of exception or
error.

control

function 4+ Writing either send  or Op
here initiates the operation.

protection
key 32

Transmitted in every packet
sent out by this terminus
(writable only by the OS).

Letting an application supply its own protection key would
permit it to masquerade as another, and this security
violation is obviously not acceptable. This is why the key
field is loadable only by the OS.

On the other hand, the name of the receiver message area
can be set directly by an application. This maximizes the
number of communication paths that can be supported
from each terminus (they are relatively scarce resources).
One cost of this is that the OS will have to perform system-
wide management of protection keys if it is to prevent an
application masquerading as another.

The terminus priority could perhaps be supplied by the
application, but this would be at the cost of permitting
some additional denial-of-service attacks, and for receivers
to always maintain notification queues for all possible
expressible priorities. It can be set only by the OS for this
reason.

5.2.3 Synchronous operation
The basic mode of interaction with the terminus is
asynchronous: the initiator fires off a request and (if
needed) performs a rendezvous with a result some time
later. For sends, the rendezvous may not need to be explicit.

For Fetch-and-Op, the model is more nearly synchronous:
an operation is begun, and (pretty soon afterwards) the
result will be needed before further work can proceed. The
interface is asynchronous to allow for those cases where
useful processing can occur in parallel with the remote

Table 4 : registers in a direct terminus

register size
(bits) function

receiver

nodeID 32 Identifies the receiver node.

message
area 32 Slot number in the receiver’s

mapping table.

offset 32
Where to put this message in

the receiver’s message
space.

message

msg_ID 32 for notification

sw_tag 32 for software protocol’s use

FIFO for
message
data

word
or

cache
 line

FIFO into which data is put
before being sent.

Also used for the operands of
the Fetch-and-Op.

status

active 1 A Fetch-and-Op is in flight, or
a send is still in progress.

result-
available 1 A Fetch-and-Op has

completed with a result.

error data ?? Various forms of exception or
error.

control

function 4+ Writing either “send” or “Op”
here initiates the operation.

result 64 Return value from the last
Fetch-and-Op to complete.

protection
key

32–
64?

Writable only by the OS;
transmitted in every packet
sent out by this terminus.
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operation’s invocation. However, the performance of Fetch-
and-Op is such that its result will commonly arrive back in
less time than a full context switch. When time comes for
the rendezvous, this suggests that the initiator should spin
and wait for the result, rather than do a context switch,
thereby also incurring (usually bad) cache replacement
effects.

Some results may take a long time to return if they
experience congestion or a fault, such as sending to a node
that has recently failed. Strategies that only spin and wait
will pay dearly under such circumstances. A better
approach is to employ so-called competitive prediction
strategies for deciding how long to spin. The simplest
scheme is to spin for a time that is as long as a context
switch would take, and then yield the processor. Better is to
take account of recent time-to-complete data: a discussion
of various alternatives can be found in [Karlin91].

If multiple threads share a terminus, it is their responsibility
to arrange for suitable mutual exclusion: the terminus
provides no mechanism to achieve this.

5.2.4 Remote get
Remote get is a kind of synchronous operation: the sending
terminus is blocked until the get returns. (This rule is here
primarily to limit the rate at which such requests can be
sent.) The send work descriptor is assembled as the body of
the message, and the message is sent with an operation type
of remote-get. When the message arrives at the receiver, it
is put into a remote-get bin at the appropriate priority level
(note: the requester’s priority is used); the function field is
forced to the value send , and the operation processed when
there are no more higher-priority requests.

5.3 The receiver interface
The receiver interface is concerned almost solely with
support of the notification system and its notification
queue. This queue is managed in a very similar fashion to
the one used to send DMA requests. This time it is the
processor that needs to indicate to the interface (by writing
a control register) how far it has progressed in handling the
notification queue, and whether it has finished processing
the current set of notifications.

When a notification occurs, the interface writes the data
describing it into the next free slot in the notification queue,
and interrupts the processor—if and only if the latter has
indicated that it is finished processing the queue. It is
important that the interface write out any cached data it
may have regarding the slot on which the notification is
declared before writing the notification into the queue.

The following items are written into a notification record:
• slot number (32 bits): which slot generated the

notification
• messageID (32 bits): from the last packet
• message offset (32 bits): where this message starts in

the message area
• message-length (32 bits): in bytes

As the processor deals with a notification, it clears the
values to indicate to the interface that the entry is available
for reuse. If the interface discovers that the place it is about
to write a new notification is not cleared, it generates an

interrupt to indicate that the notification queue has filled
up. Unfortunately, it will also have to discard the data about
which notification has just happened, which is really bad
news. A possible solution here is to leave the offending
notification data in control registers, and have the interface
not accept any more incoming packets until the problem
has been dealt with.

Each priority level has a separate notification queue.

5.4 The mapping table
Each interface has three control registers for the mapping
table (the map is always allocated in contiguous physical
space):

• map_start (64 bits): physical start address of map table
• map_length (32 bits) length of the table (in slots)
• cache_invalidate (32 bits): writing a slot number here

discards any cached data about that slot

The receiver interface may cache data from the map in
order to maximize its performance. (Whether or not a
particular interface chooses to use a cache is an
implementation choice. It must still support the cache
management protocol described here.) This use of a per-slot
cache provides greater flexibility than, say, a scheme where
the map table has to fit into RAM on the interface.

To control the cache, a cache_invalidate register (16 bits) is
provided on the interface. Writing a slot number here
causes any cached state about the slot to be discarded (cf.
purge). Writing a new value into either the map_start or
map_length register invalidates the entire cache. The state
of the cache is undefined at power-on (interface
initialization) time.

5.5 Processor cache coherence
The standard DMA hardware cache coherence behavior
will occur as messages arrive. For example, in current PA-
RISC, nothing at all is done by the hardware: cache
coherence is expected to be managed by the software. In
this case, the sending processor will have to flush the caches
of messages to be sent through a DMA channel, and the
receiving processor purge the caches of data when
messages arrive.

In other architectures, cache-coherence may be guaranteed
by the IO interface, in which case this issue is not a problem.

6  Related work
The interface that most closely resembles that proposed
here is that of the VAXcluster CI [Kronenberg86]. This uses
an intelligent interface card to perform a variety of reliable
and unreliable message-sends. Like Hamlyn, the sender
can indicate where in the remote system’s memory data is
to be put. In the CI interface, the message area page-maps
are pointers to VAX page table entries. The CI has a more
complicated protocol between a local host and the interface,
which includes send acknowledgments, and multiple
priority queues sharing buffers, but there is no provision
for direct application-level access to it. There is no
protection mechanism, so the OS needs to intervene to set
up all transfers. Finally, the CI is designed to work on a



14

network with a more restricted set of delivery properties
(for example, there is no in-network routing). In fact, the
only part of the interconnect that is not contained on the CI
cards is the cabling and a passive star coupler. A similar
approach to reducing interrupts is taken, but is based on the
concept of send and receive requests being expressed in
control packets that are moved between various lists as they
make state transitions.

A scheme has been proposed for making IPC operations
happen as a side-effect of memory-address references
[Rosing92]. The control descriptors required to describe
what needs to be done are stored on a per-address basis in
an adjunct processor. Even if you like the model of
programming through side-effects, there is no indication
that the cost would be any lower than having the main
processor perform the same work. The proposal does not
address security, although it could be argued that the
address-space protection mechanism could be used to
protect particular side-effect addresses from unwanted
application access.

A proposed design that was partially implemented for the
VMP multiprocessor is described in a PhD thesis from
Stanford [Kanakia91]. According to measurements made
on a workstation and file server at Stanford, data copying,
checksumming and encryption account for roughly 50% of
the communication costs. To improve this, the thesis
proposes off-loading protocol processing to an intelligent
protocol engine that handles encryption, checksums, and
header management. The disadvantages are that the
controller is specific to a single protocol type (the design
was couched in terms of VMTP), and its performance does
not scale with that of the main cpu.

7  Conclusions
This paper used an analysis of the kinds of interconnect
traffic in multicomputers to drive the design of a new
sender-based interconnect model. The analysis suggests
that there are three main kinds of operation required of a
multicomputer interconnect: concurrency control, short
messages for control traffic, and bulk data transfer.
Hardware-supported multicast may be of benefit, provided
that reliable knowledge about the success of delivery is
available.

The bulk of the paper concerned itself with the description
of a new interface to a multicomputer interconnect. The key
concepts espoused are:

• an indirection table at the sender to map application
addresses into physical addresses without intervention
from the OS on each message-send;

• an indirection table at the receiver to map incoming
data offsets into physical addresses to avoid the need to
copy data;

• having the sender manage the memory allocation of
the space into which it is placing data at the recipient;

• remote Fetch-and-Op as the system-wide
synchronization mechanism;

• separation of notifications from completions, and
support for multiple-message completion events

• the use of a DMA-controller-like interface between the
interconnect and the host;

• hardware that maps multiple termini into user address
spaces to support low-latency IPC operations direct
from the application;

• a key-based protection scheme to check validity of
messages at the receiver, and a mechanism by which
every outgoing message is tagged with a (protected)
key by the terminus;

• pre-negotiation of space for large transfers to avoid
tying down memory for long periods of time.

7.1 Future work
This paper describes one manifestation of a Hamlyn
interface. Many other implementations are possible: for
example, a low-cost implementation could choose to move
much of the processing on the sender side into OS software.
Doubtless various different tradeoffs along these lines will
be identified as this idea is explored further.

The next step is to develop a suite of IPC protocols and use
them to improve and refine the interface. I hypothesize that
the Hamlyn interface model will make it possible to achieve
much higher performance, and such protocols will be
significantly easier to write than for a regular LAN-like
interface. Furthermore, I believe that it will be possible to
develop highly efficient, streamlined application-to-
application level protocols in addition to more traditional
protocol suites such as the ISO/OSI and IP families.

There is also work to be done in modelling the performance
of this scheme—both by comparison with more traditional
approaches (as well as the van Jacobson Witless approach),
and to enable finer-grain evaluation of some of the design
choices and alternatives described here.

Finally, a prototype of the interface and an associated
interconnect (based loosely on the Mayfly Post Office
[Davis89]) will be used to put this design into practice. A
preliminary step may be to use a rack of HP9000/700i cards
for s prototype: these cards plug into a VME backplane, and
can perform remote memory operations on each others
RAM. This should make it easy to imitate (and experiment
with variations on) the Hamlyn interface design.

7.2 Summary
The mechanisms proposed here allow both Fetch-and-Op
and regular message traffic to be handled efficiently at both
the sender and the receiver. They enforce protection
through the use of a mapping table, which also provides an
indirection between an address space available to the
sender and that used by the receiver. The result allows local
management of the virtual-to-physical address translation,
and permits the interconnect hardware to operate without
access to the processor’s on-chip TLB.

Notification schemes allow for multiple message arrivals to
be coalesced into the minimum number of interrupts.
Extensions to the basic scheme also provide for low-
overhead multicast receipt and remote memory retrieval
operations.

I believe that the sender-managed interconnect approach is
simple, elegant, and effective. By reducing software
overheads, it will enable faster, more capable
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multicomputers, and ones whose performance will more
closely track growth in future processor speed than do
current interconnect interfaces.
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