ﬂ HEWLETT
'8 pPACKARD

Ivy: a study on replicating data for
performance improvement

Sai-Lai Lo

Hewlett-Packard Laboratories
Concurrent Computing Department

HPL-CSP-90-48
14 December 1990

Keeping multiple copies of a file may improve read performance by increasing the
bandwidth through parallel access; by balancing the load across storage nodes and by
choosing the one which gives the fastest response. However, keeping all the copies up-
to-date could incur a significant overhead, One possible approach to achieve good read
performance and avoid slow updates is fo change the number of copies according to the
usage pattern. The aim of the Tvy project was fo assess the potential of this dynamic
replication scheme in achieving better read performance. A series of trace-driven
simulations were performed. The results of this study indicate that read performance
improvement of over twenty percent can be acheived with dynamic replicafions.

Ivy: A study on replicating data for performance
improvement

Sai-Lai Lo
December 14, 1990

Abstract

Keeping multiple copies of a file may improve read performance by increasing the
bandwidth through parallel access; by balancing the load across storage nodes and by
choosing the one which gives the fastest response. However, keeping all the copies up-
to-date could incur a significant overhead. One possible approach to achieve good read
performance and avoid slow updates is to change the number of copies according to
the usage pattern. The aim of the Jvy project was to assess the potential of this dy-
namic replication scheme in achieving better read performance. A series of trace-driven
simulations were performed. The results of this study indicate that read performance
improvement of over twenty percent can be acheived with dynamic replications.

1 Introduction

In a file system, keeping multiple copies of a file may improve read performance. The transfer
time may be shortened due to the ability to transfer data in parallel from a number of copies
simultaneously. The load on various storage nodes could be evened out because there is more than
one choice where a request can go to. This in turn shortens the queueing time of requests and hence
reduces the turnaround time. Moreover, under certain conditions, such as when there are more than
one copy on a single disk or when it is possible to query all storage nodes which hold at least one
copy of the file, the time spent on disk head movement, defined as the seek time, can be reduced by
choosing the closest copy.

The study of keeping multiple copies of files, known as file replication, in a distributed system
has been an active area of research in the past decade. Various algorithms have been developed
and have been applied in some early distributed file system designs[SovB84]. More recently, with
increasing concern on the availability of data, several projects, such as Coda[SKK89] of CMU and
Echo[MHS89] of DEC SRC, are investigating the design of replicated file servers. Their emphases
are on improving the availability of data and minimizing the overhead usually associated with most
replication algorithms. Although many designs have provisions to reduce the overhead in reading
from a replicated file, little has been done to study how replication can speed up access to frequently-
read files.

Moreover, we do not know of any study on linking the degree of replication with the actual usage
pattern. In many distributed file systems, the degree of replication is defined on a per volume basis.
Each volume is typically a subtree of the complete file system and each contains a large number of
files. For example, both Andrew[MSC*86] and Athena[Tre88] have replicated read-only volumes.
Multiple copies of files are kept on different file servers and copies are normally read-only in that
they can only be updated by system administrators. More recent designs, such as Coda and Fcho,
have replicated read-write volumes. Although the two designs differ in various aspects, such as
consistency guarantee under failure conditions, they are similar in that all files within a replicated

volume are replicated to the same level. LOCUS[WPEY83)], designed in early 80’s, allows users
to choose which files within a volume should be replicated but the degree of replication, i.e. how
.many copies should be kept, is again defined on a per volume basis. Saguaro[Pur87) provides greater
flexibility in defining the degree of replication of files. However the flexibility has been achieved by
requiring the users or agents of users to specify explicitly how many copies are to be kept and where
to store them.

Although keeping more copies of files might in principle improve read performance, the increase in
overhead on updates could offset this benefit. In many replication algorithms, such as weighted voting
algorithm[Gif79], transactions are needed to propagate updates in order to guarantee consistency.
Some algorithms which do not, need transaction support require a master site to coordinate updates
to objects. Besides, updating replicas would increase the load on the disks. Clearly, the need to
update all copies in synchrony imposes a restriction on the number of copies we would otherwise like
to keep. Therefore we might consider devising an algorithm that automatically grows the number of
replica for frequently-read objects, and is able to cut down on the number of copies before updates
are performed. We shall refer to this approach as dynamic replication throughout this report.

The highly parallel architecture of DataMesh[Wil89] enables us to explore the possibility of
using dynamic replication in a far more aggressive way to achieve better read performance. In
a DataMesh, each storage node consists of a disk bundled with a multi-mips CPU and several
megabytes of memory. There could be over a hundred of such nodes and they are interconnected by
a very high speed network. The interconnects between storage nodes, which are physically at most a
few feet away could be far simpler and faster than a local area network which typically is used today
to connect file servers. Since the communication protocol between storage nodes could be far simpler
than is needed in a local area network, a remote memory access which allows a node to access the
memory of another node could be two orders of magnitude faster than a typical remote procedure
call. Therefore it is possible to design the storage system with very close interactions among storage
nodes. For inatance, before a read request is dispatched, it is possible to choose the node which
will give the fastest response by querying all nodes that contain copies of the object. Such gueries
are impractical in conventional file server designs. Also, copies of files could be made or discarded
quickly when the need arise. Given these unique characteristics of a DataMesh architecture, it is
therefore appropriate to investigate the use of dynamic replication in improving read performance
of storage systerns.

This project is a study to find out what potential, if any, a dynamic replication scheme has in
achieving better storage systems read performance.

This project is not a design of the algorithm needed to perform such task.

We want to know

1. In deciding the degree of replication,

¢ what observable parameters are important and

o what heuristics should be used.

2. And most importantly, to quantify the performance improvement through various means we
suggested at the beginning of this section.

In the next section, our project approach is discussed and is followed by two sections detailing
various aspects of our study. The results obtained are analyzed and presented in section 5 and 6.
Qur report then ends with our conclusion.

2 Approach

2.1 Trace-driven simulation

We performed a series of trace-driven simulations to study the effect of various dynamic replication
strategies, Trace-driven simulation involves the gathering of data from working systems and the

transformation of these raw data into suitable form for use as input to the simulator. This could be
quite involved but was nevertheless needed because it is very difficult to synthesize credible workload
to suit our purpose. Since we want to experiment with changing the dégree of rephcatlon according .
‘to the files usage pattern, a realistic pattern is essential to our study.

2.2 Workload characteristics

We took traces from two HPS000 series 800 machines. Ons of them is a departmental time-sharing
gystem usually with about eight users log-on. It is used for document preparation, news reading,
electronic mail, and departmental information storage. It also serves as a backup server for the
workstations in the department. The other system was mainly used by one user for program devel-
opment. The systems were usually lightly loaded. We expect dynamic replication to have greater
effect in performance on more heavily loaded machines as there are more opportunities where keeping
miultiple copies would help, such as in balancing the load over a number of disks.

There is always a question on whether the workloads we studied are representative. We took the
view that these are real workloads and many file usage characteristics such as the ratio of reads to
writes, lifetime, size etc. are very much related to what the system is used for and varies little across
different systems used for the same purpose. However, we expect systems used for other purposes
such as CAD/CAM or database etc. to have different file usage characteristics. Hence our results
should be treated as a first step in understanding the problem and should be repeated with traces
collected on other systems used for other purposes.

2.3 Multiple copies on multiple spindles

We only considered keeping multiple copies of whole files on different disks. Nevertheless, with
rotating disk storage technology, we might gain performance if multiple copies are kept at different
locations on a disk because the chance is higher to find a copy close to the current disk head position.
We choose not to study this for two reasons. Firstly, the file and disk layout, which determine where
blocks of a file are stored, would play a very important role in determining the effectiveness of
multiple copies and deserves a separate investigation. Secondly, multiple copies on a single disk
could only have the effect of reducing seek time and doesn’t have any effect on load balancing and
reduction in transfer time. With the constraint of the duration of the project, thia possibility was
left for future investigation.

2.4 System call level vs physical IO level trace

Our simulator accepted input at the system call level rather than the physical IO level. Hence, in
addition to the disk IO path, the characteristics of the HP-UX file system, which is almost the same
as the BSD4.2 file system, have to be simulated as well. Simulation at this level is needed because
much of the files usage information would be lost if traces are collected at the physical level.

On the otherhand, simulation at the physical TO level is far simplier as these characteristics have
already been filtered out. However at this level, much of the file system usage information has been
lost. It 18 very difficult to distinguish disk traffic due to virtual memory paging, file system meta
and real data IO. It is not possible to relate which file a disk block belongs to. And hence it is not
possible to tell when a file is deleted and when it is read or modified.

2.5 Simulating HP-UX file system

Simulation at the system call level with attention to details down to physical disk IO level is quite
involved. Two points are noted here. First, not every read or write system call would result in a
physical disk I0. Second, a physical disk IQ related to a system call may occur before, in case of
read ahead, or after, in case of delay write, the dispatch of the call. Qur interest is on the effect of
keeping multiple copies on different spindles. Hence our experiment should be a controlled one in

which every aspect which could affect the overall performance should be as close to the real system
as possible while only the number of copies and locations of copies are permitted to change. To
“‘achieve this, we either measure-the-effects of various system aspects from the working system or

simulate it in our simulator. The following is a list of factors that our experiment took into account. - .

Buffer cache A large percentage of file read system calls are satisfied by the buffer cache. Similarly,
a number of file write system calls are buffered in the cache and either the data is written to
disk asynchronously (the system call returns before the write has completed) or the write to_
disk is deferred until the buffer is reused or the data has stayed in the buffer longer than a
predefined time, We monitored and recorded the buffer cache read hits and had to simulate
the asynchronous and delayed writes.

File layout Since we are interested in the reduction in seek distance with dynamic replications,

- rather than assuming a simple random function for seek distance, the actual locations of disk

blocks corresponding to each reads and writes were monitored and recorded. And in our

subsequent simulations, we assumed that all copies are stored at the same location on all

disks. With this assumption, all replicas are laid out on disks in exactly the same way and

there i8 no bias in favor of any copy which could happen if there is a difference in file layout
among the replicas.

Read-ahead HP-UX file system implements a read-ahead policy to detect sequential file access
and speed up the turnaround time. When a read hits a disk block boundary, a disk IO is
scheduled to read in the next block but the IO is not associated to the process. This policy
was implemented in our sirulator.

3 Trace gathering

3.1 Raw trace data collection

Our traces were collected on HP3000 series 800 machines running HP-UX version 7.0. The HP-UX
built-in measurement system provides a set of useful kernel instrumentation points as well as tools
and drivers for collecting these information in user programs. Adding new instrumentation points
to the kernel is easy. There is a set of kernel measurement routines which packs and timestamps
data and put them into a kernel buffer. The flexibility in adding new instrumentation points proved
to be very useful. As will be seen later, our project demanded new data from the kernel which are
not available from the instrumentation points that come with release 7.0.

Interface to the measurement system is via a utility program which periodically scans the kernel
buffer and copies the data to its standard output channel. Individual instrumentation points can
be turn on and off at anytime via a utility program, without the need to recompile or reboot the
kernel. Since the buffer space for storing measurement data in the kernel is limited, when the system
is busy, the buffer could wrap around before the utility program can catch up with the generation
rate. This would result in the loss of trace data. The problem was avoided by increasing the kernel
bufler to a large size (512Kbytes} and making the utility program read the buffer once every two
seconds. In addition, we allocated a separate disk to store our trace data temporarily so as not to
interfere with normal disk traffic.

The following built-in instrumentation points were used:

¢ bread_read
o breada.read
¢ breada_reada
* bwrite

bdwrite

* exec

¢ exec_after.args
s exec_fname

¢ exit

» fork

+ syscallexit

» syscallstart

A detail description of these instrumentation points can be found in [Cha90]. These were not
sufficient for our purpose in two ways. Firstly, there was no way to assign a unique identifier to a
file. Secondly, the information about file deletion was missing. Therefore we added two additional
instrumentation point and they are described below:

create_open2 The format of the record is described in table 1. When 2 file is opened or created,
a record of this type is emitted only if the file in question is an ordirary file in a local file
system. In other words, no record would be emitted for NFS file systems, pipes, character
devices etc. The distinction is necessary to filter out non-file-system related I0. However to
make the instrumentation point useful for other purposes, we should probably emit records
of this type for all open/create calls and add a type field to the record to identify what types
the files are. A unique identifier{(UID) can be formed by combining fsid, inid, and geid. The
uniqueness is guaranteed by the monotorically increasing generation number (geid) which is
incremented when an inode is freed and reused.

unlink The format of the record is described in table 1. A record of this type is emitted for every
unlink system call to delete an ordinary file in a local file system. However the actual file
might atill exist after the call because the link count has not reach zero, as the Unix semantics
demand. This can happen, for instance, if the file is opened by some processes and the file
is deleted only when the file is closed subsequently. Unfortunately the structure of the kernel
code makes it very difficult to report the status of the file with respect to the link count. As
a consequence of this, our simulator has to treat the unlink information as advisory only and
have to be ready to correct any inconsistency if later information reveals so.

3.2 Trace data filtering

One major problem in capturing the dynamic behavior of systems is that the amount of data involved
is so large that it is impractical to store them all. For instance, on a normal working day, a trace
gathered on a time-sharing system with about eight users logged on and collected over a period of
12 hours occupied around 200 MBytes of space. These included records of all system calls and buffer
cache activities. Since we were to coliect data continuously for several weeks, some work had to be
done to extract useful information from the raw trace before they were stored on stable media.

To associate a logical segment of a file to a list of disk block addresses and to record whether the
data needed for a read are in the buffer cache, we needed information from both the system call and
the buffer cache. With a read system call, a syscallstart record is followed by a sequence of bread
records and ends with a syscallexit record. We can associate the read/write system call with the
block cache reads/writes during the processing of the call because each block cache record is tagged
with a pid and at anytime, only one system call is in progress for each process. One complication
is that every buffer cache access would result in a record being emitted and these accesses may not
be for data blocks but are for reading and writing index blocks and cylinder group block free-list
ete. To find out which block records were data block references, the kernel source was studied to
understand the sequence of block cache accesses during the processing of a read/write file system

Trace point | Field | Size Description
(bytes)

create.open2
pid 4 process id
fsid 4 file system identifier
noid 4 inode number
geid 4 generation number
size 4 file size

unlink
pid 4 process id
fsid 4 file system identifier
noid 4 inode number
geid 4 generation number
size 4 file size
mtime | 8 last modified time
atime |8 last access time
ctime |8 last changed time

Table 1: Data format of new trace points

call. Since this filtering process depends on intimate knowledge of how the coding is done, it is very
HP-UX implementation dependent.

Having found out the data blocks associated with a read request, cache hit can be easily identified
as each block cache record has a hit field which tells whether the block requested is actually in the
bulffer cache.

In Unix, every opened files are referenced by a file number, for example, 0 is the standard input,
1 is the standard output and 2 is the standard error. In every read or write system call, the file
is referenced using the file number. This number, together with the pid would allow the kernel to
locate the inode associated with the file after going through several index tables. Since these tables
are hidden inside the kernel, we have to recreate some of these states in order to translate the pid
and file number pair to the UID of the file. This was done by keeping track of all the files opened
and associated each file number of every process with the UID of the corresponding file. However
attentions had to be given to system calls like fork with which the child process would inherit all
files opened by the parent and other calls like dup which duplicates a file handle. Similarly the
current position of the file index which is stored inside the kernel has to be recreated somehow and
attentions had been given to all system calls that could affect the file index position such as lseek,
truncate and open. Moreover, when both the parent and the child processes share the same file
handle, the change in the file index position has to be reflected in both processes. For example a
shell might fork a child to execute parts of the shell script that the parent would continue from the
point left behind by the child.

In our first filtering program implementation, every read and write were emitted as discrete
records. This created enormous data files, about 400Mbytes in 24 hours. On closer examination,
part of the reason was that many reads/writes were in tens of bytes chunks. For instance, a syserr
log daemon was invoked every ten minutes. This daemon used a library routine to scan the kernel
image symbol table and read the kernel image file 20 bytes at a time. Since a large percentage of
read calls were satisfied by data in the buffer cache, we changed to emit read records only if at least
one data block required by the read was not in cache. To preserve all the read information, we added
to the close record the number of system calls invoked since the file was opened, the total amount
in bytes read/written and whether all read calls were satisfied with data in the buffer cache. While
not emitting all read records did amount to loss of data but the information retained was enough

|

for our purpose. With this compaction, the data size was reduced by 10 times to 20-40Mbytes daily,
which was manageable.

We implemented a filter/converter program which accepted raw data via pipe from the measure- .
ment system’s utility program and emitted the filtered and compacted data via the standard output ~~
which could then be directed to other programs, such-as-compress, or stored directly to disk.” We
ran the filter/converter program in parallel with trace gathering and even with our program running
simultaneously, there was no perceivable performance degradation but this approach could be less
satisfactory on heavily loaded machines or ones that are low on real memory.

We only stored our trace data on a local disk of the measured system for at most a day. Every
midnight a cron process was dispatched which stopped the trace gathering program and started a
new one. The previous day’s trace was then shipped via the network to a 20G optical juke box for
long term storage. To restart our trace gathering process when it crashed accidentally or killed by
our cron process, a shell seript was written which would start a new one 30 seconds after the last one
crashed and a log file was kept to record all these events. With these provisions, the trace gathering
process was pretty automatic and needed little attention during the period of tracing.

The program captured the data reasonably well except that about 0.2% of the reads could not
be translated. Closer examination revealed that this was because when a sync daemon flushes dirty
buffers out, the buffer cache trace records are tagged with the pid of the current process, and if
this happens to be the process which is doing a read/write system call, these extraneous records
would mess up our routine to sort out the data block address and hence the whole record has to be
rejected.

3.3 Trace data format

The following is a description of the types and the formats of the records in the trace data emitted
by the filter/converter program. The type definition of the records are in C syntax. Moreover, the
following data type definitions are used to describe the data formats of the records,

typedef struct {
unsigned tv_sec;
unsigned tv_usec
} TIMEVAL;

typedef struct {
unsigned feid : 16;
unsigned geid : 16;
} FS_GE_ID

typedef atruct {
unsigned block:27; /+* block number */
unsignad size:4; /* size of block (in Kbytes) */
unsigned hit:1; /% 1=hit, O=miss */

} BLK_REC

3.3.1 tr_exec

typedef struct E {
TIMEVAL timeval;
char pathname(];
} tr_exec

The record contains the timestamp of the exec system call and the full pathname of the program
executed.

3.3.2 {r._create_open

typedef struct {
TIMEVAL timeval;
unsigned mnoid;
FS_GE_ID {s_geid;
nnsigned sizs;

} tr_czeate_open

Record every create/open system call on regular files only. the tuple [no:d, fs_geid] uniquely
identifies a file, The size of the file is returned in size and is zero if the file is newly created. :

3.3.3 trread

typedsf struct {
TIMEVAL timeval;
unsigned servicetime;
unsigned mnoid;
FS_GE_ID fs_geid;
unsigned start;
unsigned length;
BLK_REC blkrec[];

} tr_read

Record every read system call with at least one block cache miss. Timeval is the time the
system call started. Servicefime is the time taken, in micro seconds, to process the call. Slert gives
the logical offset in bytes from the beginning of the file. Length is the number of bytes requested.
Blkrec is an array of block records indicating where this chunk resides. No record is emitted for
reads which are satisfied totally by the data in the block cache. Additional information is recorded
in tr_close.

3.3.4 tr_write

typedet struct {
TIMEVAL timeval;
unsigned servicetime;
unsigned noid;
FS_GE_ID fs_geid;
unsigned start;
unsigned length;
BLK_REC blkrec[];

} tr_write

Record every write system call. See the description of tr_read.

3.3.5 tr_close

typedef struct {
TIMEVAL timeval;
unsigned noid;
FS_GE_ID f£=s_geid;
int total;
int rdwrcount;
} tr_close

Emitted when a file is closed. Timeval gives the timestamp. Total gives the number of bytes
read/written since the file is opened/created. Rdwrcount gives the number of read/write syscall calls
executed since the file is opened/created. If the sign of folal is negative, all the system calls are read. .
- Otherwise one or-more of the system calls are writes. If the sign of rdwrcount is negative, all the: .
read system calls are satisfied with data in the buffer cache. Qtherwise there are some calls which
have cache miss.

3.3.86 tr_unlink

typedef struct {
TIMEVAL timeval;
unsgigned neoid;
FS_GE_ID fs_geid;
unsigned size;
TIMEVAL mtime;
TIMEVAL atime;
TIMEVAL ctime;

} tr_unlink

Emitted when a file is unlinked. Size gives the size of the file when it i3 unlinked. Mtime,atime
and ctime give the last modified time, last access time and last changed time of the file respectively.
It should be noted that a file could be unlinked and not deleted either because the file is still opened
or because the link count is not zero.

4 Simulator

Our simulator modeled the queuing and servicing of requests at the disk interface. Each disk is a
service center which can handle only one request at a time. While a request is being processed, newly
arrived requests will be queued. We are interested in the queuing time, service time, turnaround
time and seek distance distributions when subject to input from our traces and under different
configurations.

The simulator can be divided into five functional blocks. These are: Disk, Copy selection,
Dynamic replication conirol, Buffer cache and Eventl arrival adjustmeni. In the following, the as-
sumptions behind the design of our simulator are presented, this is followed by a description of the
functional blocks of the simulator and the section is ended with some notes on the implementation.

4.1 Assumptions

Before moving on, we would like to list the assumptions and simplifications we made in our simulator:

1. We did not model other system resources, such as memory, process cycle, I/O channel etc.,
and hence not the contention for these resources. Part of their effects were reflected in our
trace and since in a DataMesh environment, the processor power and I/O channel bandwidth
are plentiful and the processing time and delays caused by these resources will be insignificant
when compared to the time elapsed in getting data in and out of the disk.

2. In a DataMesh architecture, there are spigot nodes which receive requests from the network.
For each request, the spigot node first locates the master node that contains the copy and
then forwards the request to the node. The master node in turn have to locate all the copies
available and collects information from each node containing the copy before the request is
dispatched to the most appropriate node. In addition, during the updates of replicated data,
there would be a number of message exchanges between replicas. Our view is that these
exchanges between nodes must be performed in a time period significantly less than the disk

service time and hence were ignored in our study for simplicity and to obtain an upper bound
on the performance benefits attainable.

3. Although we recognized that the disk.traffic needed to create a new replica is significant.in .
" our model, we did not simulate this sort of traffic to simplify our problem because of a lack of
.+ time. Instead we assumed that the creation of replica was done in the background and a new
replica would appear magically sometime after the decision to create a new copy was made.
We foresee that in a real implementation such traffic would be put on a queue separated from
real requests and will be given lower priority. Also the spare IO capacity should be sufficient
to handle such traffic.

4.2 Disk

The disk functional module simulated the characteristics of a disk. There are several aspects of a
disk which demanded attentions:

4,2,1 seek time

This is the time to move the disk arm to the desired track. The following two formulae express
the seek time as a function of the distance in number of cylinders the disk arm has to move. The
formula for a HP7937 disk drive is:

0 d=0
seektime = { 4.119+ 0.890v/d —0.004d 0 < d < 384
12.909 4+ 0.18d d > 384

The formula for 2 HP7935 disk drive is:

0 d=10
seektime = { 3.993 + 1.676vd —0.025d ,0 < d < 342
19.502+ 0.21d d > 342

Each formula was obtained by curve-fitting a plot of the IO time (seek time + rotational latency
+ transfer time) vs seek distance (number of cylinders) for 80,000 eight Kbytes transfers. With
these formulae, we were able to accurately estimate the seek time, given the disk block address we
gathered in the traces,

4.2.2 rotational latency

This is the time for the requested data to rotate under the head. The average latency to the desired
information is halfway around the disk. For a disk rotating at 3600 RPM, the average rotational
latency is 8.3ms. We assumed a random distribution for rotational latency.- This, however, did-not
reflect the actual situation as HP-UX file system could be fine tuned to interleave disk blocks to match
the processing speed of the rest of the system. During sequential access to files spanning multiple
disk blocks, the rotational latency could be quite small since the processing of the next request
overlaps with the time for the desired information to appear under the disk head. Hence during
sequential access to large files, our simulator would tend to overestimate the rotational latency.

4.2.3 1iransfer time

This is the time to transfer a block of bits under the disk head. It is a function of the block size,
rotation speed, recording density of a track, and speed of the electronics connecting disk to computer.
The transfer rates for the disks we used are 1Mbytes per second.

10

4.2.4 controller overhead

This is the time imposed by the disk controlling hardware in performing an I/O access. The overhead
is 3.5ms for HP7935 and 1ms for HP7937.

4.2.5 disk scheduling algorithm

When there are more than one request waiting to be served, the order in which these requests are
processed is determined by the disk scheduling algorithm. In.HP-UX, the CSCAN.(cycle scan) _
algorithm is used. However because of the lack of time to refine our implementation, we used simple
FIFO scheduling instead.

4.3 Copy Selection

For a file with multiple copies stored on multiple disks, this functional module decides which disk
a read request should be dispatched to. It selects the disk that will provide the shortest overall
turnaround time. In our simulator, we computed what the service time (seek time + rotational
latency + transfer time + controller overhead) would be for each request before it is put on one of
the disk queues. Since we are using FIFO scheduling, the queuing time for a new request is simply
the sum of the service times of all requests already on the queue. The sum of the queuing time and
the would-be seek time for each copy is calculated and the copy with the lowest value iz chosen.

It should be noted that if CSCAN disk scheduling is used instead of the simple FIFO scheduling,
the arrival of & new request could cause a reordering of the queue and we would have to recalculate
the service time for all the requests on the queue.

4.4 Dynamic replication control

With dynamic replication, there are several parameters which could affect the overall file system
performance. Two of these are:

Degree of replication Number of copies of files kept in the system.
Placement of copies Where the copies are kept.

We shall refer to the algorithm selecting the values of these two parameters as a replication policy.
Our study is to find out what is the best heuristic in maximizing read performance improvement
due to replication and minimize the overhead of updates to these copies. This functional module
implements the replication policy and can be easily modified to experiment with different algorithms.

4.4.1 Degree of replication

"The decision of how many copies of a file are kept is bagsed on'the past usage pattern. Therefore the

reference history of files are kept in the simulator. The information kept include the following:

File size

Creation time

Last read time

Last write time

Number of times a file is opened for write

Number of times a file is opened for read

N om e W e

Number of times a file is opened for read and have to fetch data from disk

11

Our replication policy defines the number of copies as a function of these information. Exactly
how these information are used would vary between different replication strategies. For instance,
one strategy might specify that more copies would be made if a file exists for longer-than 5 minutes

" and'is-read more thanm b times. Another one might specify that files with size larger than 10 Mbytes . .'V'

will not be replicated at all.
The decision to'change the degree of replication is triggered by some events which change the
status of a file. The events include the following:

File create

File open for write
File open for read
File truncation

File reads

N

File writes

Depending on the replication policy, a file truncation event or a file open-for-write event might
trigger a drastic cutback in the number of copies kept in the system. On the otherhand, a file
open-for-read event might trigger a decision to increase the number of copies of the file.

In addition, the replication policy has to decide in what steps the number of copies of a file be
changed. It could be a gradual increase and decrease, within certain upper and lower bounds, or a
step change to a fixed number.

Once the new number of copies of a file is decided, there is a choice as to when the newer copies
are to spring into existence. It could be immediately or it could be deferred.

4.4.2 Placement of copies

Another part of the replication policy is the placement of copies. When there are more storage nodes
than the number of copies, a choice has to be made as to where the copies are distributed among
the nodes. The placement of copies is important because a poor distribution would skew the load
on a few storage nodes and hence negate the benefits of load-balancing among storage nodes holding
copies of files.

Also, when the number of copies of a file is reduced, a choice has to be made to choose which
copies are to be removed. If only one copy is to be kept, the retained copy could be the one where
the file is first created or could be chosen randomly among the copies for better load balancing.

4.5 Buffer cache

As was discussed in the previous section, there are certain aspects of the Unix buffer cache which
could not be measured and recorded in our trace. These aspects, however, are important to perform
realistic trace-driven simulation. Hence, the purpose of this functional module is to simulate these
asynchronous behaviors of the file system involving the buffer cache.

4.5.1 Delay and asynchronous write

The HP-UX file system writes data to buffer cache in three ways:

Synchronous write Schedule a write to disk and block waiting for the IO to complete. This is
mainly used by the file system to write updates to inodes and directories as well as other file
system meta data. This can optionally be specified by the users but is rarely used.

12

Delay write Put the data into the buffer and set the appropriate flags in the buffer header to
ensure that the data is written out before the buffer is reused. The call then returns. A
synchronization daemon which runs every 30 seconds flushes all modified buffers which have
gtayed in the cache long enough. .

Asynchronous write When the end.of a cached block (normally 8 Kbytes in size) is written, the
system assumes that the block will not be accessed in the future and a disk IO is schedille -
immediately to write the data to disk. The call then returns without. waiting for the IO to
complete.

We assumed that all writes are either delay writes or asynchronous writes. In our simulator,
all delay writes are queued and are combined if two or more writes are directed to the same block.
Either these writes are dispatched as asynchronous writes when the end of the blocks are written
or when they have been on the queue for more than 30 seconds. In addition, delay writes are not
dispatched if the files which originated these writes are deleted.

4.5.2 Tead ahead

The HP-UX file system executes an algorithm which try to anticipate the need for a second disk
block when a process reads a file sequentially. The second IO is scheduled asynchronously in the
hope that the data will be in memory when needed, hence improving performance.

To detect sequential read, the HP-UX kernel saves the next logical block number and during
the next iteration, compares the current logical block number to the value previously saved. If they
are equal, the physical block number for read ahead is calculated and an asynchronous read for the
second block is scheduled if the first and the second blocks are not in cache.

The simulator fully implemented this behavior. Each file can at anytime have two reads in
progress.

4.6 Event arrival adjustment

In most event-driven simulations, request arrivals are assumed to be independent events. This
assumption is not totally valid in trace-driven simulations of file systems. When a file is accessed, it
is usually done via a sequence of reads or writes system calls. Since, at any time, there can only be
one outstanding system call for each Unix process, it follows that the sequence of reads or writes are
temporally ordered. Therefore, while the requests generated by different processes can be considered
as independent events, the requests from the same process are not. We could imagine that there is a
think {ime between two requests originated from the same process. This think time is a characteristic
of the user and should be independent of how our simulated systems behave,

This functional module adjust the request arrival time to keep the user think time constant.
Ideally this should be adjusted on per process basis but since we did not have process information in
our trace, we did this on per file basis. This should work most of the time since concurrent reads to
a file are very rare. Even if this does happen, it is likely that many of the reads to the same region
of the file would have found data ir the buffer cache already.

4.7 Implementation

The simulator was based on a DataMesh simulator written by Stephen Brobst (another student).
The idea was to augment the functionality of the DataMesh simulator to accept traces obtained
from working systems. However, due to a lack of time, this goal was only partly accomplished and
a trim-downed version of the simulator was adapted for our use.

13

5 Traces characteristics

This ‘section describes the systems and the trace data used to drive the simulations of dynamic
replication policies. ‘To provide better understanding of the characteristics of the systems studied,
for every file appearing in the trace, we extracted the following information:

creation time

last read time

last write time

deletion time

size

number of times a file was opened read-only

number of times a file was opened read-only and required reading from disk to fetch data.

number of times a file was opened read/write or write-only

To facilitate the understanding of our data, in some of the graphs below, we further separate
our data into four categories:

1.

Files which were created before the trace and still existed at the end of the trace. Since our
trace period lasted for several weeks, it is safe to consider that files belonging to this category
were long term files.

Files which were created and deleted during the trace. Thie category includes files with
lifetime ranges from several seconds to several weeks. This category contains both short term
and medium term files.

3. Files which were created before the trace and were deleted during the trace.

5.1

Files which were created during the trace and still existed at the end of the trace.

Characteristics of the studied systemns

Traces were collected from two computer systems. The characteristics of these systems are described

below.

5.1.1 Machine “Cello”

This is a departmental time-sharing system and usually has about eight users logged on.

It is & HP9000/B45 with 64 Mbytes of main memory, of which 10% is used as the file buffer
cache.

The system is running HP-UX version 7.0.

There are nine partitions on six disks. Two of the partitions, one each on disk 0 and disk 1
respectively, are used as the swap space. The remaining seven partitions are mounted to the
file system.

In total, there are approximately 2.5 Ghytes of disk storage on-line.
The system normally runs standalone with no remote file systems mounted.

From midnight till early morning everyday, the system receives news feed and the group’s
workstations’ backups through the network. Incremental backup to tape is done every night
and a full backup is done every month. During normal working hours, the system is mainly
used for document preparation, news reading, electronic mail ete.

14

Table 2 lists the disks and partitions mounted. The root directory resides on disk 0. Disk
1 contains program source files. Disk 2 contains the temporary working directory and a file
space for storing data files, such as system traces, too large to be stored in normal users’ file

- space. The users’ files are stored on disk 4. The news feed from the network are stored on

disk 5. Also the system acis as a backup server for a number of workstations in the group -
and the backup data are stored on disk 6. Usually, the disks were kept at.60% to 90% full.

The trace started at 00:00, Saturday, 1 September 1990 and ended at 00:00, Saturday, 29
September 1990,

The size of the trace is approximately 700 Mbytes.

Device | Disk Disk Size | File system
no. | address | type (Kbytes) | mount point
13 | 0.13 HP7935 344148
267 | 1.11 HP7935 319630 | /usr/local/src

519 1 2.7 HP7935 75348 | /tmp

523 | 2.11 HP7935 319630 | /mount/logs
1026 | 4.2 HP7937 558051 | /users

1282 | 5.2 HP7935 394979 | /backup

1538 | 6.2 HP7935 394979 | /usr/spool/news

Table 2: Disk configuration of “Cello”

5.1.2 Machine “Triangle”

5.2

This system was used throughout the tracing period by a single user doing program develop-
ment.

It is a HP9000/835 with 24 Mbytes of main memory, of which 10% is used as the file buffer
cache,

The system is running HP-UX version 7.0.

There is a HPT937 (approx. 500Mbytes) attached to the system which contains the swap
gpace and the root file system.

The system normally runs as a stand-alone system with no remote file systems mounted.

The trace started at 00:00, Friday, 7 September 1990 and ended at 00.00, Sunday 30 September
1990.

The size of the trace is approximately 70 Mbytes.

File size distribution

Figure 1 to figure 8 show the file size distributions of the file systems studied. Each figure is a plot
of the cumulative frequency against file size, that is, the y-axis shows the proportion of files with
size smaller than or equal to the value shown on the x-axis. Log scale is used for the x-axis because
of the large range of file sizes. The overall file size distribution on Cello is not plotted because the
large number of news files would dominate the distribution.

Some interesting features of the graphs to note are:

15

® As expected, news files on Cello /usr/spool/news are comparatively smaller than the files
on the other file systems. 80% of the files are smaller than 2Kbytes and less than 1% are
larger than 20Kbytes.

-+ " Cello /users, Cello fusr/local/sre and Cello /mount/logs have similar file distributions. - . --

70% of'the files are smaller than 8 Kbytes. - The similarity is expected because they are all used
to store program sources, documents etc.” However, there are some large files on /mount/logs,
as this disk is used as'a scratch pad area and short term storage, and some large data files .
such as system traces are stored there.

¢ Cello / is similar to the three file systems described above except that there is a jump in the
graph between 700 and 900Kbytes. These files are probably news packets received from the
network.

¢ Not all the features in these graphs are easily explainable, for example, we do not understand
the jump in the graph of Cello /tmp at around 120-130Kbytes, or the apparent logarithmic
distribution of file size on Cello /backup but we do expect the distribution of this file system
to be different from the others because this is used to store backup files.

5.3 File system composition

Table 3 lists the number of files that appeared in the trace for each file system on Cello. Figure 9
shows these files divided into the four categories described at the beginning of this section. Figure 5.3
shows Triangle / divided into the four categories.

It should be noted that the figures do not represent the composition of the file systems at any
moment in time. These are the accumulation of all files created and deleted over the trace period as
well as files which already existed before the trace. Nevertheless, these diagrams do reflect the ways
these file systems were used. fusr/local/src mainly consists of long term files which are program
source. /tmp consists almost entirely of short and medium term files. /backup contains backups
of the groups’ workstations’ and these backup files only stayed on the disk for several weeks. Hence
the number of files which existed on /backup before the trace and were deleted during the trace is
almost equal to the number of files which were created during the trace and still existed at the end
of the trace. This indicates that the utilization of /backup stayed constant over a long period. A
similar pattern is observed on fusers which was kept below a certain level of utilization by users’
self-discipline and by the system administrator’s active intervention. On Cello /, in addition to a
collection of binaries, libraries and other system files which were mostly read-only and long term
files, there were a significant number of short and medium term files. It was found out that the file
systemn was used to store temporarily news packets received from the network and thus a lot of short
to medium term files appeared in our trace.

File system Count
/ 19598
[usr/local/src 16818
/tmp 9897
/mount/logs 1553
/users 38032
/backup 761
Jusr/spool/news | 406232
Total 492891

Table 3: Number of files on Cello that appeared in the trace

16

E 0.7

04
0.3

1 10 100 1000 10000 100000
File size (in Kbytes)

Figure 1: Cello / file size distribution

o [§ oGP
1 10 100 1000 10000 100000
File size (in Kbytes)

Figure 2: Cello fusers file size distribution

0.9

08
E‘ 07
.E- 0.6
o 05

>

g D4
03
0.2
0.1

1 10 100 1000 10000 100000
File size (in Kbytrea)

Figure 3: Cello /tmp file size distribution

17

o i ifEH ik i
1 10 100 1000
File size (in Kbytes)

10000 100000

Figure 4: Cello /usr/spool/news file size distribution

1 10 100 1000 10000 100000
File size (in Khytes)

Figure 5: Cello /backup file size distribution

. H w H
1 10 100 1000 10000 100000
File size (in Fbyus)

Figure 6: Cello /usr/local/src file size distribution

18

09
0.3
0.7
0.5
05
0.4
03 p
02
0.1 p- :

1 10 100 1000 10000 100000
File size (in Kbytes)

Cumulative frequency

Figure 7: Cello /mount/logs file size distribution

1 10 100 1000 10000 100000
File size (in Kbytes)

Figure 8: Triangle / file size distribution

19

(%)

100
850 ...
80 |----4 .
70 N
60 - L
50 |-- _— -
40 |.--. - .
30 3 -
20 -
10 .
0
w - " —
g g g g P F
—_— E 3 E §
§ = 2 E 6
£ § £
‘g m—
Key:

Created belors the Irace Crested before the trace Created during the trace Created during the trace
&stillexistattheend & deleted during the &etillexistat theend & deleted during the
of the trace. frace. of the trace. trace.

Figure 9: File system composition of Cello (in terms of number of files)

T T
0 50 100 (%)

Key: Total count = 4680

Created before the trace Created before the trace Crealed during the trace Created during the trace
& still existed at theend & deleted during the & giill exisied attheend & deleted during the
of the trace. trace. of the trace race.

Figure 10: File system composition of Triangle (in terms of number of files)

20

5.4 File system activities

Figure 5.4 shows the file open counts on the seven file systems of Cello. Figure 5.4 shows the file
open counts on Triangle /.

‘In each diagram, there are three'stacked bars. The first bar (Writable open count) represents the
number of times files were opened either write only or read and write. The second bar (Read-only
open count)represents the number of times files were opened read-only. The third bar (Read-only
open couni{with cache miss))is a subset of the second: when a file is opened read-only, JO may or
may not be needed to fetch the data from the disk hecause it is possible that all the data required
are already in the buffer cache. We are interested in how many times a file was opened read-only
and has st least one disk IO when the data required was not in the buffer cache. This number is
represented by the third bar. Each bar is subdivided into four regions and each region represents
file opens for files in one of the categories defined at the beginning of this section. The bars in each
graph are drawn in proportion for comparison and the actual value of each bar is shown on top of
it.

It should be noted that Writable open count includes both file open write-only and file open
read/write. This explains why in some cases, such as Cello /, Writable open count is higher than
Read-only open count{with cache miss).

As shown in the diagram, /usr/local/src is a read-mostly file system with a very small number
of opens for write or read/write. On /backup, only long term files are opened read-only and only
short or medium term files are open writable.

On Cello /, the long term files account for the majority of file opens read-only. However, in
terms of Read-only open couni{with cache miss), i.e. those file opens with reads hitting the disk,
the long term files on Cello / only account for a minor portion of the total open counts. In fact,
the medium and short term files on Cello / actually dominate the disk traffic! However, it should
be borne in mind that binaries on Cello / are fetched from disk with demand-paging and do not
go through the normal file system interface. Hence this kind of reads from long term files is not
accounted for in our study.

5.5 Files lifetime distribution

Figure 13 to figure 20 show the file lifetime distributions of the file systems studied. The file lifetime
is defined as the time between the file was created to the time it was deleted with an unlink system
call. Each figure is a cumulative frequency plot of the lifetime. In these graphs, we only include files
that were created and were then deleted during the trace period. The number of files in each file
gystem which belong to this category is shown in table 4.

File system Count
7 10207
/usr/local/src 778
/tmp 9858
/mount/logs 103
[users 0299
/backup 332
Jusr/spool/news | 267849
Total 298426

Table 4: Number of files on Cello that were created and then deleted during the trace

Some features of note are:

21

File system { Flle system fusers Flle sysiem /tmp

18 79158
1]
05
04

201346

03 - —_

N ;

Wrilable h‘.‘l‘ﬂ Reawd-only

t
crat opx (o eache
cmul i)
Flle sysiem fusr/spocinews

10 500599

vk const
(n.;‘.i aathe
miiar)

Files created before the trace &
still existed at the end of the race.

Files created before the trace &
deleted during the trace.

Files created during the trace
& still existed at the end of the
race.

Files created during the trace
& deleted during the trace.

Figure 11: File system activities on Cello

22

File system / of "Triangle”
1w 59885

0k

Figure 12: File system activities on Triangle

o In many of the graphs, quite a significant proportion of files have a life time of less than 1
second. This could be an artefact of the way the trace filter handles unlink records. Since in
Unix, it is possible to create a file and then unlink (delete) it immediately but, as long as the
file remains opened, a process can still read and write to it. Many Unix programs use this
technique to create temporary files — these files would seem to have a very short lifetime but
in fact they are not removed until they are closed.

For Cello fusr/spool/news, the curve is nearly flat between 5 seconds and about 2 weeks
(around 1.2 million seconds). There are two distinct usage of the file system: those files with
short lifetime were likely to be working files of the news system whereas those files which
existed for two weeks were the news items. The news system purged news items after two
weeks,

On Cello /fusr/local/src, almost all the files that were created and then deleted during the
trace had the same lifetime. This is probably because some large program packages (778 files)
were installed and then probably found to be unsuitable and hence were deleted.

23

0.9
038
& o7
0.6
g 05 [
gm f
0.3 [
0.2 it
0.1

1 10 100 1000 10000 100000 1e+06
Lifetime (in seconds)

Figure 13: Cello / file lifetime distribution

1 10 100 1000 10000 100000 letOS
Lifetimo (in seconds)

Figure 14: Cello /users file lifetime distribution

] i i
1 10 100 1000 10000 100000 1e+06
Lifetime (in seconds)

Figure 15: Cello /tmp file lifetime distribution

24

[1M 11 il
1 10 100 1000 10000 100000 1o+06
Lifetime {in seconds)

Figure 16: Cello /usr/spool/news file lifetime distribution

1 10 100 1000 10000 100000 1le+06
Lifetime (in soconds)

Figure 17: Cello /backup file lifetime distribution

F ol

E H

1 10 100 1000 10000 100000 lctDb
Lifetirne (in seconds)

Figure 18: Cello /usr/local/src file lifetime distribution

25

| H = e
0 eI i §iiE i |
1 10 100 1000 10000 100000 1o+l

Figure 19: Cello /mount/logs file lifetime distribution

0.9 b
0.8 [
0.7 [
0.6
0.5 |
04
03/ |
02
0.1

Cumulative frequency

|

1 10 100 1000 10000 100000 1e+D6
Lifetime (in seconds)

Figure 20: Triangle / file lifetime distribution

26

6 Simulation results

6.1 Introduction

In this section, the simulation results are presented. We chose three file systems to study and they
WEre:

1. File system / of machine Triangle
2. File system / of machine Gello

3. File system fusers of machine Cello

These file systems were chosen because these partitions contain a mixture of files with different
lifetime, modification characteristics and different sizes.

Although we tried to simulate the real systems as closely as possible, we simplified our exper-
iments by ignoring disk traffic due to access to superblocks, inodes and directories and by using
simplier disk scheduling algorithm. Consequently we could not compare our simulation results with
the real performance of the systems directly. Instead we ran a simulation for each file system with
no replication and the results were used as the yardstick for comparison.

The columns of the tables used to display the results (eg. table 5 are as follows:-

No. of copies This is the number of copies kept for each file when it is replicated.
Seeck distance This is the mean seek distance for processing each read and write request.
Disk queue length This is the average queue length for all disk IOs.

Disk read queue length This is the average queue length -as seen by an incoming read request
(i.e. not counting the new one).

Disk write queue length This is the average queue length as seen by an incoming write request
(i.e. not counting the new one).

Read turnaround time This is the interval between the moment a disk read request enters a disk
queue to the time the data is returned.

‘Write turnaround time This is the interval between the moment a disk write request enters a
disk queue to the time the disk write finishes.

Overall turnaround time This is the weighed average of both read and write turnaround times.

When there is more than one copy, the value of seek distance is the weighed average of the mean
seek distance of all disks. Similarly, the values of disk queue lengih, disk read gueue lengih and disk
write queune length are averaged over the corresponding values of each disk.

In all cases the results were checked with T-test. The changes in the mean values were found to
be statistically significant with a 95% confidence level.

6.2 Read one out of N copies and write to N copies (RNWN)

In this series of simulations, a file is always replicated. A read request is dispatched to the replica
with the shortest turnaround time. All updates are propagated to all copies (mirror disks). A write
request returns as soon as at least one copy has been successfully updated. In the meantime, updates
to other copies continue in the background, adding to the load on the disks.

Table 5 shows the results for Triangle /. The results for Cello / and Cello /users are shown
in table 6 and table 7 respectively. *

In all these cases, the mean read turnaround time drops as the number of copies increases. For
Triangle /, the mean read turnaround time reduces by 8% with two copies and by 10.6% with three

27

copies. With two copies, the value reduces by 32% for Cello / and by 26% for Cello /users. The
value then levels off as the number of copies increases.

- ~In all three cases, the mean write turnaround time also drops as the number of copies increases.. . -
“'With 3 cdpies, the value drops by 15% for Triangle /, 44% for Cello / and 22% for Cello fusers. .

The value also levels off as the number of copies increases beyond 3.

The drop in turnaround times can be explained by the corresponding reductions in the mean
seek distance and the disk read/write quexe length. It should be noted that the mean disk queue
length, which includes both reads and writes, increases with the number of copies. However, the disk
read queue length and the disk write queue length follow a decreasing trend. This apparent
discrepancy is due to the fact that the number of disk writes increases with the number of copies
because all copies have to be kept up-to-date. As the number of disk reads remain constant, the
ratio of writes to reads increases with the number of copies. Therefore the mean disk queune length
increases as the disk write queue length is longer than the disk read queue length.

Triangle / and Cello /users are similar in that the seek distance, the disk read queue length
and the disk write queue length decrease with the increase in the number of copies. The fact that
this policy works better for Cello /users than Triangle / is because the disk read queue length
in the non-replicated case is higher for Cello /users than Triangle /. As one of the effects of
replication is the automatic sharing of load among the disks, the improvement in read performance
is expected to be more significant with a longer disk queue and this is confirmed by our results.

The load balancing effect of replication is more evidence in case of Cello /. Unlike the previous
two cases, the seek distance -increases with the number of copies. However the disk read-queue length
drops from 0.45 to 0.09 and the disk write queue length drops from 3.96 to 2.85 when the number
of copies increases from 1 to 2. Clearly the effect of load balancing in reducing the waiting time in
a disk queue is more than offeet by the increase in seek time.

8.3 Read one out of N copies and cut back to 1 copy on write (RNW1)

In this series of simulations, we examined the effect of dynamically changing the number of copies.
A file, once created, is assumed to be replicated in the background and N copies would appear 60
seconds after its creation. However the number of copies is cut back to one, i.e. with only the master
copy remaining, before an update gets performed. When no more update is performed, new copies
are made in the background and N copies would appear 60 seconds after the file is last modified. We
did not simulate the background replication and assumed that the disks have ample spare bandwidth
to handle this background load. A read request is always dispatched to the replica with the shortest
turnaround time. A write request only goes to the master copy.

The results of the simulations for Triangle /, Cello / and Cello fusers are shown in table B,
table 9, table 10 respectively.

In all three cases, the mean read turnaround time drops as the number of copies increases. For
Triangle /, the mean read turnaround time reduces by 14% with two copies and by 18% with three
copies. For Cello /users the value reduces by 24% with two copies and by 25% with three copies.
As for Cello /, the value reduces by 10% for two and three copies. .

The mean write turnaround time also drops as the number of copies increases. With three copies,
the value drops by 4% for Triangle /, 10% for Cello / and 3% for Cello fusers.

It is useful to compare this set of results with that of RNWN. The difference between these two
sets of simulations is that with RNWN the number of copies stays the same whereas in the present
case it varies with the usage pattern. The present policy only makes new copies when the last time
a file is modified is longer than 60 seconds ago. This would eliminate the replication of short life
files and files which are modified fairly frequently. Also if files are used in such a way that it is first
modified and is then read back shortly afterwards, the number of copies would always be one when
it is read because the recent update has caused the system to cut copies. Hence the performance of
the system for this type of usage would be the same as if no replication is done.

The improvement in read turnaround time for Triangle / is clearly more significant in the
present case than RN'WN. This policy scores better in both seek distance and disk queue length.

28

No. of | Seek Disk Disk Disk | Read Write Overall -
copies | distance | quene | read write | turnaround turnaround turnaround
length | queue | queue | time (msec) time (msec) time (msec)
length | length | Mean | S.D. | Mean | S.D. Mean | S.D.
1 82.38 1.75 0.14 2.85 26.36 | 23.55 | 74.62 | 107.38 | 55.08 | 87.45
2 64.08 2.10 0.09 2.78 24.26 | 20.81 | 66.53 { 102.08 | 49.41 | 8§2.51
3 57.07 2.27 0.08 2.77 23.58 | 20.08 | 63.53 | 99.94 | 47.36 [80.57
5 52.55 2.44 0.06 2.76 23.25 | 1956 | 60.61 | 97.92 | 45.48 | 78.73
7 50.55 2.52 0.07 2.76 23.23 [19.74 | 59.14 | 97.33 | 44.61 | 78.15
Table 5: Triangle / Replication Policy: Read 1 out of N Write N
No. of | Seek Disk Disk Disk Read Write Overall
copies | distance | queue | read write | turnaround turnaround turnaround
length | queue | queue | time (msec) time (msec) time {msec)
length | length | Mean | $.D. | Mean [5.D. Mean | S.D.
1 16.91 0.74 0.45 3.96 28.22 | 20.61 | 150.76 | 102.36 | 38.38 | 53.07
2 24.67 0.52 0.09 2.85 23.92 | 20.69 | 102.05 | 101.02 | 30.40 | 41.28
3 25.71 0.59 0.08 2.47 23.31 | 18.36 | 84.71 | 102.85 | 28.32 | 38.40
5 27.75 0.71 0.06 2.17 22.68 | 16.84 | 73.88 | 104.19 | 26.93 | 36.88
7 33.85 0.99 0.07 2.02 2251 | 16.34 | 69.87 | 103.96 | 26.44 | 36.23
Table 6: Cello / Replication Policy: Read 1 out of N Write N
No. of | Seek Disk Disk Disk Read Write Overall
copies | distance | queue | read write | turnaround turnaround turnaround
- | length | queue | queue | time (msec) time (msec) time (msec)
_ length | length | Mean | S.D. | Mean | S.D. Mean | 5.D.
1 79.73 1.82 0.38 5.80 27.42 | 31.42 | 126.22 | 299.62 | 53.54 | 162.36
2 55.56 2.31 0.11 5.36 20.35 | 19.40 | 105.29 | 292.92 | 42.81 | 156.09
3 51.36 2.76 0.09 5.24 19.54 | 17.84 [98.89 | 291.16 | 40.52 [154.51
5 47.18 3.33 0.07 |5.16 19.04 | 16.89 | 94.27 | 2838.30 | 38.93 | 152.60
7 4471 3.68 0.06 5.12 18.89 | 17.08 ; 92.19 { 2B86.46 | 38.27 | 151.51

Table 7: Cello /users Replication Policy: Read 1 out of N Write N

29

This suggests that avoid replicating short term files and frequently modified files does make the
system performs better, though the cost of replication has not been simulated in this case.
-Oin the otherhand, this policy does not -work as well as RNWN for Cello /. "At two copies, . .,

the disk read queue length is 0:26 with this policy and is only 0.08 with'RNWN. Although'the .~

seek distance does go down with the increase in the number of copies, the reduction in seek time .
is not enough to offset the difference in queuing time. We postulate that the apparent drop in
performance is because some files are first updated:and. then read shortly afterwards.. Hence, as.
have been discussed, our present policy would have no effect-on such files. The result is a high load
on the “master” disk, which is the only one containing recently-updated files. On closer examination -,
of the use of Cello /, there is a news spool directory where news packets received from the network
are stored. These files are around 700K to 1Mbytes in size and are written once and are read shortly
after they are written.

6.4 Read one out of N copies and cut back to 1 copy on write and choose
copy to retain at random (RNWI1CR)

With RNWI1 policy, the original copy is retained when the number of copies is reduced. Therefore,
in addition to reads to non-replicated files, all writes have to go to the same disk as well. On the
otherhand, if the original copy is not kept and instead the copy to be retained is selected at random,
this could spread out the load onto all disks. In this series of simulations, the policy is almost the
same as RNW1 but during cutback, the copy to be retained is chosen at random.

The results of the simulations for Triangle /, Cello / and Cello /users are shown in table 11,
table 12, table 13 respectively.

When compared with RNW1, the read turnaround time improves slightly and the write turnaround
time improves modestly. The improvement in write turnaround time when compared with RNW1 is
largest for Cello /. For instance, with two copies the write turnaround time reduces from 134.84ms
to 111.07ms. The disk write quene length reduces from 3.50 to 2.84.

6.5 Scatter files among N disks

In the analysis so far, we have compared our results with the case when there is only one copy on one
disk and we have seen that replication over a number of disks does have an effect on load balancing,.
However, it i possible that by scattering the files over the same number of disks, the load can also
be spread across all the disks. To see what is the effect of scattering files over a number of disks, we
performed this series of simulations in which files are scattered randomly among 2,3,5 and 7 disks.
File replication is not done,

Table 14 shows the results of the simulations for Triangle /.

From the result, it is clear that scatter files among N disks does have an effect on reducing the
queue length. For instance, the disk queue length reduces from 1.75 to 1.48 when files are scattered
over two disks. As expected there is no reduction in the average seek distance. With the reduction
in the disk queue length, the read and write turnaround times improves. :

The improvement in read performance is not as much as in the case of RNW]1, for instance,
with three copies and RNWI1, the mean read turnaround time is 21.57 and it is 24.93 with random
scattering over 3 disks. However the write performance is better with random scattering than with
RNW1. With three copies, the mean write turnaround time is 64.36 with random scattering and is
71.46 with RNW1. Although RNWI1CR performs better than RNWI in writes, random scattering
still scores better in write turnaround time.

6.6 Combine file scattering and RNWICR

We have seen scattering files among N disks alone performs better in writes than RNWI1CR but
worse in reads. In this series of simulations, we combined the two policies to see if we can gain

30

No. of | Seek Disk Disk Disk Read Write Overall
copies | distance | queue | read write | turnaround .| turnaround turnaround
' -| length | queue ‘| queue | time (msec) time (msec) - | time (msec) .
length | length | Mean | S.D. | Mean | S.D. Mean | 8.D.
1 82.38 1.75 0.14 2.85 26.36 | 23.55 | 74.62 | 107.38 | 55.08 | 87.46
2 56.29 1.67 0.03 2.78 22.63 | 18.94 | 71.98 | 106.41 | 52.00 | 86.43
3 36.87 L.66 0.03 2.76 21.57 | 18.57 | 71.46 | 105.78 | 51.27 | 86.02
5 33.06 1.66 0.03 2.76 20.82 | 17.96 | 70.98 | 104.569 | 50.68 | #5.20
7 31.06 1.86 0.03 2.77 20.71 | 18.05 | 70.80 | 104.89 | 50.52 | 85.35

Table 8: Triangle / Replication Policy: Read 1 out of N and cutback to 1 on Write (RNW1)

No. of | Seek Disk Disk Disk- | Read Write Overall
copies | distance | queue | read write | turnaround turnaround turnaround
length | queue | queue | time (msec) time {msec) time (msec)
length { length | Mean | S.D. | Mean | S5.D. Mean | S.D.
1 16.91 0.74 0.45 3.96 28.22 | 29.61 | 150.76 | 102.35 | 38.38 | 53.07
2 13.15 0.53 0.26 3.50 25.39 | 24.93 | 134.84 | 110.98 | 34.47 | 50.03
3 12.39 0.53 0.26 3.49 25.33 | 24.93 | 135.28 | 111.19 | 34.45 | 50.18
5 11.64 0.53 0.26 3.49 25.25 | 24.81 | 134.78 | 111.32 | 34.34 | 50.05
7 11.15 0.52 0.26 3.48 25.19 | 24.74 | 134.56 | 111.32 | 34.27 ! 50.00

Table 9: Cello / Replication Policy: Read 1 out of N and cutback to 1 on Write (RNW1)

No. of | Seek Disk Disk Disk Read Write Overall

copies | distance { queue | read write | turnaround turnaround turnaround
length | queue | queue | time {msec} | time (msec) time (msec)

length | length { Mean | 5.D. | Mean | S.D. Mean | S.D.

1 79.73 1.82 0.38 5.80 27.42 | 31.42 | 126.22 { 209.62 | 53.54 | 162.36

2 38.79 1.61 0.15 5.69 20.89 | 24.41 | 121.84 | 298.49 | 47.58 | 161.18

3 40.99 1.60 0.13 5.68 20.61 | 23.79 | 121.41 | 206.81 | 47.26 | 160.29

5 30.68 1.60 0.13 5.69 20.42 | 25.13 | 122.37 | 300.50 | 47.38" | 162.37 |

7 29.60 1.60 0.13 5.68 20.32 | 24.26 | 122.30 | 301.57 | 47.28 | 162.80

Table 10: Cello /users Replication Policy: Read 1 out of N and cutback to 1 on Write

(RNW1)

31

No. of | Seek Disk Disk | Disk- | Read Write _ ‘Overall
copies | distance | queue | read write | turnaround turnaround turnaround
length | queue | queue | time (msec) timne (msec) time (msec)
length | length | Mean | 5.D. | Mean | S.D. Mean | 5.D.
1 82.38 1.75 0.14 2.85 26.36 | 23.65 | 74.62 | 107.38 | 55.08 | 87.45
2 57.26 1.57 0.03 2.62 2258 | 19.02 | 68.48 | 102.31 | 49.90 | 82.97
3 45.40 1.51 0.03 2.52 21.56 | 18.64 | 66.41 | 100.07 | 48.26 | 81.15
5 37.00 1.48 0.02 2.48 20.96 | 18.356 | 64.80 | 98.94 | 47.06 | 80.16
7 33.24 1.46 0.02 2.44 20.59 | 17.96 | 63.76 | 96.76 | 46.28 | 78.43

Table 11: Triangle / Replication Policy: Read 1 out of N, cutback to 1 on Write and

choose copy to retain randomly (RNW1CR)

No. of | Seek Disk Disk Disk | Read Write Overall

copies | distance | queue | read write | turnaround turnaround turnaround
length | queue | queue | time (msec) time (msec) time {msec)

length | length | Mean | 5.D. | Mean | S.D. Mean | S.D.

1 16.91 0.74 0.45 3.96 28.22 | 20.61 | 150.76 | 102.35 | 38.38 | 53.07 |

2 12.79 0.47 0.26 2.84 25.19 | 23.26 | 111.07 | 94.11 | 32.32 | 42.33

3 11.66 0.45 0.25 2.60 24.97 | 22.72 | 102.73 | 91.33 | 31.42 | 40.32

5 10.46 0.43 0.25 2.43 24.80 | 22.48 | 96.26 | 89.77 | 30.73 | 38.98

Table 12: Cello / Replication Policy: Read 1 out of N, cutback to 1 on Write and choose
copy to retain randomly (RNWI1CR)

No. of | Seek Disk Disk Disk Read Write Overall
copies | distance | queue | read write | turnaround turnaround turnaround
length | queue | queue | time (msec) time (msec) time (msec)
length | length | Mean | S.D. | Mean | S.D. Mean | S.D.
1 79.73 1.82 0.38 5.80 27.42 | 31.42] 126.22 | 299.62 | 53.54 | 182.36
2 39.48 1.52 0.14 5.35 20.69 { 23.84 | 115.69 | 293.60 | 45.81 [158.01
3 34.96 1.49 0.13 5.29 20.36 | 22.88 | 114.04 | 291.96 | 45.13 | 156.94
5 31.95 1.51 0.13 5.34 20.40 | 24.73 | 115.60 | 285.76 | 45.57 | 154.28

Table 13: Cello /users Replication Policy: Read 1 out of N, cutback to 1 on Write and
choose copy to retain randomly (RNWI1CR)

32

better performance in both reads and writes. The only difference between this policy and RNW1CR
is that when a file is created, a disk is chosen at random to store it.

Table 15 shows the results of the simulations for Triangle /.

- From-the results, it is clear that combining the two policies has achieved a read performa.nce 88
good as RNWICR and a write performance as good as random scattering.

6.7 Summary

Figure 21 is a plot of the read turnaround time of Triangle / vs the number of copies for all the
policies we experimented with. The write turnaround time of Triangle / is plotted against the
number of copies in figure 22. A similar set of graphs for Cello /users and Cello / are shown in
figure 23 to figure 26.

33

No. of | Seek Disk Disk Disk Read | Write Overall
disks | distance | queue | read write | turnaround turnaround turnaround
length | queue | queue | time (msec) time (msec) tirne (msec)
length | length | Mean | S.D. [Mean | S.D. Mean | 5.D.
1 82.38 1.75 0.14 2.85 26.36 | 23.65 | 74.62 [107.38 | 55.08 | 87.45
2 79.36 1.48 0.08 2.43 26.15 | 19.19 | 64.98 | 95.03 | 48.856 | 76.85
3 79.03 1.45 0.07 2.40 2493 | 17.97 | 64.36 | 96.46 | 48.40 | 77.73
5 81.19 1.47 0.06 2.23 25.16 | 16.32 | 60.44 | 91.54 | 46.16 | 73.45
7 82.63 1.38 0.04 2.28 25.32 | 15.27 | 58.88 [89.23 | 45.20 | 71.44
Table 14: Triangle /, scatter files among N disks
No. of | Seek Disk Disk Disk Read Write Overall
disks | distance | queue | read write | turnaround turnaround turnaround
length | queue | quene | time (msec) time (msec) time {msec)
length | length | Mean | 5.DD. | Mean | S.D. Mean | 5.D.
1 82.38 1.75 0.14 2.85 26.36 | 23.55 | 74.62 | 107.38 | 55.08 |.87.45.
2 57.18 1.47 0.02 2.45 22.34 | 16.04 | 65.18 | 96.44 | 47.84 | 78.06
3 46.87 1.38 0.0 2.30 21.36 | 15.02 | 61.79 | 92.72 | 45.42 | 74.84.
5 40.01 1.34 0.02 2.23 20.88 | 16.69 | 60.27 | 91.78 | 44.33 | 74.186
7 37.40 1.32 0.01 2.32 20.4b [13.63 | 59.91 | 94.14 | 43.94 | 75.67

Table 15: Triangle /, Combine scatter files among N disks and RNWI1CR

34

27

Read turnaround time (ms)

N
21 \ﬁf

® 2 3 3 5 3 7
Nomber of copies
wegee Combined scatter files among N disks and RNW1CR
—0 Read 1 out of N, cutback to 1 on Write and choose copy to redain randomly
—o0— Read 1 out of N and cotback to 1 on Write
—0— Read 1 out of N write N

Figure 21: Triangle / read turnaround time vs number of copies

Wiite turnaround time (ms)
2
W .
?f/

64 ——
62
60 !
58

2 3 4 5 6 7

Number of copies

~gws Combined scatter files among N disks and RNWICR

—— Read 1 out of N, cutback to 1 on Write and choose copy to retain randomly
—o— Read 1 out of N and cutback to 1 on Write

—o— Read 1 out of N Write N

Figure 22: Triangle / write turnaround time vs number of copies

35

27

5 R
ey

22 \

21

Read tumaround time (ms)
i
"’

19 -
18 :
| 2 3 4 5 3 7
Number of copies

== Read 1 out of N, cotback to 1 on Write and choose copy 1o retain randomly
=0 Read 1 out of N and cutback to 1 on Write
—0— Read 1 out of N Write N

Figure 23: Cello / read turnaround time vs number of copies

EZERELERE

2 3 4 h] /
Number of copies

—0— Read] out of N, cutback to 1 on Write and choose copy to retain randomly
=0~ Read 1 out of N and cutback to 1 on Write
—0~ Read 1 out of N Write N

Figure 24: Cello / write turnaround time vs number of copies

36

Read tumnaround time (ms)

Figure

155
145

135

B

p—t
ot
un

\

i S
2 3 3 5 6 7
Number of copies

=~ Read 1 out of N, cutback to 1 on Write and choose copy 10 retain randomly
w—g—— Read 1 out of N and cotback 1o 1 on Write
=0 Read 1 out of N Write N

25: Cello / read turnaround-time vs number of copies

Wirilc turnaround time (ms)
L
=
i

95
85
75 v
2 3)] 5 6 7
Number of copies

—0— Read 1 out of N, cutback to 1 on Write and choose copy to retain randomly
o= Read 1 out of N and cutback to 1 on Write
—0— Read 1 cut of N Write N

Figure 26: Cello / write turnaround time vs number of copies

37

7 Conclusion

Our study started with the hypothesis that replication can improve read performance through reduc-
-tion in seek time, load balancing across multiple disks and parallel transfers. From our trace—dnven ,
‘simulations, we have shown that read performance did improve with more copies.- |

We compared “mirror disks”’ (RNWN) with dynamic replication (RNW1). .Except in one case,
dynamic replication worked better than “mirror disks”. Moreover the exception can be expla.med '
by the special usage pattern of that particular file system.

We explored a number of alternatives in dynamie replication. While read performance remains
almost the same in all cases, the write performance improves because write loads are spread among
the disks available. It seems that introducing certain randomness in choosing which disk to place a
copy when a file is first created and when the number of copies is cutback does help in spreading
out the write loads and hence improving the write performance.

We noted that dynamic replication did reduce the disk queue length by sharing the load across
multiple disks. It should be noted that the systems we studied were only lightly loaded. It will be
interesting to see the effect of dynamic replication on heavier loaded machines since we expect the
disk queue length on these systems would be longer and hence the opportunity for load-balancing
would be larger.

We observed that dynamic replication did reduce the seek distance, however, it should be noted
that better disk layout strategies such as rearranging data on disk according to the usage pattern
could also bring about significant reduction in seek time. However, simply rearranging data on disk
does not help very much in reducing the queuing delay and this is the area that our study have
shown dynamic replication has a big potential.

In our study, only two or three copies were needed to bring about significant performance
improvement. Further increase in the number of copies did not improve the performance much
further.

From our simulations, we could get, through dynamic replications, 24% improvement in read
performance with two copies (see Cello /users RNW1). One could question whether committing
100% more storage space to gain 24% performance improvement is a wise decision. However, it
should be borne in mind that the storage space allocated is otherwise unused and we can always
cutback the number of copies when the free disk space is tight. The real resources being used up is
the CPU time and the bandwidth of the interconnects among the storage nodes, both of which are
plentiful in a DataMesh.

References

[Cha90] Chia Chao. Hp-ux measurement system’s build-in instrumentation points. Technical
Report HPL-DSD-90-27, Hewlett Packard Laboratories, April 1990,

[Gif79] - D. K. Gifford.- Weighted voting for replicated data. In Proceedings of the-Tth Symposium’
on Operating Systems Principles, pages 150-162, 1979,

[MHS89] Timothy Mann, Andy Hisgen, and Garret Swart. An algorithm for data replication.
Technical Report 46, Systems Research Center, Digital Equipment Corporation, June
1989.

[MSCt86]) J. H. Morris, M. Satyanarayanan, M. H. Conner, J. H. Howard, D. S. Rosenthal, and
F. D. Smith. Andrew: A distributed personal computing environment. Communications
ACM, 29(3):184-201, March 1986.

[Pur87]~ T.Purdin. Enhancing File Availability in Distributed Systems (The Saguaro File System.
PhD thesis, University of Arizona, 1987.

38

[SKK89] M. Satyanarayanan, James J. Kistler, and Puneet Kumar. Coda: A highly available file
system for a distributed workstation environment. Technical Report CMU-C5-89-165,
Schoot of Computer Science, Carnegie Mellon University, July 1989.

: _-{Sov84] - .Liba Sovobodova. File servers for network-based distributed systems. Computing Sur-
veys, 16(4):353-398, December 1984. ' ' S

[Tre88] G. Winfield Treese. Berkeley unix on 1000 workstations : Athena changes to 4.3 bsd. In
USENIX Winter Conference Proceedings, 1988.

[Wilg9] John Wilkes. Datamesh-scope and objectives: a commentary. Technical Report HPL-
DSD-89-44, Hewlett Packard Laboratories, July 1589,

[WPE*83] B. Walker, G. Popek, R. English, C. Kline, and G. Thiel. The locus distributed operating
system. ACM Operating System Review, 17(5):49-70, October 1983.

39

