Introduction

|dle periods can be used to do work that will improve
overall system performance

Need to know:
[1 when idle periods (will) happen
[1 how long they will last

Want to be able to say why one detection mechanism
IS better than another

1 [ﬁ/” HEWLETT

PACKARD

Introducti

on

Our approach to using idleness

Medium-term scheduling problem:

Build a detector that watches the system
Emits a stream of predictions (start, duration)
Use these to schedule idle tasks

incoming
work

N

idleness
detector

| ' server J

idle task

[ﬁ/” HEWLETT

PACKARD

Introduction
What is different here?

Durations:
[1 anticipate when new work will arrive
[] can adjust work to the expectation
Unlike background processing:
[1 adding and removing tasks from a system

[1 complement each other
Unlike real-time scheduling:

[] no guarantees—nbest-effort only
[1 use little knowledge of other activities

K

HEWLETT
PACKARD

|dle tasks
Some examples

Delay ordinary work

[1 delaying writes
Eager work

[1 readahead, compilation, cache flushing
Improve system behavior

[1 cache coherence, rebuilding indexes
Load balancing

[1 determine lightly-used resources, CPU versus
bandwidth trade-offs

4 [ﬁ/” HEWLETT

PACKARD

Characterizing idle tasks

regular
work

detector start idle (d) interrupt
events finished

idle
tasks

[Interruptability (run to completion, stop early)
[1 Work loss (redo, undo, checkpoint)
[1 Resource use (exclusive, shared)

° [/ excicaro

Characterizing idle tasks
Detailed examples

Spinning down a disk

[] task: spin disk down, then walit

[1 recovery: spin disk back up

[“interruptible”, excludes other disk activity
File system reorganization

[1 task: reorganize one “chunk”

[1 may be interruptible, with loss of work

[1 other operations can proceed

6 [ﬁ/” HEWLETT

PACKARD

Detecting idle time
An architecture

system
events .y
predictions
—p-| predictor
Q
Q —pp- Start
skeptic §
Q

— Stop
—p-| predictor to idle
task

7 HEWLETT
[ﬁ/’ PACKARD

Detecting idle time
When to start

(1 Timer

[] Rate-based

[1 Periodic

[1 Pattern recognition

[1 Adaptive versus static

regular
work

A

finished

start id'e (d) interrupt

detector
events

idle
tasks

° [/ excicaro

Detecting idle time
Duration

[] Fixed

[] Moving average

[1 Adaptive increase/decrease
[1 Pattern recognition

[1 “At least” versus “exactly”

regular
work

start id

e (d)

detector interrupt

events

idle
tasks

K

HEWLETT
PACKARD

Detecting idle time
Using skeptics to improve predictions

Filtering the stream:
[1 time-of-day
[1 shut off when performing poorly
[1 special cases
Combining multiple predictions:
[1 quorum voting
[binomial weighting algorithm

10 HEWLETT
[ﬁ/’ PACKARD

Evaluating idle detectors

Mean idle duration

Only consider start time

Measure duration from start to next operation

>
o
—
c
D

EventWindow-5-BusyPerSec-
AdaptTimerArithGeom-
Adfg)tTlmerGeomArlth

EventWindow-25 BusyPerSe(I:D
me

EventWindow-5- KBper e
1

EventWindow-5- IOperS
EventWindow-25-KBperSec-
AdaptTimerGeomG
MovingAverage-10.0-
AdaptTimerArithArith-0.
AdaptTimerArithGeom-
AdaptTimerGeomArith-
EventWindow-25-[0OperSec-
Eventhdow-S-BusyPer ec- 0
daptTlmerArltt_}Arl h-

er-

t
EventWindow-25-BusyPerSec-0.0
Event Wlndow -KBp erSe

Moving Averag
EventWindow-25-K png

MovingAverage-0.1-
AdaptTimerArithGeaom-1
AdaptTimerGeomArith- 1

EventWindow-5-10perSec-
daptTlmerArlt Arith-1
EventWindow-25-I0perSec-

Y OOY
NN
ook

LP00D TorS
SO Lo L
o8 pnP Al

S Shoorod80

|_(no
I—‘OI—‘OO@I—‘-&@#I—‘OOHWOOO@

D S
SOO00ONG O6 OU'"“o"’ AN

11

|
20

| ' |
40 60

Mean duration (seconds)

|
80

|
100

K

HEWLETT
PACKARD

Evaluating idle detectors
Efficiency

For the same data set, compute

12

efficiency:

efficiency = predicted idle time / actual idle time

Mean duration (seconds)

100

80

60 —

3
40 —

20

'S
. .

0.4

| ' | ' |
0.6 0.8 1.0

Efficiency

[ﬁ/” HEWLETT

PACKARD

Evaluating idle detectors
How many operations are affected?

Add duration predictions (and follow them)
Count violations

AdaptTimerArithGeom 0.100:
BackoffArithGeom-0.010
BackoffArithGeom-0.100

Average
BackoffArithGeom-1.0
BackoffArithArith-0.010
BackoffArithArith-0.100
BackoffArithArith-1.0
EventWindow 25, 10/sec 0.1:
BackoffArithGeom-0.010
BackoffArithGeom-0.100
BackoffArithArith-0.010
BackoffArithGeom-1.0
BackoffArithArith-0.100
Average
BackoffArithArith-1.0

0.0 0.5 1.0
Mean rate (op/s)

13 HEWLETT
[ﬁ/’ PACKARD

Evaluating idle detectors

14

Mean violation rate (op/s)

15 .
L 4
. « ¢
* * {
1.0 .
* ’.’:
. 'S
PS 0.’
cot R
. . *,
X J * ":’
¢ $° *e o
05— * % o & o
: : S
$e 4% S
L 4 PR
*
L 4
X
—& T T
0.6 0.8 1.0
Efficiency

K

HEWLETT
PACKARD

Using the detectors for spin-down

Energy savings

Hypothesis: energy savings related to efficiency

15

2.0 4
* 0,03:
" 30
15- o?
Rl 2SR N
S AP
< »
5 ¢
= .
>
>
S
] i $o,
o te 3 4%
0.5 ¢ “‘
<
0.0 ——
0.0 0.2 0.4 0.6 0.8 1.0
Efficiency

HEWLETT
PACKARD

K

Using the detectors for spin-down

Energy savings

Hypothesis: related to mean idle duration

16

Energy saved (kJ)

2.0

=
o
|

°*
$. .8 oo
10 04® *
lee? A 4
_*oo
¢]
1.0 ¢
0"? $
0.5_'003 oo .
0.0 —
0 200 400 600 800 1000

Mean idle duration (s)

K

HEWLETT
PACKARD

Using the detectors for spin-down
Number of delayed operations

Hypothesis: related to violation rate

°
S
80 - 8 ¢
—~ 8 .
S oo
X
5 $ %
Q *® o
< 60 :
- TS
g ., “o
%) TS
S . MER M
= °
S 40 $°
) * * PR 4
Q.
@) \d .0
o] *3 ¥ * T
g X *
] o *
o 20— o®
Q $ o *
o *® * * *
i .0 * 0.
S
02
0.00 0.01 0.02 0.03

Violation rate (op/s)

17 HEWLETT
[ﬁﬂ PACKARD

Using the detectors for file system

— ___ reorganization

Hypothesis: intrusiveness related to violation rate

| S
0.010
1 *
—
N R
N .
R
O
°
(- 00”
S a8 o
g |
%0.005—_
=
T
O
b
0.000 +—————F—————————7
0.00 0.01 0.02 0.03

Violation rate (op/s)

18 HEWLETT
[ﬁ/’ PACKARD

ldleness 1s not sloth
Conclusions

[1 Many opportunities for using idle time productively
[1 Taxonomy of idle time helped guide analysis

[1 Taxonomy of detection methods helped us find new
methods

[1 The detectors can be used to schedule realistic idle
tasks, and we can evaluate how well they work

Contact: golding@hpl.hp.com

19 HEWLETT
[ﬁ/’ PACKARD

1995 Winter Usenix, New Orleans

Idleness Is not sloth

Richard Golding, Peter Bosch,*
Carl Staelin, Tim Sullivan, and John Wilkes

Hewlett-Packard Laboratories
* Universiteit Twente

19th January 1995

[ﬁ/” HEWLETT

PACKARD

(ﬁﬁ HEWLETT

PACKARD

Slides for — Idleness iIs not
sloth

Richard Golding, Peter Bosch,
Carl Staelin, Tim Sullivan,
and John Wilkes

Concurrent Computing Department
Hewlett-Packard Laboratories

HPL-CCD-95-1
19 January 1995

Slides presented at the Winter Usenix conference in New Orleans from
16-20th January 1995.

This presentation is an overview of our work on using idle time
productively, introducing our approach and presenting a few important
results. A fuller account can be found in the paper published with the
proceedings.

