Introduction

|dle periods can be used to do work that will improve
overall system performance

Need to know:
[1 when idle periods (will) happen
[1 how long they will last

Want to be able to say why one detection mechanism
IS better than another
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Our approach to using idleness

Medium-term scheduling problem:

Build a detector that watches the system
Emits a stream of predictions (start, duration)
Use these to schedule idle tasks

incoming
work

N

idleness
detector

| ' server J

idle task
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Introduction
What is different here?

Durations:
[1 anticipate when new work will arrive
[] can adjust work to the expectation
Unlike background processing:
[1 adding and removing tasks from a system

[1 complement each other
Unlike real-time scheduling:

[] no guarantees—nbest-effort only
[1 use little knowledge of other activities

K

HEWLETT
PACKARD



|dle tasks
Some examples

Delay ordinary work

[1 delaying writes
Eager work

[1 readahead, compilation, cache flushing
Improve system behavior

[1 cache coherence, rebuilding indexes
Load balancing

[1 determine lightly-used resources, CPU versus
bandwidth trade-offs
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Characterizing idle tasks

regular
work

detector start idle (d) interrupt
events finished

idle
tasks

[ Interruptability (run to completion, stop early)
[1 Work loss (redo, undo, checkpoint)
[1 Resource use (exclusive, shared)

° [/ excicaro



Characterizing idle tasks
Detailed examples

Spinning down a disk

[] task: spin disk down, then walit

[1 recovery: spin disk back up

[ “interruptible”, excludes other disk activity
File system reorganization

[1 task: reorganize one “chunk”

[1 may be interruptible, with loss of work

[1 other operations can proceed
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Detecting idle time
An architecture

system
events .y
predictions
—p-| predictor
Q
Q —pp-  Start
skeptic §
Q

— Stop
—p-| predictor to idle
task
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Detecting idle time
When to start

(1 Timer

[] Rate-based

[1 Periodic

[1 Pattern recognition

[1 Adaptive versus static

regular
work

A

finished

start id'e (d) interrupt

detector
events

idle
tasks
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Detecting idle time
Duration

[] Fixed

[] Moving average

[1 Adaptive increase/decrease
[1 Pattern recognition

[1 “At least” versus “exactly”

regular
work

start id

e (d)

detector interrupt

events

idle
tasks
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Detecting idle time
Using skeptics to improve predictions

Filtering the stream:
[1 time-of-day
[1 shut off when performing poorly
[1 special cases
Combining multiple predictions:
[1 quorum voting
[ binomial weighting algorithm
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Evaluating idle detectors

Mean idle duration

Only consider start time

Measure duration from start to next operation
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Evaluating idle detectors
Efficiency

For the same data set, compute

12

efficiency:

efficiency = predicted idle time / actual idle time

Mean duration (seconds)
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Evaluating idle detectors
How many operations are affected?

Add duration predictions (and follow them)
Count violations
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Evaluating idle detectors

14

Mean violation rate (op/s)

15 .
L 4
. « ¢
* * {
1.0 .
* ’.’:
. 'S
PS 0.’
cot R
. . *,
X J * ":’
¢ $° *e o
05— * % o & o
: : S
$e 4% S
L 4 PR
*
L 4
X
—& T T
0.6 0.8 1.0
Efficiency

K

HEWLETT
PACKARD



Using the detectors for spin-down

Energy savings

Hypothesis: energy savings related to efficiency
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Using the detectors for spin-down

Energy savings

Hypothesis: related to mean idle duration
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Energy saved (kJ)
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Using the detectors for spin-down
Number of delayed operations

Hypothesis: related to violation rate
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Using the detectors for file system

— ___ reorganization

Hypothesis: intrusiveness related to violation rate

| S
0.010
1 *
—
N R
N .
R
O
°
(- 00”
S a8 o
g |
%0.005—_
=
T
O
b
0.000 +—————F—————————7
0.00 0.01 0.02 0.03

Violation rate (op/s)

18 HEWLETT
[ﬁ/’ PACKARD



ldleness 1s not sloth
Conclusions

[1 Many opportunities for using idle time productively
[1 Taxonomy of idle time helped guide analysis

[1 Taxonomy of detection methods helped us find new
methods

[1 The detectors can be used to schedule realistic idle
tasks, and we can evaluate how well they work

Contact: golding@hpl.hp.com
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This presentation is an overview of our work on using idle time
productively, introducing our approach and presenting a few important
results. A fuller account can be found in the paper published with the
proceedings.



