
Adapting disk layouts to observed, rather than predicted,
access patterns can result in faster I/O operations. In
particular, a technique called disk shuffling, which
moves frequently-accessed data into the center of a disk,
can substantially reduce mean seek distances. We report
here on extensions to and (partial) validation of earlier
work on this approach at the University of Maryland.
Starting from disk access traces obtained during normal
system use of 4.2BSD-based file systems, we established
a repeatable simulation environment across a range of
workloads and disk types for comparing different
shuffling algorithms. We explored several of these,
including how often to make layout changes, how large a
unit of data to shuffle, and some mechanisms to exploit
sequentiality of reference.
Our conclusions: some of the originally identified benefits
are real, but sometimes performance is worse rather than
better unless access interdependencies are considered.
Most of the benefit can be obtained from infrequent
(weekly) shuffling. Smaller quanta generally produce
better results, at the expense of needing more working
storage.
Overall, the benefits are small to moderate, but are likely
to be much larger with file systems that do not do such a
good job of initial data placement.

Disk Shuffling
Chris Ruemmler, John Wilkes
Software and Systems Laboratory
HPL–91–156
October, 1991

disk layout algorithms,
seek distance
optimization,
disk data placement,
disk reorganization

 Copyright Hewlett-Packard Company 1991

1

1 I/O performance
VLSI technology is improving computer processors much faster than mechanical disk
engineering is able to improve secondary storage access times. The resulting divergence of
performance threatens to limit the benefits obtainable from faster processors—the so-called “I/O
gap”. Therefore, speeding up disk accesses is important, but improving the underlying
performance of the disk is hard: power consumption and bearing roughness limit the speed at
which disks can be spun, and arm flexibility and servo power restrictions bound the rate at which
heads can be moved from track to track. Instead, three software techniques have been used to
improve the way that disks are used.

The first approach is to reduce the frequency of disk accesses. Caching data in high-speed primary
memory can eliminate many secondary storage accesses, and can move some of the remaining
ones off the critical path through read-ahead and write-behind. Caching only works well for data
with moderate (or predictable) locality of references. Furthermore, the size of primary memory is
constrained by its relatively high cost compared to secondary storage.

The second approach is to amalgamate several I/O operations into one to amortize the
mechanical disk delays over a large transfer. This requires possibly substantial modifications to
the file or virtual memory system (e.g. [Ousterhout89]), and can result in less effective utilization
of the primary memory cache unless done with care [McVoy91]. Furthermore, it is usually not
possible to amalgamate synchronous I/O operations without impacting I/O latency—and hence
application performance. Although larger main memory caches will doubtless reduce the need
for synchronous disk READs, they do not eliminate it—indeed [Braunstein89] and [Baker91]
suggest that the benefits of large buffer caches are more difficult to achieve than was predicted by
earlier studies such as [Ousterhout85a].

The third approach, and the subject of this paper, is to reorganize the layout of data on disk as a
function of the observed workload to minimize the time spent moving the head between data
blocks of interest.

The paper is organized as follows. The next section introduces previous work in this area. It is
followed by a detailed description of the hypotheses we wished to test, and the experiments we
performed to do so—trace gathering, simulation, and verification. Results from these experiments
are presented next with our analysis of them, and some conclusions.

2 Related work
Commercial data processing file systems have long taken advantage of large transfer sizes. For
example, IBM’s OS/360 and its successors allow programmers to specify file transfer units up to
a full track in size, and allocation policies that grow files in units of up to many cylinders of data
at a time [Clark66]; MPE XL also uses extents, but the system chooses their size as a function of
file size, access type, remaining disk space, and growth rate [Kondoff88].

The early UNIX1 file system designs were extremely clean and elegant [Ritchie74, Thompson78],
but they sacrificed efficiency by allocating small (512 byte) blocks randomly across their disks,
and thus were only able to extract a small fraction of the raw disk bandwidth because most of the
time was spent on seek and rotational delays [McKusick84].

1 UNIX is a registered trademark of AT&T Bell Laboratories.

2

Some benefits were achieved by scheduling disk operations in an order that optimized access
time, such as the shortest seek time first algorithm (SSTF) and variants on it such as SCAN and V(R)
[Oney75, Coffman82, Geist87]. This improved throughput in cases where there were many
requests in the queue, but did nothing to improve latency for synchronous accesses—indeed, it
usually got worse. Moving the disk head to the center of the disk when the disk appears to be idle
can improve latencies under low load conditions [King90], but does not improve the high-load
case.

The Fast File System of version 4.2BSD of the Berkeley UNIX system and its successors introduced
substantial improvements [McKusick84]. The new file system increased transfer sizes by using
larger blocks, but held down internal fragmentation by packing several small files (“fragments”)
into a block; reduced seek times by clustering statically-related data together into “cylinder
groups” (data from our UNIX systems show that 30–50% of all physical I/Os are to the same
cylinder as their predecessor); and reduced rotational latency delays by using a block layout
scheme optimized for sequential accesses.

The 4.2BSD scheme leaves room for improvement in two areas: it makes no attempt to optimize
operations that cross cylinder group boundaries (indeed, a quadratic hash function is used to
scatter file blocks widely across the disk if the current cylinder group fills up); and, although it
does a very creditable job of initial data placement, it takes no notice of dynamic access patterns.
Figure 1a shows a typical distribution of accesses across a disk from a 4.2BSD-based file system.

In most environments, disk accesses display significant physical and temporal locality, even in
the face of increasing file buffer cache sizes [Majumdar84]. Figure 1a supports this: many
cylinders are never accessed over a one-day period.

Grouping the most frequently-accessed data blocks together at the center of the disk can reduce
the average seek distance substantially. A good way to do this is the organ pipe arrangement,
formed by placing the most frequently accessed cylinder in the middle of the disk, the next most

Figure 1 . Cylinder access distribution over a twenty-four hour period. Measured on an HP7935 disk
attached to red, a timesharing system running HP-UX.

a. As measured on the original layout. b. After rearrangement into an organ pipe.

0

1000

2000

3000

4000

5000

6000

7000

8000

0 200 400 600 800 1000 1200 1400

N
um

be
r

of
 A

cc
es

se
s

Cylinder

0

1000

2000

3000

4000

5000

6000

7000

8000

0 200 400 600 800 1000 1200 1400

N
um

be
r

of
 A

cc
es

se
s

Cylinder

3

frequently accessed cylinders on either side of the middle cylinder, and so on. This arrangement
is provably optimal for independent disk accesses [Wong83]. The effect of applying it to the disk
shown in Figure 1a is displayed in Figure 1b.

Moving the data around to achieve such an arrangement is known as disk shuffling. The algorithm
is sufficiently straightforward that it can be done inside the disk controller, or inside the device
driver, as in [Carson89, Vongsathorn90]. In all cases, a count is kept of the number of requests
directed to each shuffling quantum (e.g. cylinder) over a period of time, and these counts are used
to drive the rearrangement. The shuffling can be done by the disk controller itself, by the device
driver, or by an outside daemon process that reads the frequency table (e.g. through an ioctl
system call that queries the driver state from a program running in user mode).

A map containing the current location of each logical cylinder on disk is stored in a known, fixed
place on the disk (e.g. in the first physical cylinder). This map is updated every time the disk is
shuffled, and read on power-up. By recording an intentions list in the map and performing the
cylinder shuffle so that there is always a valid, identifiable copy of the data stored on disk, it is
possible to make the shuffling operation resilient to power failures [Vongsathorn90]. With care,
the shuffling can be done while access to the file system on the disk continue, and can be made
invisible to upper layers of the file system code. The rearrangement can be done during “idle”
periods, to minimize the impact on normal operation.

Since real workloads do not generate independent disk requests, the straightforward organ pipe
arrangement is not always optimal. For example, a large sequentially-accessed file that used to be
contiguous could end up split across either side of the organ pipe, thus increasing the average
seek distance. By looking for such dependency patterns in accesses, the organ pipe arrangement
can be adjusted to keep sequentially-accessed data close together. Using such techniques can
result in reductions of average seek distances by as much as 30% compared with straightforward
organ-pipe shuffling [Carson89]. By measuring the interdependencies at a low level in the system,
account is automatically taken of both sequential accesses and clusters of related accesses, such as
occur sometimes when a program is started up and it reads its configuration data.

Not all disk accesses will benefit from the kind of adaptive methods discussed here. For example,
data with a lifetime less than the shuffling period will probably not benefit from data shuffling.
In fact, such data may degrade the shuffling algorithm’s performance by distorting access
frequencies. (However, if it occupies “holes” that are frequently reused, shuffling the holes can
still produce benefit.)

A variant on physical shuffling is to perform logical shuffling, for example, at the level of entire
files. This is the approach adopted in the iPcress file system [Staelin91]. An obvious advantage of
this technique is that it can more easily keep associated data together; disadvantages are
assumptions that an entire file has a common access rate, that intra-file data associations are more
important than inter-file associations, the variable-sized nature of the objects that have to be
moved around, and the modifications that have to be introduced into the file system
implementation(s) that are to take advantage of it.

3 Hypotheses
Cylinder shuffling was tested at the University of Maryland by Carson and Vongsathorn
[Carson89, Vongsathorn90] using physical cylinders as the data unit, and shuffling the disk once
a day. On their (rather slow) disk, they reported a rough halving of seek times. We decided to

4

attempt a validation of their work on a wider range of input data and over a larger range of
conditions. Basing our expectations on their work, we started out with a number of hypotheses
that we decided to test:

1. Adaptive disk shuffling is beneficial even with fast disks and moderately-sized file caches.

2. The smaller the unit of shuffling, the greater the performance gain—although at the expense
of requiring more internal state for access counts.

3. There is some optimum time interval between reshuffles. If rearrangement is too frequent,
too much time will be spent shuffling data, and performance will decrease. If shuffling is too
infrequent, performance will be lost as the layout becomes less well adapted to the current
use patterns.

4. Most of the benefit can be obtained by rearranging only a small portion (e.g. 20%) of the
disk.

5. Keeping track of dependencies between disk accesses is of value, especially for the smaller
shuffling units.

We tested the validity of these hypotheses under a number of different conditions, including:
several disk types; a range of workloads; different shuffling units (block, track, half-cylinder,
cylinder); a range of time intervals between rearrangements (1 hour to 1 week); subsets of the total
disk space being shuffled; different dependency-detection policies.

This paper reports the results of these investigations.

4 The experiments
We constructed a disk simulator and fed it with physical disk-access traces gathered from a
number of our local UNIX systems, giving us the twin benefits of realistic data and experimental
repeatability: the traces could be repeatedly replayed into simulations of different policies to
compare their effects. This section describes the traces we gathered, the simulator, and the
experiments we ran to calibrate it.

4.1 Tracing I/O accesses
Physical I/O activity was measured on a number of systems (listed in Table 1). All of these
systems were running release 7.0 of the HP-UX operating system. The implementation of HP-UX is
derived from 4.2BSD, while its external interface conforms to a superset of AT&T’s System V
validation suite [Clegg86]. All three machines had 3 MB file buffer caches.

The traces were obtained using a software-based measurement system built into the operating
system. The events recorded for these experiments captured request enqueue time (when the driver
first sees an I/O request), start time (when physical I/O is initiated), and finish time. As well as a

Table 1 . Systems used for tracing.

Name Processor Disks Type

cello HP 9000/845 HP C2204A Timesharing; editing/mail/programming; ~20 users
red HP 9000/840 HP 7935H Timesharing; news/mail; ~200 users
hplajw HP 9000/834 HP C2200A Single user workstation; editing/mail

5

timestamp, each trace record included a block number, device number, transfer size and whether
the I/O was a read or a write. The times were recorded to a 1 µs granularity; the clock is accurate
to within 0.05%, but has a very much smaller drift rate than this.

The first trace was gathered over a 7 day period in late July and early August 1990 on system red
(see Table 1). A second set of traces was gathered by monitoring the systems cello and hplajw
during a much longer period: February to June 1991. Table 2 summarizes the traces used in these
experiments.

4.2 The disks
Since the goal of adaptive disk layouts is to reduce seek and rotational latencies, it is important to
have a good model of what these are on real disks. Our first task was to characterize the
performance of the disk drives that we were going to simulate.

The graphs of seek time as a function of distance for these drives have two portions: a constant-
acceleration region where the seek time is proportional to the square root of the distance, followed
by a constant-velocity portion where increasing distance results in linearly increasing time.
Through a series of measurements, we obtained data that allowed us to characterize the behavior
of the disks over the parameters of interest to us. Table 3 shows the results. The seek time data is
plotted graphically in Figure 2.

Disk track and cylinder sizes are rarely convenient multiples of the file system block size, so we
also conducted a sequence of experiments to measure the effects of track and cylinder switching
on data transfer rates for both reads and writes, and incorporated an approximation of these into
our models.

The rate at which data comes off, or goes onto, the disk medium was calculated from the product
of track capacity and rotational speed. The transfer times across the interconnect between host
and disk controller were measured as a side effect of our data transfer experiments. We chose to
ignore channel contention effects, as our measurements showed that they were an insignificant
factor in the overall I/O times.

Table 2 . Summary of the traces gathered.

ID System Disk type File system Dates # of I/Os Reads

 C red HP 7935 / (root)+swap 90.7.27 – 90.8.3 727 910 66%

 E hplajw HP C2200A entire file system 91.2.11 – 91.3.28 575 669 36%
 F cello HP C2204A /users 91.4.22 – 91.6.10 1 678 478 59%
 G cello HP C2204A / (root)+swap 91.4.22 – 91.6.10 1 523 984 61%

Notes: the / file system contained only system files (e.g. /etc, /lib, /bin); the /users file system contained just users’
private data, with no system files. The disk on hplajw (trace E) was the only disk on the machine apart from the one
used for recording the traces: it included both file system and swap space.

Swap space was included in our simulations because we were interested in examining the effectiveness of shuffling
algorithms that could be applied in the device driver or disk controller, where the distinctions between file system and
swap areas are no longer visible.

6

4.3 The simulator
Our simulator was written in C++, and was designed to mimic the behavior of the operating
system and disks on which the original trace data had been gathered. The software features that
were modeled included the disk driver strategy/scheduling algorithm (i.e. its request reordering
policy), and operating system and disk driver overheads. The disk model accounted for seek time,
rotational latency, channel transfer time, and the performance effects of blocks that crossed track
and cylinder boundaries.

We modeled the rotational position of the disks by calculating it from the intial start time and the
nominal rotation speed.

Table 3 . Summary of disk characteristics

Formatted Rotation Controller Host
Disk Type Size capacity1 Cylinders Heads speed overhead interconnect3

HP 7935H removable 14” 404 MB 1321 13 2700 rpm 3.5 ms HP-IB
HP 7937H fixed 8” 571 MB 1396 13 3600 rpm 1.0 ms HP-IB
HP C2200A fixed 5.25” 335 MB 1449 8 4002 rpm 1.1 ms HP-IB
HP C2204A dual fixed2 5.25” 1.3 GB 2×1449 2×16 4002 rpm 1.6 ms HP-FL
HP 97560 fixed 5.25” 1.3 GB 1962 19 4002 rpm 1.0 ms SCSI–II

Average 1 cyl ——— Accelerating region —— ——— Linear region ———
Disk seek4 seek5 range time range time

HP 7935H 24.0 ms 3.95 ms 2–385 cyl 2.90 + 1.05√d > 385 cyl 16.50 + 0.018d
HP 7937H 20.5 ms 4.87 ms 2–525 cyl 5.28 + 0.79√d > 525 cyl 15.15 + 0.016d
HP C2200A 17.0 ms 2.5 ms 2–615 3.45 + 0.60√d > 615 cyl 10.84 + 0.012d
HP C2204A 17.0 ms 2.5 ms 2–6152 3.45 + 0.60√d > 615 cyl 10.84 + 0.012d
HP 97560 13.0 ms 3.64 ms 2–383 3.24 + 0.40√d > 383 cyl 8.00 + 0.008d

Notes:
1. Capacity information from [HPdisks89a] and the OEM manual for the HP 97560, plus the HP Series 6000 Disk
Storage System Owner’s manual.
2. A C2204A disk has two 5.25” mechanisms that a single controller makes look like one—i.e. it appears as a single
disk with twice the cylinder count of the individual drives. The performance data reported here is for the individual drives.
The simulations of traces from these disks used the parameters for the HP 97560 since these have similar capacity,
and don’t exhibit anomalous effects such as multiple command queueing that the C2204As can use as a result of the
two mechanisms.
3. Data transfer speeds to and from the host for these disks are:

HP-IB: 1 MB/s from disk to host, 1.2 MB/s from host to disk.
HP-FL: 5 MB/s
SCSI: 5 MB/s in synchronous burst mode.

4. “Average seek” is defined as the sum of all possible seek times divided by the number of seeks.
5. “1 cylinder seek” is sometimes smaller than expected because disk controllers sometimes handle this case specially.

7

The simulator used the same I/O request ordering algorithm as the HP-UX device drivers. This
CSCAN (cyclic scan) algorithm sweeps across the cylinders from zero upwards, servicing all the
requests that do not require it to change direction. When it reaches the end of the disk, it (logically)
makes one long seek back to the first cylinder and starts afresh to service any remaining requests
as well as new ones.2

Any trace-driven simulation has to consider how to model the effects of events that happen faster
or slower than in the original trace. Arguably the best approach is to model “think time” in the
process generating synchronous I/O requests (e.g. reads, forced-writes), and to preserve inter-
arrival times for asynchronous ones (e.g. read-ahead, write-behind). Our trace data did not
provide enough information to do this, so we chose instead to maintain the original request
enqueue times, thus making the request rates independent of the service times.

The simulator both accepted and emitted trace-format data, as did a number of tools we
constructed to acquire data, or filter traces. By this means, we were able to pipeline arbitrary
combinations of filters, analysis tools, and simulations together. We used the tools to gather
averages, standard deviations and frequency histograms for:

– seek distance (in cylinders)
– total I/O time (completion time minus enqueue time)
– physical I/O time (completion time minus start time: i.e. excluding time spent on the I/O

request queue)

The major simplification we made was to assume that the layout of the disk could be changed
instantaneously. We realize that this is unrealistic: in previous work, it took 30–60 minutes to
switch between two significantly different layouts [Vongsathorn90]. However, our early results
suggested that it was quite reasonable to do infrequent disk shuffling during “idle” periods, when
the costs of doing the rearrangement would be immaterial.

2 The real HP-UX algorithm is rather more complex than this, and includes a great deal of code that attempts to avoid
starvation effects such as undue bunching of requests at a single cylinder. The effects are only significant in
pathological situations, however.

Figure 2 . Seek times as a function of distance for the disks used in these experiments.

500 1000 1500 2000

Seek Distance (cylinders)

10

20

30

40

S
ee

k
T

im
e

(m
ill

is
ec

on
ds

)

HP 7935H

HP 7937H

HP C2200A & HP C2204A

HP 97560

8

4.4 Simulator validation
In addition to constructing simulations of a variety of different experimental shuffling policies
and algorithms we also constructed a base level simulation that did no rearrangements, but
merely tried to mimic the observed behavior of the systems we were tracing. This was used to test
the accuracy of the simulator, by comparing the output from the simulator with the original
traces.

Despite our rather simplistic model of rotation positioning, the mean difference between the
measured and simulated I/O durations was only 4% (6% for reads, 3% for writes). Even so, to
minimize the chance that we had missed some subtle timing effects, we compared simulator runs
against each other, rather than comparing simulator runs against the original trace data. This also
allowed us to experiment with using different disk types than those present when the original
traces were recorded.

5 Results
This section presents the tests we applied to our hypotheses. We began by examining an
environment similar to that reported in [Vongsathorn90], with moderate loads being applied to
relatively slow disks. This is the environment in which disk shuffling is likely to have the most
benefit: the moderate load avoids large I/O queues (the execution of which would be optimized
by the device driver scheduling policy), and the slow disks emphasize the importance of cylinder
placement.

Having convinced ourselves that it was possible to get some benefits from shuffling, and having
tried a number of different reorganization frequencies and dependency-detection algorithms, we
gathered a great deal more trace data over a longer period of time. These traces were gathered
from faster systems with more modern disks than the first set, so we rechecked our earlier results
in the new context, and then proceeded to apply a model of the fastest disk available to us (the
HP 97560), and evaluated the effects of adaptive layout on it.

5.1 Benefits and penalties of simple shuffling
Obviously, improving the performance of I/O only brings significant benefits if the system does
I/O. To see whether this was the case, we began by measuring the I/O rates on the root disk of
red, a local timesharing system (trace C—see Table 2). Figure 3 shows the distribution of I/O
activity over the one week period covered by this trace. Each of the large increases in activity
correspond to a weekday, and the low activity period between 20 and 60 hours corresponds to the
weekend.

Figure 3 also shows the average physical I/O time and mean seek distances by hour throughout
the week. The system is not particularly busy, with a mean arrival rate of one request per second
at this disk, although the peak reaches 8.6 requests per second averaged over a whole hour.
Typical physical I/Os take 32–38 ms, of which 8 ms is the data transfer time, 11 ms is average
rotational latency, and 3.5 ms is controller overhead, leaving around 10–16 ms of seek time on
average (these are old, slow disks!). The average seek distance is 171 cylinders, with a standard
deviation of 346 cylinders. The distribution of mean seek distances (Figure 3d) shows that same-
cylinder accesses are common, short seeks of less than about 50 cylinders are more common than
would be expected for a random layout (this is doubtless due to the CSCAN scheduling discipline),
and other seek distances occur fairly uniformly (the slope of the graph between 50 and 1321
cylinders is roughly constant).

9

During busy periods (e.g. from hours 70–80), the average seek distance is reduced, presumably
because the request scheduling algorithm in the device driver is able to do a better job with longer
queues.

The effect of performing a single, straightforward shuffling of this data at the end of the first 24
hours is shown in Figure 3. The shuffling algorithm we used allocates cylinders to the organ pipe
arrangement based solely on access frequency, taking no account of dependency data. The first
day’s results are the same as before, since the shuffling algorithm is merely accumulating access
frequencies during this period. Afterward, a dramatic reduction in seek distance is observed
(from a mean of 169 to a mean of 36), and a somewhat smaller reduction in average physical I/O
time (from 33.9 ms to 30.3 ms) due to the reduction in seek distance.

Figure 3 . Trace data from root disk of machine “red” over the period 1990.7.27 – 1990.8.3. Trace C.

Note: the horizontal dashed lines on these (and other) graphs indicate the mean value of the datum over the interval
covered by the dashed line.

a. I/O rates averaged over each hour (mean =
4307/hour).

b. Average physical I/O time averaged
over each hour (mean = 33.9 ms).

c. Average seek distance averaged over each hour
(mean = 171).

d. Cumulative distribution of seek distances.

0

5000

10000

15000

20000

25000

30000

35000

0 20 40 60 80 100 120 140 160 180

N
um

be
r

of
 I/

O
’s

Time (hours)

26000

28000

30000

32000

34000

36000

38000

40000

0 20 40 60 80 100 120 140 160 180

A
ve

ra
ge

 I/
O

 T
im

e
(m

ic
ro

se
co

nd
s)

Time (hours)

0

50

100

150

200

250

300

350

400

0 20 40 60 80 100 120 140 160 180

A
ve

ra
ge

 S
ee

k
D

is
ta

nc
e

(c
yl

in
de

rs
)

Time (hours)

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000 1200 1400

C
um

ul
at

iv
e

F
ra

ct
io

n

Seek Distance (cylinders)

10

The distribution of seek distances shows clearly what has happened: the graph is skewed towards
the smaller distances. Over time, this distribution becomes more uniform as the shuffling done
early in the trace becomes less and less appropriate for the workload during the rest of the week.

Since the number of I/Os per hour is not constant, we take as our figure of merit the weighted
percentage improvement in I/O time (Figure 3d). This value is calculated as the percentage
improvement per hour multiplied by the normalized I/O rate for that period. (To avoid biasing
the results with the unshuffled period, it only includes data after the first rearrangement.) For this
trace, there is an average weighted improvement of 10.6% in physical I/O time.

Although the results from our experiments with data from system red were encouraging, and
indeed consistent with the data in [Vongsathorn90], we also wanted to validate the benefits of
disk shuffling on different disks over a range of workloads. To test the stability of our results, we
repeated the tests on three long traces: two from a different timesharing system (cello), one from
a personal workstation (hplajw). The results are shown in Figure 5, Figure 5, and Figure 5.

Figure 4 . The same data as Figure 3, with a single cylinder shuffle occurring 24 hours into the trace.

c. Distributions of seek distances after shuffling, as a
function of time since rearrangement. Day 0 is before
any shuffling.

a. Average physical I/O time after shuffling (mean =
30.3 ms).

b. Average seek distance after shuffling (mean = 36
cylinders).

d. Weighted percentage improvement in physical I/O
time (mean = 10.6%).

26000

28000

30000

32000

34000

36000

38000

40000

0 20 40 60 80 100 120 140 160 180

A
ve

ra
ge

 I/
O

 T
im

e
(m

ic
ro

se
co

nd
s)

Time (hours)

0

50

100

150

200

250

300

350

400

0 20 40 60 80 100 120 140 160 180

A
ve

ra
ge

 S
ee

k
D

is
ta

nc
e

(c
yl

in
de

rs
)

Time (hours)

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000 1200 1400

C
um

ul
at

iv
e

F
ra

ct
io

n

Seek Distance (cylinders)

day0
day1
day4
day6

0

5

10

15

20

25

30

35

40

45

50

40 60 80 100 120 140 160 180

W
ei

gh
te

d
%

 Im
pr

ov
em

en
t

Time (hours)

11

Figure 5 . Trace F (/users) from cello before and after shuffling.

b. Average physical I/O time before shuffling (mean =
14.72 ms).

d. Average seek distance before shuffling (mean = 96
cylinders).

c. Average physical I/O time after shuffling (mean =
15.13 ms).

e. Average seek distance after shuffling (mean =
100 cylinders).

f. Weighted percentage improvement in physical I/O
time (mean = –2.66%).

a. Hourly I/O rates (mean = 1426/hour)

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

0 200 400 600 800 1000 1200

N
um

be
r

of
 I/

O
’s

Time (hours)

0

5000

10000

15000

20000

25000

30000

35000

40000

0 200 400 600 800 1000 1200

A
ve

ra
ge

 I/
O

 T
im

e
(m

ic
ro

se
co

nd
s)

Time (hours)

0

5000

10000

15000

20000

25000

30000

35000

40000

0 200 400 600 800 1000 1200

A
ve

ra
ge

 I/
O

 T
im

e
(m

ic
ro

se
co

nd
s)

Time (hours)

0

200

400

600

800

1000

1200

1400

0 200 400 600 800 1000 1200

A
ve

ra
ge

 S
ee

k
D

is
ta

nc
e

(c
yl

in
de

rs
)

Time (hours)

0

200

400

600

800

1000

1200

1400

0 200 400 600 800 1000 1200

A
ve

ra
ge

 S
ee

k
D

is
ta

nc
e

(c
yl

in
de

rs
)

Time (hours)

-600

-500

-400

-300

-200

-100

0

100

0 200 400 600 800 1000 1200

W
ei

gh
te

d
%

 Im
pr

ov
em

en
t)

Time (hours)

12

Figure 6 . Trace G (/ plus swap) from cello before and after shuffling.
Note: the large spikes in the I/O time graphs correspond to periods with low I/O rates.

0

5000

10000

15000

20000

25000

0 200 400 600 800 1000 1200

N
um

be
r

of
 I/

O
’s

Time (hours)

12000

14000

16000

18000

20000

22000

0 200 400 600 800 1000 1200

A
ve

ra
ge

 I/
O

 T
im

e
(m

ic
ro

se
co

nd
s)

Time (hours)

12000

14000

16000

18000

20000

22000

0 200 400 600 800 1000 1200

A
ve

ra
ge

 I/
O

 T
im

e
(m

ic
ro

se
co

nd
s)

Time (hours)

0

50

100

150

200

250

300

350

400

0 200 400 600 800 1000 1200

A
ve

ra
ge

 S
ee

k
D

is
ta

nc
e

(c
yl

in
de

rs
)

Time (hours)

0

50

100

150

200

250

300

350

400

0 200 400 600 800 1000 1200

A
ve

ra
ge

 S
ee

k
D

is
ta

nc
e

(c
yl

in
de

rs
)

Time (hours)

-100

-80

-60

-40

-20

0

20

40

0 200 400 600 800 1000 1200

W
ei

gh
te

d
%

 Im
pr

ov
em

en
t

Time (hours)

b. Average physical I/O time before shuffling (mean =
15.88 ms).

d. Average seek distance before shuffling (mean = 132
cylinders).

c. Average physical I/O time after shuffling (mean =
14.93 ms).

e. Average seek distance after shuffling (mean = 43
cylinders).

f. Weighted percentage improvement in physical I/O
time (mean = 5.7%).

a. Hourly I/O rates (mean = 1294/hour).

13

Figure 7 . Trace E (/ plus swap) from hplajw before and after shuffling.
Note: one day’s worth of trace data was lost during data collection (around hour 400).

d. Average seek distance before shuffling
(mean = 119 cylinders).

c. Average physical I/O time after shuffling (mean
= 23.2 ms).

e. Average seek distance after shuffling (mean = 53
cylinders).

f. Weighted percentage improvement in physical I/O
time (mean = 3.5%).

0

50

100

150

200

250

300

0 200 400 600 800 1000

A
ve

ra
ge

 S
ee

k
D

is
ta

nc
e

(c
yl

in
de

rs
)

Time (hours)

-300

-250

-200

-150

-100

-50

0

50

0 200 400 600 800 1000

W
ei

gh
te

d
%

 Im
pr

ov
em

en
t)

Time (hours)

b. Average physical I/O time before shuffling
(mean = 24.1 ms).

a. Hourly I/O rates (mean = 534/hour).

0

2000

4000

6000

8000

10000

12000

0 200 400 600 800 1000

N
um

be
r

of
 I/

O
’s

Time (hours)

18000

20000

22000

24000

26000

28000

30000

0 200 400 600 800 1000

A
ve

ra
ge

 I/
O

 T
im

e
(m

ic
ro

se
co

nd
s)

Time (hours)

18000

20000

22000

24000

26000

28000

30000

0 200 400 600 800 1000

A
ve

ra
ge

 I/
O

 T
im

e
(m

ic
ro

se
co

nd
s)

Time (hours)

0

50

100

150

200

250

300

0 200 400 600 800 1000

A
ve

ra
ge

 S
ee

k
D

is
ta

nc
e

(c
yl

in
de

rs
)

Time (hours)

14

These experiments show that the mean seek distance does not always improve with shuffling
(trace F, Figure 5), with the result that shuffling can make the performance worse. When things
do improve (as in the other two traces), the weighted benefit is quite small—less than 6% in these
experiments. Even when the mean seek distance does decrease dramatically (e.g. from 132 to 43
cylinders for trace G, Figure 5), the resulting benefit is small: 6.0% of mean physical I/O time,
5.7% weighted improvement.

Why is this?
• Around 50% of the I/Os require no seeks at all, and cylinder shuffling provides no

benefit to these I/O requests.

• Data that used to be contiguous before shuffling may now be split into non-contiguous
areas—even, in the worst case, on opposite sides of the organ pipe. This can increase
seek distances.

In addition, what used to be a single I/O may now have to be split into two (consider
a block that spanned a cylinder boundary before shuffing). The experiment shown in
Figure 3 had 9490 split I/Os out of a total of 632709 I/O operations after the first day—
i.e. around 1.5% of the I/Os, and a 1.5% reduction in the performance benefit from
shuffling.

• As disks get faster, the benefit of reducing the seek distance decreases. For example,
on the HP 7935s used on red, the system we first tested, a reduction in average seek
distance of 150 to 20 cylinders results in a 52% reduction in seek time (15.8 ms to
7.6 ms), which corresponds to 21% reduction in the time for a typical 8 KB I/O.

On the more modern HP 97560, the same seek distance reduction causes only a 38%
reduction in seek time (8.1 ms to 5.0 ms), and only improves a typical I/O by 15%.

We concluded that the positive case for disk shuffling made in [Vongsathorn90] should be treated
with greater caution when applied to modern disks and a wider range of workloads. To
understand why, we decided to pursue a more detailed characterization of data shuffling.

We began by looking at the large negative peaks in the mean performance improvement graphs.
We surmised that these coincided with the nightly backups, and confirmed this hypothesis by
calculating the weighted performance improvements after excluding the backup periods (0600–
0900 each day for cello; 0300–0600 for hplajw). The results are as follows:

These data show that the nightly incremental backup has relatively good locality of reference in
the unshuffled case (the unshuffled seek distances are lower with the backup periods included),
but poorer locality after shuffling (the shuffled seek distances are higher with the backup periods
included). We postulate that the straightforward implementation of shuffling used here destroys
the cylinder groups that a 4.2BSD-based file system uses to keep directories and the inodes

Table 4 . Effects of eliminating backup periods from the analysis.
The data shown are the mean seek distances before and after shuffling, together
with the weighted percent improvements (“benefit”) for physical I/O times.

— including backup periods— ——excluding backup periods——
Trace unshuffled shuffled benefit unshuffled shuffled benefit

E 119 cyl 53 cyl 3.5% 149 cyl 18 cyl 10.2%
F 96 cyl 100 cyl –2.7% 102 cyl 49 cyl –2.4%
G 132 cyl 43 cyl 5.7% 155 cyl 22 cyl 6.8%

15

(metadata) together. The result is increased disk arm movement when the inodes are being
scanned to determine whether a file needs to be dumped. When a full backup is taken (monthly
on cello, weekly on hplajw), a significant fraction of the entire file system is read, resulting in even
worse locality—as the large negative peaks with this periodicity in Figure 5, Figure 5 and Figure
5 show.

For the remainder of this paper, we present data with the backup periods included, since this is
corresponds to the case when no additional system configuration information has to be supplied
to the shuffling code. We believe that performance improvements of this type (and magnitude)
should not require a system administrator to provide configuration data, and, moreover, that
operating without the additional information will be the common case: even if hints can be
supplied, experience suggests that they will not be.

5.2 Effects of varying the shuffling interval
To determine the long-term effects of drift in the active cylinder set, we ran an experiment that
performed a single shuffle once after 24 hours. Figure 8 shows the result: there is only a very
gradual degradation in performance over time if no shuffling is done.

This experiment suggested that infrequent shuffling will produce most of the benefit to be
obtained. To confirm this, we performed tests with shuffling at intervals of 1 hour, 4 hours, 8
hours, 1 day (24 hours), 4 days, and 7 days. The results are shown in Figure 9.

There are two kinds of behavior shown here. In the traces from cello, the shuffling interval makes
little or no difference. In the trace from hplajw (trace E), the longer shuffling intervals perform
better, up to around 24 hours (the period of the nightly incremental backup), after which little
further benefit is obtained.

On average, the best effect was obtained for shuffling infrequently: between daily and once a
week. We had hypothesized that long shuffling intervals would do best, which these data
confirm. (The relative benefit from doing infrequent shuffling would be even greater if the costs
of doing the rearrangement were to be taken into account.)

Figure 8 . The long-term effects of performing a cylinder reshuffle once after 24 hours. The graph plots the
mean seek distance averaged over both hours and weeks. Trace E.

0

50

100

150

200

250

300

350

400

0 200 400 600 800 1000 1200

A
ve

ra
ge

 S
ee

k
D

is
ta

nc
e

(c
yl

in
de

rs
)

Time (hours)

16

5.3 Aging access count data
The simplest way to accumulate access counts is to reset them all to zero at the beginning of each
shuffling interval, and only count accesses during the shuffling interval immediately preceding a
reshuffle. Given that infrequent shuffling is so successful, we decided to see whether we could
reduce short-term fluctuations by merging in some “history” from previous data-gathering
periods. This we explored through a family of age-weighting algorithms, defined as follows.

aged(α): Cnew = α Crecent + (1-α) Cold

Where: Crecent is the access count accumulated for a quantum during the most recent time interval,
and Cold is the previous value of Cnew. The case α=1.0 corresponds to considering only the most
recent access count data.

We tested the range 0.2 ≤ α ≤ 1.0, but found no significant variation in the mean physical I/O times
for these values of α.3

5.4 Effects of varying the shuffling quantum
We hypothesized that smaller shuffling quanta would be better. The smaller the shuffling
quantum (at least down to the file system block size), the easier it would be to concentrate
frequently-accessed blocks together. (Consider a cylinder with some blocks frequently accessed,
and others not: the average access rate might not be enough to cause the cylinder to be moved to
the center of the disk.)

We tested the effects of shuffling units of 8 KB blocks (the I/O unit of our file systems), full tracks,
half-cylinders, and cylinders. The results are shown in Figure 9. The general trend is for smaller
shuffling quanta to perform best, although trace F is a counterexample.

Early on we discovered that it is very important to keep the shuffling quantum a multiple of the
file system block size. If it is not, then many I/O requests will be split across independently-
migrating units, leading to a great increase in total seek distance. The quanta selected are based
on logical cylinders or tracks rather than physical ones, since the disk drives rarely provide an

3 For consistency, all the other simulations in this paper used the aged(0.8) weighting algorithm.

Figure 9 . Effects of varying the interval between rearrangements.

●

●

●

● ● ●

❍
❍ ❍ ❍

❍
❍

■ ■ ■
■ ■ ■

1 hr 4 hrs 8 hrs 24 hrs 4 days 7 days
-4

-2

0

2

4

6

8

P
er

ce
nt

 Im
pr

ov
em

en
t

Shuffle Frequency

● E

❍ F

■ G

Trace ID

17

integral number of blocks on their physical tracks or cylinders. All the results reported here use
shuffling quanta whose size is determined by rounding the physical unit (track or cylinder) to the
nearest integral multiple of the file systems’ 8 KB block size.

To confirm that the shuffling interval is independent of the shuffling quantum, we calculated the
overall performance benefit from all possible combinations of our shuffling intervals and quanta.
Figure 11 displays the result. The optimum point occurs at the combination of the best
independently-determined values for interval and quantum: i.e. shuffling blocks every 7 days.

Figure 10 . Effects of different sizes of shuffling quanta; shuffling once a week.

blocks tracks half-cylinders cylinders
-10

-5

0

5

10

P
er

ce
nt

 Im
pr

ov
em

en
t

Shuffle Quantum

E

F

G

Trace ID

Figure 11 . Effects of varying both shuffling quantum and interval simultaneously. Trace E.

2

4

6

8

10

2

4

6

8

10

blocks

tracks -

half-c
ylinders

cylinders

7 days4 days24 hours8 hours4 hours1 hour

P
e

rc
e

n
t
Im

p
ro

ve
m

e
n

t

Shuffle Quantum
Frequency

18

5.5 Economizing on data movement
We hypothesized that much of the benefit of disk shuffling could be obtained from reorganizing
only a fraction of the data. Indeed, as the narrowness of the peak in Figure 1b shows, only a small
number of cylinders are accessed with any significant frequency. In particular, we observed that
with several traces, two thirds of the blocks accessed in the day were only accessed once, and were
unlikely to be accessed the next day. By not considering these blocks in our shuffling placement
algorithm (or rather, by trying to leave them alone), we could speed up the shuffling process with
minimal effect on the performance of the resulting arrangement.

We conducted a series of experiments to determine the effects of artificially limiting the amount
of data migration in each rearrangement. Figure 12 shows the effects of sorting the quanta
according to access frequency, and limiting shuffling to the most active ones. It shows that the
shuffling needs to cover at least 60% of the access counts to be effective, but this can be done by
rearranging a small portion of the disk. Indeed, even moving all the quanta accessed by 90% of
the traffic can be done by moving only 6–24% of the data—less than half that required to move all
the active quanta.

5.6 What are the best dependency algorithms?
Assuming that disk accesses are independent is not a good model of real system behavior. For
example, many files are accessed sequentially [Ousterhout85a], and this access pattern is often
reflected in the low level disk traffic—despite the effects of file buffer caches. Taking account of
these inter-quanta dependencies in access patterns can improve the overall effectiveness of disk
shuffling.

With the smallest shuffling quanta (blocks) the dependencies often represent consecutive blocks
in a file. With the largest units (cylinders) the dependencies are often less pronounced, but can
still occur with large files and groups of related files (e.g. those in a directory).

We knew that the BSD4.2 file system placement algorithms used in HP-UX do a good job of placing
blocks of large files and the blocks of files in the same directory, so we were not expecting to see
enormous benefits from doing the dependency gathering and analysis. However, we also knew
that the straightforward organ-pipe arrangement performed poorly if it led to sequentially-

Figure 12. The effects of shuffling only the most active quanta, as determined by the percentile of total
accesses that they covered. Trace E.

a. Percent improvement achieved by limiting
shuffling to the most active quanta.

blocks tracks half-cylinders cylinders
-2

0

2

4

6

8

10

12

P
er

ce
nt

 Im
pr

ov
em

en
t

Shuffle Quantum

20

40

60

80

90

100

Percent of
total
accesses

● ● ●
●

●

●

❍ ❍ ❍

❍

❍

❍

■ ■ ■

■

■

■

▲ ▲ ▲

▲

▲

▲

20 40 60 80 90 100
0

10

20

30

40

50

60
P

er
ce

nt
 o

f D
at

a
S

hu
ffl

ed

Percent of Total Accesses

● blocks

❍ tracks

■ half-cylinders

▲ cylinders

Shuffle Quantum

b. Amount of data that has to be moved after limiting
shuffling to the most active quanta

19

accessed data being split on either side of the disk. When this happened, the disk arm seeked back
and forth across the middle of the organ-pipe and performance decreased compared with the
unadapted case.

Unfortunately, performing an optimum placement using dependency data is an NP-hard
problem [Carson89], which is impractical even for cylinder-granularity shuffling (modern disks
have around 1500 cylinders). Some heuristics for assigning near-optimal placements given the
transition probabilities between every cylinder pair are described in [Carson89]. The simplest
technique (a greedy selection of the next cylinder to place) is easy to apply, but can reach non-
global minima. A rather more complex technique (simulated annealing) performs better, but is
more computationally expensive—especially as the number of shuffling quanta increases.

We took a slightly different approach to the problem, and chose to exploit our expectation that
much traffic is comprised of sequential accesses. To do this, we kept forward and backward pointers
from each shuffling quantum, together with link counts for the number of times these pointers
were “traversed”. (See Figure 13.) The link count was incremented each time a quantum was
preceded or followed by the quantum already recorded in the associated pointer slot (up to a
maximum of 255). If a different quantum was encountered than the one already recorded, the link
count was decremented; if it reached zero, the pointer’s value was replaced with the new
quantum number.

With 8 KB blocks and an 1.3 GB disk (e.g. the HP 97560), this kind of dependency data takes 1.6 MB
to store. With cylinder sized quanta, it can be represented in only 20 KB.4

When the time came to rearrange the disk, the shuffling policy selected the next quantum Q to
place in decreasing order of access count (i.e. activity). The link closure L(Q) was formed by
following the forward and backward pointers from Q. The idea is that L(Q) represents a unit of
sequential access—often, although not always, this will correspond to a file, or a portion of a file.
The following rules determined whether P was included in L(Q):5

• Quantum P must point to quantum Q.
• The access count to quantum P must be at least half that of quantum Q, or P and Q

must already be physically adjacent.

• There is still space for the placement (e.g. the end of the disk has not been reached).

• P has not already been placed.

4 We suspect that the majority of the effect could be achieved by storing dependency data only for the most active
quanta, but we did not test this. Figure 12 suggests that data on at least half of the active quanta might need to be kept
for this to be effective, but this need only represent 5–10% of the total quanta.

5 The parameters to this algorithm were determined in a rather haphazard way. The rules shown here are a slight
simplification of the set actually used.

Figure 13 . Links and count fields used by the dependency algorithm. Link information for two sequentially-
accessed quanta is shown.

access count

fwd ptr count

bkwd ptr count

access count

fwd ptr count

bkwd ptr count

quantum Q quantum P

20

All of the quanta in L(Q) are then placed contiguously, modulo the file placement interleave
factor, if this is not 1:1.

This simple data dependency algorithm did a surprisingly good job of keeping track of
dependencies. In one simulation using trace G, a chain of 1863 8 KB blocks (14.5 MB of data) was
detected and placed as a unit. Figure 14 displays the overall improvements obtained; as expected,
the benefits are largest for the smaller shuffling quanta. With the dependency algorithm in use,
even trace F exhibits a net benefit from shuffling.

6 Assessment and conclusions
Dynamic disk shuffling can improve performance, but the benefits are not as marked as might
have been imagined from the significant reduction in seek distances that are obtainable. The
technique is fairly robust to variations in shuffling frequency and shuffling quantum, although it
exhibits moderate sensitivity to the workload, and is less effective on modern disks because their
long-distance seeks are not enormously more costly than short ones.

The best disk shuffling results come from combining relatively infrequent shuffling (once a week)
with small (block or track-sized) quanta and data dependency tracking. The data aging algorithm
chosen appears to be immaterial as a result of the relatively low rate of change of the active data.
All these algorithms are readily performable inside a disk driver or disk drive with a modicum of
temporary storage.

The net performance gains seen here are only moderate: 2–15%. This is doubtless attributable to
the initially good performance of the baseline 4.2BSD file system that we used for our
measurements. Despite its design emphasis on single-user performance of very large file
transfers, it sets a high standard against which to measure file system improvements. We
conjecture that greater benefits could be obtained with a file system that did a simpler block
layout policy (e.g. MS–DOS), but we have not yet had an opportunity to test this hypothesis.

Figure 14 . The effects of the dependency-tracking algorithm.

a. Weighted percent improvement in physical I/O
time as a function of shuffling quantum size with
dependency algorithm in use.

b. Additional weighted percent improvement in physical
I/O time resulting from the dependency algorithm.

blocks tracks half-cylinders cylinders
-5

0

5

10

15

20

P
er

ce
nt

 Im
pr

ov
em

en
t

Shuffle Quantum

E

F

G

Trace ID

blocks tracks half-cylinders cylinders
0

1

2

3

4

5

6

7

8

9

10

D
iff

er
en

ce
 In

 P
er

ce
nt

 Im
pr

ov
em

en
t

Shuffle Quantum

E

F

G

Trace ID

21

Acknowledgments
Raymie Stata first brought the work of Scott Carson and Paul Vongsathorn to our attention. In
turn, they were kind enough to make available to us some of their preliminary papers and
technical reports. Richard Golding, David Jacobson, Carl Staelin and Marjan Wilkes made helpful
suggestions about improving the presentation of this material. This work was carried out as part
of the DataMesh research project at Hewlett-Packard Laboratories.

References
[Baker91] Mary Baker, John Hartman, Mike Kupfer, Ken Shirriff, and John K. Ousterhout.

Measurements of a distributed file system. Computer Science Division., Department of Electrical
Engineering and Computer Science, University of California at Berkeley. Draft of paper
submitted to SOSP. (To be replaced by the real SOSP paper reference when that is available.)

[Braunstein89] Andrew S. Braunstein. File buffer cache design in computers with large physical
memories. Masters thesis. Massachusetts Institute of Technology, Cambridge, MA, February
1989. Published as Hewlett-Packard Laboratories Technical Report HPL–DSD–89–6.

[Carson89] Scott D. Carson and Paul F. Reynolds Jr. Adaptive disk reorganization. Technical report
UMIACS–TR–89–4 and CS–TR–2178. Institute for Advanced Computer Studies, Department
of Computer Science, University of Maryland, and Department of Computer Science,
University of Virginia, January 1989.

[Clark66] W. A. Clark. “The functional structure of OS/360: Part III, data management.” IBM
Systems Journal 5(1):30–51, 1966.

[Clegg86] Frederick W. Clegg, Gary Shiu-Fan Ho, Steven R. Kusmer, and John R. Sontag. “The
HP-UX operating system on HP Precision Architecture computers.” Hewlett-Packard Journal
37(12):4–22, December 1986.

[Coffman82] E. G. Coffman Jr and Micha Hofri. “On the expected performance of scanning
disks.” SIAM Journal on Computing 11(1):60–70, February 1982.

[Geist87] Robert Geist and Stephen Daniel. “A continuum of disk scheduling algorithms.” ACM
Transactions on Computer Systems 5(1):77–92, February 1987.

[HPdisks89a] Hewlett-Packard Company. Disk product specifications and site environmental
requirements, part number 5955–3456, 15th edition, November 1989.

[Kondoff88] Alan Kondoff. “The MPE XL data management system exploiting the HP Precision
Architecture for HP’s next generation commercial computer system.” Digest of papers, Spring
COMPCON’88 (San Francisco, CA), pages 152–155. IEEE, 29 February–4 March 1988.

[Majumdar84] Shikharesh Majumdar. Locality and file referencing behaviour: principles and
applications. MSc thesis published as technical report 84–14. Department of Computer Science,
University of Saskatchewan, Saskatoon, August 1984.

[McKusick84] Marshall K. McKusick, William N. Joy, Samuel J. Leffler, and Robert S. Fabry. “A
fast file system for UNIX.” ACM Transactions on Computer Systems 2(3):181–97, August 1984.

[McVoy91] L. W. McVoy and S. R. Kleiman. “Extent-like performance from a UNIX file system.”
Proceedings of Winter 1991 USENIX (Dallas, TX), pages 33–43, 21–25 January 1991.

[Oney75] W. Oney. “Queueing analysis of the scan policy for moving-head disks.” Journal of the
ACM 22(3):397–412, July 1975.

22

[Ousterhout85a] John K. Ousterhout, Hervé Da Costa, David Harrison, John A. Kunze, Mike
Kupfer, and James G. Thompson. “A trace-driven analysis of the UNIX 4.2 BSD file system.”
Proceedings of 10th ACM Symposium on Operating Systems Principles (Orcas Island,
Washington). Published as Operating Systems Review 19(5):15–24, December 1985.

[Ousterhout89] John Ousterhout and Fred Douglis. “Beating the I/O bottleneck: a case for log-
structured file systems.” Operating Systems Review 23(1):11–27, January 1989.

[Ritchie74] D. M. Ritchie and K. Thompson. “The UNIX time-sharing system.” Communications of
the ACM 17(7):365–75, July 1974.

[Staelin91] Carl Staelin and Hector Garcia-Molina. “Smart filesystems.” Proceedings of Winter 1991
USENIX (Dallas, TX), pages 45–51, 21–25 January 1991.

[Thompson78] Ken Thompson. “UNIX implementation.” The Bell Systems Technical Journal
57(6):1931–46, July-August 1978.

[Vongsathorn90] Paul Vongsathorn and Scott D. Carson. “A system for adaptive disk
rearrangement.” Software—Practice and Experience 20(3):225–42, March 1990.

[Wong83] C. K. Wong. Algorithmic studies in mass storage systems. Computer Science Press, 11 Taft
Court, Rockville, MD 20850, 1983.

