File Virtualization with DirectNFS
Anupam Bhide, Anu Engineer, Anshuman Kanetkar, Aditya Kini
{anupam, anu, anshuman, aditya} @cal softinc.com
Cd Soft Private Limited, Pune—411 013, India
tel +91 20 567-4644
fax +91 20 567-7279
Chrigtos Karamanalis, Dan M untz, Zheng Zhang
{ christos, dmuntz,zzhang,gary _thunquest} @hpl.hp.com
HP Research Labs
1501 Page Mill Road, Palo Alto, CA
tel +1 650 857-1501
Gary Thunquest
HP Colorado
{gary_thunquest} @hp.com

Abstract

There is a definite trend in the Enterprise Storage industry to move from Network
Attached Storage (NAS) solutions to high performance Storage Area Networks (SAN).

This trangtion is not easy because of the well-entrenched NAS infrastructure that has
aready been deployed. This paper attempts to define a file system that can leverage the
exiging NAS software infradructure adong with evolving SAN technology to provide
the benefits of High Performance storage access while reducing the cogt of migrating to
these networks.

In this paper, we propose a new network file sysem, DirectNFS, which dlows NAS
clients to take full advantage of the performance and scaability benefits of SANs. In
order to achieve this god, the system presents a NAS interface to existing NAS clients
while dlowing DirectNFS dients to access storage directly over shared SAN, i.e
clients bypass the server for data access. A sarver maintains the NAS interface for
legacy clients and arbitrates access to metadata by DirectNFS (SAN aware) clients. This
metadata server ensures that the system is operable for both legacy NAS clients as well

as DirectNFS clients. The communication protocol of DirectNFS is designed as an
extendion of traditiond network file systems protocols, such as NFS and CIFS.

A prototype of DirectNFS has been built for Linux, as an extenson to the native NFSv2
implementation. Initid results demondrate that the peformance of data intensve
operations such as read and write is comparable to that of locd file sysems, such as
ext2.

1. Introduction

For the past few years, there has been an increasing trend to replace NAS storage
sysems by SAN. The primary reasons for this migration have been the increased data
dorage requirements that congtantly plague the Enterprise Computing environment.
SANs provide seamless expanson, combined with high throughput, and increased
manageability. However, NAS architecture has been around for many years and has a
wel-entrenched indtdled base. The migration to SAN makes this NAS infrastructure
obsolete and adds to the cost of aready expensive SAN systems. One mgor drawback
of the SAN systems that are deployed now is the lack of interoperability. However, this

stuation will eventudly be remedied as more users adopt SANs and as SAN sandards
evolve.

Today, with multiple operating sysems and multiple vendor platforms present in most
data centers, SAN inter-operability is highly vaued. NAS technologies, on the other
hand, are mature and interoperable. They use de-

facto standards such as NFS[1] and CIFS[2] to
provide data access. NFS clients are available for | an 'ammh, (b, | s |-,
amog dl plaforms. Both NFS and CIFS have
mechanisms to control and synchronize
gmultaneous access to shared data These
inherent features of NAS were taken advantage

of in the design of DirectNFS.

A dmple way of usng the SAN, as shown in
Figure 1, is to retan the familiar dient/server
modd, with al the storage resources on the SAN
gopearing as locd disks to the sarver. All the file
accesses by dlients in this scenario are forced to pass ~ Figure 1 SAN with NAS Clients
through the file server. This creates heavy |oads on the File Server.

In order to diminate this overhead of data being copied through both SAN and LAN,
the clients must be given the ability to access the data directly through SAN. To endble
clients to access data directly, we have to provide them with a file location mep theat
describes on which device and on which block the file data resdes - information that is
maintained as part of the metadata of the file system.

There have been different solutions to the didtributed storage problem, ranging from
“Shared Everything” to “Shared File Volume' architectures. In a “Shared Everything”
filesytem, dl dients maintan data as well as metadaa portions of the file sysem .
Mog of the cluster file systems follow this approach (Petd /Frangipani[3], GFF4]). In
a “Shared File Volume’ filesysem, one centrd entity is in charge of updaing the daa
and metadata. Mogt client / server file systems follow this approach (NFS, CIFS). In a
“Shared Everything” approach the implementation of the file system and its recovery on
falure is complex. On the other hand, in a “Shared Fle Volume' approach, the
scdability and performance of the file sysem are limited due to the exigence of a
sngle sarver. In the desgn of DirectNFS we have chosen to tread a middle ground
between these two approaches. We have chosen to create a shared architecture for data,
by making the clients aware of the physca layout of each file, which dlows the clients
to access data directly through the SAN. However, we do not allow dients to modify
the metadata directly. Once we alow the clients to access data directly, the NAS-
provided guarantees of single system semantics bresk down. This is unacceptable
because a lack of sngle sysem semantics would lead to corruption of the file system.
The solution is to creste an entity that enforces these semantics, and this entity in
DirectNFS is known as the Metadata Server. The Metadata Server is responsible for all
metadata modifications in the file sygdem. Since mogt filesysem metadata operations
ae a@omic in nature, a sngle authority in charge of metadata modifications makes file
system implementation and recovery easer. The Metadata server dso provides NAS

interfaces to legacy clients for interoperability. This approach does fave a drawback of
introducing a sngle point of falure (metadata server) which makes the system less fault
tolerant as compared to “shared everything” file sysems. We bdlieve that the potentid
gans from implementing a “shared LAN

evaything’ file sydgem ad making it
compatible with legacy dients ae not
worth the complexity of the
implementation.

DirectNFS clients are dlowed to

cache the block metadata, or the
information pertaining to location of files.
Coherency is enforced usng a lease
protocol. The metadata server acts as an
arbitrator between the clients to make sure
that the cached metadata is vdid. The
network architecture of DirectNFS is shown in Figure 2. By adding a SAN connection
and DirectNFS software to each dlient, clients can utilize the file server for file sysem
metadata access, locking, and coherency, but they read and write file data directly from
the storage, bypassng the file server. The Introduction of a sSmultaneous deata access
path can improve file serving performance through paradld and direct transfer of data
between the data sources and the dlient sysems. This adso achieves better utilization of
the file server by reducing the CPU and network load on the Metadata Server. Clients
that either do not have a SAN connection or do not have the DirectNFS software can
continue to access data through the server usng the NFS or CIFS protocol clients,
which they dready have. This makes DirectNFS a powerful tool in migration of
existing LAN/NAS combination to SAN.
We have implemented a GNU/Linux prototype of DirectNFS. Many platforms such as
FreeBSD, Solais and HP-UX were conddered for reference implementation.
GNU/Linux was chosen primarily because of the ease of source code avalability,
generd acceptance in terms of usage and the support from the large community of
hackers.

In our GNU/Linux prototype, we have demonsirated throughput comparable to that

of a locd (ext2) file sysdem. Thus, we provide client agpplications the ability to have
both shared file access and near locd file-system performance smultaneoudy. We have
aso observed lower server resource utilization in the metadata server compared to a
NAS sarver, which implies that DirectNFS can support more dlients than traditiond
NAS sarvers. DirectNFS implementation is trangparent to gpplications running on the
clients no source code changes are necessary to client gpplications. During system
operation, DirectNFS can be turned on or off without dtering the file system semantics.
In this paper, in section two we tak about the goads associated with the DirectNFS
design, section three talks about the design in detail. Section four of this paper deds
with the Linux prototype. Section five discusses work done previoudy in this area In
section sx, we highlight the peformance achievements of DirectNFS. We present
future directions for DirectNFS in section seven, and conclude in section eight.

Figure 2: DirectNFS Network Architecture

2. DirectNFS Design Goals

In this section, we provide a ligt of design objectives of the DirectNFS architecture. In
subsequent sections, we discuss the DirectNFS architecture in greater depth.
- Sorage Scalability - Storage space must scde wdl with the continuous
accumulation of data
High Performance - DirectNFS ams to provide a high peformance remote file
system, with orders of magnitude performance improvements over traditiond NAS
protocols.
File System Scalability and Recovery - To creste a ample didributed file sysem
that can provide both scalability and recoveraility.
Independence from Physical File Systems - DirectNFS must be able to run
irrepective of the underlying physicd file system thet is used for Storage.
Portability - DirectNFS should be portable to other Operating systems without
much effort.
File Virtualization over SANs - Enable the seamless integration of Storage Area
Networks into NAS environments by adding a “File Virtudization” layer on top of
the block-leve interface that SANS provide.

3. Design

The basic philosophy behind the design of
DirectNFS is the separation of data from
metadata operations to increese pardldism
in file sysem operations. Only read and
write operations ae taken over by
DirectNFS dlient software, dl the other File
Sysem opedtions ae ill peformed
through the NAS protocol. This makes
DirectNFS desgn portable, thereby
enabling us to use the same desgn on a

NAS Protocols=— = = = = = = host of other platforms including NT, BSD,
DirectNFS Protocol= = = = =— = — - - Solaris and HP-UX.
Direct Data Access The Figure 3 shows these operations more

Figure 3: DirectNFS Architectural Overview clearly, the communication between the

DirectNFS client and Metadata server. This

communication includes Lease Protocol communication to mantan Metadaa

coherency, the Metadata information requests and NAS protocol functiondity that is not

intercepted by DirectNFS. The Legacy NAS client communicates with the Meta data
sarver asif it were an ordinary NAS server.

3.1.Architecture Overview

This section provides an overview of DirectNFS architecture including DirectNFS
extensons to the NFS protocol, cache coherency mechanisms, optimizations, and
Security.

3.1.1. Extensionsto NFS
DirectNFS defines extensons to the NFS-RPC[5] protocol that implement the
separation of the datalmetadata path. This includes new RPCs used by the clients to
retrieve the physicd location of files on the storage (block lists) and additiond RPCs to
enforce cache coherency. The native RPC set of NFS is used to perform metadata
operations on the server.
The new RPCsimplemented by DirectNFS are,
GETBLKLIST : This RPC dlows the clients to get the block ligt of the files that
are present in the system. The arguments to this RPC are the NFS file handle
and the byte range for which the block list is requested.
GETLEASE : This RPC is used by the DirectNFS client to acquire the lease for
localy cached metadata This RPC can be piggy backed on the GETBLKLIST
RPC. The argument is the NFS file handle and duration. The reply sent by the
server indicates whether the requested |ease has been granted or denied.
VACATELEASE : This RPC is used by the Metadata server to ask a client to
release the lease it has on cetain file. The argument to this RPC is NFS file
handle.
VACATEDLEASE : This RPC is issued by the client, when it releases an lease
due to the request from the metadata server.
Usng these RPCs, dients are adle to retrieve the physica locations of files and access
them directly without conflict.
3.1.2. Metadata Caching and Cache Coherency
DirectNFS dlients use extensons to the NAS RPC protocols to retrieve file metadata,
I.e. physica block and device numbers. This file metadata is then cached locdly on the
cient in a Block-Number Cache (BNC). This dlows DirectNFS clients to cache the
most frequently used physica block numbers for files that are most frequently used.
However, introducing a digtributed cache aso introduces coherency issues, which we
solve using aleases-based protocol.
A leae is a time-bound object granted by a Lease Server to a Lease Client. In
DirectNFS, a lease is granted on a per-file bass to clients by the Metadata Server. The
lease guarantees the dlient that as long as its lease is vdid; it holds the most current
copy of the data object (i.e. the cached list of blocks for the file). Multiple clients are
alowed to share leases on the same data object for read-only access. However, any
changes to this data by a third party can only be made when al other leases have been
revoked by the Server. This revocation is ether done explicitly by notifying the dient,
or implicitly, if the leases time out. In ether case, once the lease expires, the lease
holder has to discard the cached data protected by the lease.
The time-bound property of leases ensures smple recovery of clientsservers in case of
a crash or network falure. Neither the client nor the server maintains any dae. In case
of a sysem crash, the leases that were issued before the system went down will expire,
which brings the sysem to a known, dable date. This makes the recovery agorithm
extremey smple to implement, especidly when compared to the NLM protocol or
other Distributed L ock Managers.
However, this coherency mechanism does not protect the sysem aganst SAN
partitions, which may lead to data corruption — it is assumed that the SAN provides a
reliable and available service for data ddivery.

When the DirectNFS client needs to read/write a block of data, it first ensures that it has
the right lease for the kind of access it needs to

) , . ClientA ClientB Meta Data Server
peform. The interaction between DirectNFS Get Read L east
dients and Metadata Server for lease T
acquigtion in write and read scenarios s

< | .
illugtrated in Figures 4 and 5 respectively. . Get Write Lease

Once the lease has been vdidated, the client

looks up the Block Number Cache for the KW ‘
physca location of the data The Metadata 5 —— 1 vacated |
Servgr is then queried for Maadata information Grant Write L ease]
only in the event of acache miss. < |

Metadata caching is augmented with “write

dlocation gathering”. This is the process of Figure5: Sequence Diagram for Lease Protocol
deferring disk block 4dlocaions during file Interactions (Read-Write Conflict Case)
writes. In DirectNFS, we do write dlocation by ciient clients Meta Data Server
gathering write requests a the client. Smdler | | GetReadleas
byterange requests ae merged into larger >
requests, thereby reducing the number of | Gront Lease —
metadata requests to the saver. This < | GetReadlLense
sgnificantly improves performance, by reducing
the number of requests to the sarver that the 3
sver has to savice “Write gahering” [6]
pen‘ormed by NFS is amilar in its approach Figure 4: Sequence Diagram for LeaseProtocol
and it is usd to exploit the fact that there are Interactions (Read-Sharina Case)
often severad write requests for the same file presented to the server at about the same
time.

3.1.3. Write Gathering

Didributed-system file access patterns have been measured many timeq7]. It has been
found that sequential access is the most common access pattern.

Under DirectNFS, for every write request, a cache miss would result in a
GETBLKLIST RPC being sent to the Metadata Server. To improve write performance,
a technique cdled write gathering is employed that exploits the fact that there are often
severd write requests for the same file cdled about the same time. With this technique
the data portions of these writes are combined and a single metadata update is done that
goplies to them dl. In this way, the number of RPCs being sent out would dramaticaly
reduce, and considerably improve write performance.

The performance for write gathering depends on the periodicity of the deferred write
requests to the server. Two events can trigger this the write back cache being flushing
periodicaly and an eviction notice received & the dlient.

3.1.4. FileVirtualization

One of the mgor issues of merging SAN and NAS is the basc unit upon which they
operate. The legacy NAS protocols operate at a “File’ level abstraction. However, the
SAN sydgems normadly present the block level interfaces that are leveraged by
filesystems.

In the DirectNFS design, we were faced with the problem of maintaining support for
legecy clients, which meant that we needed to maintain the file level abgraction. On the

Grant Read Lease| 4

other hand, the benefits of the SAN can be leveraged if and only if we went down to the
block leve. In order to solve this problem we crested a “virtudized file interface over
SAN”, where the legacy NAS clients are under the impresson that the NAS server
sores the files, but the DirectNFS clients went below the file abstractions to leverage
the SAN peformance by using block device interface directly. In order to implement
this dudity, we had to achieve the data-metadata split and creste other mechanisms like
the lease framework in order to tackle complexities aigng out of the merger of SAN
into NAS.

The DirectNFS file sysem had to merge these two different worldviews to create a high
performance didtributed file system, which offered a NAS interface. This was achieved
by mantaning a “Virtud Fle Interface’. However, the DirectNFS client behavior can
be compared more to block device driver, than really a NAS file sysem client. In other
words, we introduced the SAN abdtractions and performance to the NAS protocols
without bresking it. This unification of SAN of under NAS is what is referred to as file
virtudization in DirectNFS.

3.1.5. Security Consderations
There are certain assumptions that are critical to DirectNFS architecture that need to be
pointed out while understanding the security mechanisms in DirectNFS. They are

The base NFS protocol operates on atomic data entities known asfiles.

DirectNFS does not alter the semantics of NFS protocol

DirectNFS rdies on the file sysem and block device layer to provide security thet is

needed.
DirectNFS has modified the VFS layer[8] of NFS communication not the NFS
semantics. The red physcd file sysem must be present for DirectNFS to work. This is
a drict requirement because we ill rdy on the file abdraction to mantan the
coherency of data.
In DirectNFS, the file system layer is responsble for security and data coherency. In
order to solve the coherency problem at file level, we have created a framework of
leases ensuring that coherency is maintained at the file system leve.

However, in case of rogue agents who can access the storage system at the block
interface by bypassng DirectNFS completdly, the posshility of unauthorized access
remains, unless the block access mechanism (block device driver) provides security.
We currently provide only file level security but do not provide block leve security.
NASD [9] addresses the issue of block level security with the help of specid hardware.
If the shared dtorage contains security mechanisms, for example iISCSl [10] has security
mechanisms built in and when DirectNFS operaies on those environments it can be
made to run in a secure mode by leveraging these underlying mechanisms. Thus
DirectNFS rdies on exiging infrastructure to take care of security (ISCSl, Fiber
channel[11], NFS). This is a conscious desgn decison made in favor of making this
protocol run on extremely varied range of hardware.

4. Implementation of the Linux Prototype

The implementation philosophy of DirectNFS was to reuse exiding libraries as far as
possible and to maintain portability. It was implemented as a kernel |oadable module on
Linux 2.4.4, and it conssts of roughly 8000 lines of code on the client and 1500 lines of
code on the server.

DirectNFS Client DirectNFS Server

knfsd

VFS

A A

A

A
A

VFS
DirectNFS Redirector |«—p| €22

|
]
]
[}
|
|
|
|
|
|
Service :
1 1 | L ease DirectNFS
I | Service
]
]
[}
|
|
|
|
|
]
]
[}
|
|
|
T
|
]

!

Transport Physical File Systerr
Wranper
A

NFS Client

Transport
1 Wrabper
A

A A A

RPC Client/Server

RPC Client/Server

A

Figure 6: DirectNFS Software Architecture

4.1.DirectNFSwith FiST

In order to make the implementation easer and portable we have used FST (File
Sysem Trandator). FST [12] is a stackable file system generator. It defines its own
highly abdract Domain-Specific Language (DSL) for describing file-system filters. A
compiler trandates the DSL description to C code for various operating systems. FHST
aso provides the necessary infradtructure for interposing the generated filter between
the VFS (Virtud File System) and the natively inddled file systems in the kernd. FST
played an important role in the initid phase of the implementation, when we used it to
generate a code skeleton for a smple, pass-through file sysem that interposed itsef
between the VFS layer and the NFS client.

On the DirectNFS client, the Linux DirectNFS module can be thought of as consisting

of these sub-modules:

1. The DirectNFS Filter/Redirector — This component interposes itsdf between the
VFS and the NFS client module. It intercepts al File 1/O operations (read, write)
and redirects them as block 1/0 requests over the SAN. This was achieved by
modifying the basc FST-generated filter to enable us to intercept 1/0O operations
indead of pasing them down the File-Sysem dgack, which is the default FHST
policy. The 1/O interception code in the redirector is system-dependent. The
redirector also contains the Block Number Cache, where the client caches location
information for each file that is accessed over DirectNFS.

2. Leasing Service — This is a digributed protocol, which dlows multiple DirectNFS
clients to keep their cached metadata coherent. The Leasing Service has been built
as a library that is independent of the trangport mechanism undernegth it. This
dlows us to plug in any trangport mechanism by writing a Transport Wrapper for
the mechaniam.

3. Transport Wrapper — This provides an interface between the Leasing Service and
the Transport Layer, in this case - RPC. This wrapper dlows the File System Client
to query file location information (i.e. block numbers) from a centrd server and to
communicate lease requests to the server.

The DirectNFS server module conssts of:

1. Leasing Service — This is the sarver-sde counterpart of the leasing service. It is
regoonsble for mantaning a lig of lessees for each file, and to resolve lease
conflicts.

2. Transport Wrapper — The transport wrapper on the server as on the client provides
an interface between the Leasing Service and the Transport Layer. This wrapper
dlows the sarver to inteface with File Sysem Clients that query for file location
information and to communicate lease rgections or grants to them.

3. DirectNFS client — A DirectNFS client is interposed between VFS and the physica
File System, to provide lease-based coherency for localy originating File Accesses.
This could be from locd gpplications trying to access the physcd File Sysem or
from knfsd while it is serving legacy NAS dlients.

The DirectNFS module on the dlient is responsble for trgpping file open, close, sync,

unlink, read, and write cals. Since these operations access the location information of

the file, the fil€s lease is tested for vdidity. If the lease is invaid, it is acquired by
issuing a GETLEASE RPC to the Metadata Server. For read and write operations, the

Block Number Cache is looked up for cached block numbers. On a cache miss, a

request is sent to the server, with a piggybacked lease request, if required. This is done

with the GETBLKLIST RPC. Once the client is granted a vaid lease on the file, and
receives the requiste file location information, it accesses those blocks directly over the

SAN.

In the event that the dlient receives a VACATE RPC, which sgnds the server ordering

an eviction of the lease that the client holds on the metadeta, the client flushes the cache

that is associated with the file, and then proceeds to inform the DirectNFS server by
sending the VACATED RPC.

Note that the DirectNFS Leasing Service makes the following assumptions.

1. The lease is time-bound, has a fixed duration, and must be renewed explicitly at the
server in order for itstime period to be extended.

2. Theclock skew between the participating entities in the lease protocol is bounded.

3. Thetime taken by the client to flush its cached after eviction is bounded.

Lease conflicts are resolved by the Lease Server using the Matrix in Table 1.

Read Write
Read Sharegble Non
Sharegble
Write Non Non
Sharegble Sharegble

Table 1: Compatibility Matrix for DirectNFS L eases

5. Performance

Read Comparison

35000
30000
8 25000 J—
9 20000 DirectNFS
o 15000 EExt 2
¥ 10000 Opai
5000 Reiser
0 ONFS 2
2GB 1GB 500 100 NES 3
MB MB
File Size

Figure 8: Read Comparison

One of the principd objectives of
DirectNFS is peformance. In this
section, we present the performance
numbers that we obtaned from the
prototype implementation. We have
measured the performance of
DirectNFS agangt other file systems
like ReserFY13], ext2 and NFS
vesons 2 and 3[14]. The systems
under test were three HP Netserver LC
2000, Pentium 1II's -933 Mhz with 128

MB RAM and 256KB L2 cache. The
machines were running Redha

Linux, with cugom-built kernels from the
24x series. They were connected to a
JBOD (HP Rack Storage/12) of four Ultra 3
Hot-Swap SCSI[15] disks 9 GB each. The
gysem was sat up in a SCS multi-initiator
arangement, with two machines acting as
DirectNFS dients, and one machine as the
DirectNFS Metadata server, with al three
mechines sharing access to the JBOD

Write Comparison with 2 GB file

30000

250001 |

O DirectNFS
Ext 2
15000 1 |DReiser

20000+ —

KB/ Sec

through a shared SCSl bus. This

to emulate a SAN. The benchmarking

was used

ReWrite Performance

35000

30000

25000

20000
15000 +

@ DirectNFS
Ext2

O Reiser

O NFS2

10000 +

NFS3

5000 4

2GB 1GB 500MB 100mB

File Size

Figure 9: Rewrite Comparison

o
10000 NFS 2
NES 3
5000
0

2GB 1GB 500 MB 100 MB
File Size

Figure 7: Write Comparison

utility that we used was lozone [16].

We benchmarked the performance of
DirectNFS with vaying file dzes and
record sizes. From the data, we observed
no dgnficat vaidions in the
comparative figures. Hence, we have
included the performance figures of Reed,
Write, Reread and Rewrite of a 2GB file
over ResierFS, DirectNFS, Ext2, NFS2
and NFS 3. Figure 7 is a the performance
grgph of vaious file sysem read

throughputs for varying file szes with fixed record sze of 256 KB. The ret of the
graphs - Figures 8, 9 and 10 - cary comparisons of write, re-read and re-write
operations. These figures indicate that DirectNFS performances are comparable to loca

file sysems.

The write performance of DirectNFS shown in Figure 8 is dightly worse than Ext2 and
ReisrFS. Re-read and Re-write were tested so that we could measure the effects of the
Linux page cache,

We have measured throughput for these
four operations with varying file sizes Re-Read Comparison
gating from 100 MB up to 2GB and
varying record sizes garting from 4 KB up
to 256 KB. Since the throughput figures
we obtan did not vary ggnificantly across 20 MM (0 (W[| [orecnrs
these series, we reproduce data for 256KB 20000 A Ml il [l W =<2
record sizes only. The file sizes sdected I15000-— BNY JENY RN I
were guitable large, as we expect the 10000 |

primay use of DirectNFS to be Sooo_i
multimedia agpplications (eg. dreaming |

m&:ha%’VG‘S),WthhU%la'gef”S 268 1GB 500MB 100MB
Note that NFS v2 and v3 throughput File size

figures that we measured were very close
to each otha. Even though NES 3 Figure 10: Re-Read Comparison
implements Asynchronous writes, NFS 2

cients under the Linux use write caching and by default run with synchronous writes
set to off. This hides the RPC latency of NFS from client applications. However, we
wanted to compare againgt rea world performance and hence we tried to measure
againg the fastest NFS performance possible.

From a glance at the throughputs for read and re-write tests, it appears that DirectNFS
performance comes close to matching the performance of both RelserFS as wdl as ext2.
This can be accounted for by the metadata cache, which contains logicd to physica
block trandations, and improves the performance of DirectNFS, bringing it close to
ext2 and in some cases surpassing it (this is because the mapping function for the cache
IS less expendve than the corresponding lookup operation in EXT2 or ResarFS). We
aso examined the effect of record sze on peformance. Figure 11 is a compardive
graph for the read operation for various file sysems with fixed file sze but with varying
record Sze. We did not observe any sgnificant effect of record sze on throughput of
any of the file sysems under congderation. This is most likdy due to the pre-fetching
inthe VFS layer.

35000

30000 —]

NFS3

If we look closdy a the performance

Comparison with varying record size relative to NFS2 or NFS3, we see that
the performance improvements that are
35000 achieved are significant, and are 2 to 3
30000 Soreanrs|| times that of the Linux implementation
25000 —]
g 1 . HExt 2 of NFS.
£ 20009 O Reiser There are two measures of goodness for
m 15000 T — . . .
0000 4 ONFS 2 a nework file sysgem, the fird is the
=000 U I BNFS 3 throughput_that each dlient can expept
o H from the file sysem, and the second is
4KB 64KB 256KB the saver scdability. DirectNFS
record size

Figure 11: Comparison with varying record size

addresses both of them by increasing the dient throughput by a factor of 2 to 3 as
compared with competing NAS technologies like NFS, and increases the server
scaability sgnificantly by reducing CPU utilizetion at the server.

A look a Figure 12 shows the reative CPU utilization of DirectNFS with NFS. The
tests that were carried out were Sequentia Read, Sequential Reread, Sequentid Write,
and Sequential Rewrite. Now, if we look at the NFS performance, we can conclude that
NFS (with a sngle dient running lozone tests on a file of sze 1GB) requires a mean
CPU utilization of

more than 20%. Thus, CPU Utilization of Server with 1 Client
the scdability of the £

saver is limited to the E 41

number of clients that 2 g - s ;

access the NFS server 2 71 f/\ﬁfv \«Ww mNFS

a any point of time. 2 m_lm i B DirectFS
However, alook at the = 1 -
DirectNFS numbers R oEgaRoe aoo bl o e
for the same test - ‘fr i Nd ERe d DirectNFS
conditions shows a ime;{seconds; fest
radicaly different

scenario. One can see Figure 12: CPU utilization figuresfor a single client setup

that there is an initid

period where the CPU

utilizetion is roughly a an average of 10%, with a pesk utilization of 20%. This is
because of aggressve pre-fetching of metadata by the DirectNFS client during the Start
of file 1/0. This accounts for the lower CPU utilization on the server when sarvicing a
DirectNFS client as compared to a NFS client.

Thus, it can be seen tha the CPU utilization is dgnificantly lower than NFS utilization
for the same one client sstup that we used to measure NFS utilization. This indicates
that the DirectNFS Metadata server may scale better than NFS servers.

Ancther key parameter by which scadability can be judged is the amount of network
traffic, expressed in terms of the number of RPCs that are required for a given operaion
to take place. A measurement of the number of RPCs that are required to run the given
st of tedts, reveds that DirectNFS uses about a tenth of the total number that is
required for NFS. This can be explaned by the fact that the number of metadata
requests in DirectNFS is dradticdly lower than NFS because of write dlocation
gathering and the metedata pre-fetching performed by the client. This makes the data
metadata plit attractive, as this consderably reduces the traffic on the network and
makes DirectNFS alot more scalable.

Overdl, DirectNFS peforms dggnificantly better than NFS for dl of the tedts
outperforming it by afactor of 2to 3.

DirectNFS has been designed to counter network bottlenecks and ‘ store-and-forward’
overheads on NAS servers. So, the server CPU and /O subsystem are no longer the
bottleneck. Introducing pardlelism to dorage access dso means that the system will
scde as the avalable bandwidth for the storage network incresses. Isolating storage
traffic on to a separate network alows for better utilization of the messaging network by

other network application protocols.
6. Future Work

1. Client Side Disk Caching: To further improve performance, the sze of the
cache that holds the physical block trandations should be made as large as
possble. To overcome the memory Sze limitations that we will come across
when deding with large files and clients with multiple such work loads, the
block trandations can be stored on disk. Thus, the limitation that currently exigts
on the number of cachedble trandations increases greetly, helping us to achieve
grester scaability.

2. Volume Metadata Caching: When the Metadata Server receives a
GETBLKLIST request, the DirectNFS filter uses the phydcd file sysem's
bmap operation to obtain the physca block numbers for the requested byte
range. Normdly, the block buffer cache would cache the most frequently used
blocks in the dorage system. Servers normdly have a large amount of RAM,
and we fed that caching the entire metadata for the file volume is feasble. In
fact, for a file sysem formaited with 4KB-szed blocks, the cost of caching dl
the physica block numbers of the volume is about IMB per GB.

7. Related Work

There ae some interedting exising sysems in the digtributed File Sysems space.
Storage Tank [17] follows a smilar gpproach for moving the data access path away
from the server. However, the desgn of Storage Tank lacks the portability of
DirectNFS. This is because DirectNFS uses a portable approach leveraging the ability
of a code generator like FST to dragticdly reduce the porting of the file system to
multiple platforms. Many duger file sysems such as the Veritas Cluger File Sysem
[18] ae layered aove and integrated with a proprietary physicd file sysem. CMU’s
Network Attached Secure Disks requires Intelligent Devices, which embed some file
sysem functiondity in the Storage devices thus handling various issues like security,
scaability and object management. NASD addresses the security aspects of a SAN
based file sysem wdl, but the need for manufacturers to incorporate these changes into
disks highlights the problem associated with this gpproach.

Other gmilar work in the area incdudes Frangipani/Petd, Tivoli's SANergy [19] ad
EMC's Cderrg 20].

8. Conclusion

DirectNFS presents an optimum blend of NAS and SAN storage technologies. It uses
traditional digtributed file system protocols such as NFS for meta-data access, with
extensons for direct data access usng SANs. The end reault is a digtributed file system
that scales much better at high loads and has a data throughput that is a factor of 2 to 3
better than existing NAS protocols. In fact, this performance was comparable to that of
alocd file sysem.

The portable design of DirectNFS makes it reativdy smple to port to other operating
sysems. In the future, we plan to port DirectNFS to other platforms such as HP-UX,
Windows2000 and FreeBSD and add CIFS compatibility.

Acknowledgments

We would like to take this opportunity to thank Anandamoy Roychowdhary, who
played an important role in both the design as wel as the implementation of Direct
NFS.

We are grateful to Sunu Engineer, who helped with the design.

We would dso like to thank Alban Kit Kupar War Lyndem, Tanay Tayd and Gurbir
Singh Dhdiwa who helped with the implementation.

References

[1] Sun Microsysems, NFS: Network File System Protocol Specification, Request
for Comments 1094, 1988.

[2] P. J Leach, A common Internet file sysem (CIFS/1.0) protocol. Technical
report, Network Working Group, Internet Engineering Task Force, December 1997.

[3] C.A. Thekkath, T. Mann, and E. K. Lee. Frangipani: A Scalable Distributed File
System. In Proceedings of the 16th ACM Symposum on Operating Systems
Principles, Oct. 1997.

[4] Kenneth W. Predan, A 64-bit, Shared Disk File System for Linux, Proceedings of
the Sixteenth IEEE Mass Storage Sysems Symposium held jointly with the Seventh
NASA Goddard Conference on Mass Storage Systems & Technologies, 1999

[5] Sun Microsystems. Open Network Computer : RPC Programming. The official
documentation for Sun RPC and XDR.IBM Inc.

[6] Chet Juszczak, Improving the Write Performance of an NFS Server (1994),
Proceedings of the USENIX Winter 1994 Technical Conference

[7] M.G. Baker, JH. Hatman, M.D. Kupfer, K.W. Shirriff, and JK. Ousterhout.
Measurements of a digributed file sysem., Proceedings of the Thirteenth ACM
Symposium on Operating Systems Principles. pages 198-212, 1991

[8] D. S H. Rosenthd., Requirements for a "Stacking” Vnode/VFS Interface’, UNIX
International, 1992

[9] G. Gibson et a., File Serving Scaling with Network-Attached Secure Disks,"
Proceedings of the ACM Int. Conf. on Measurements and Modding of Computer
Systems (SIGMETRICs "97), Sedttle, WA, June 15-18, 1997.

[10] Y. Klegn and E. Fddane. Internet draft of iSCSI security protocol.
www.eng.tau.ac.il/~klen/ietf/ietf-kleinisca -security-00.txt, July 2000

[11] Fber Channd Transmisson Protocol (FC-1) ANS draft standard X3T9.3/90-
023, REV 1.4, duly 6, 1990.

[12] Erez Zadok, FST: A Sysem for Stackable File Syssem Code Generation, PhD
thesis. Columbia University, May 2001.

[13] NameSysinc., The ReserFSfile system, http: //mww.resierfs.org, 2001

[14] B. Cdlaghan, B. Pawlowski and P. Staubach, NFS v3 Protocol Specification,
RFC 1813, June 1995.

[15] ANSI, SCSI-3 Fast-20 Pardld Interface, X3T10/1047D Working Group,
Revision 6.

[16] W. Norcutt, The 10Zone file sysem benchmak, Available from
http://www.iozone.org/, April 2000

[17] Storage Tank Software, http://mww.ibm.conv, 2000
[18] VeitasInc. Veritas Cluster File System, http: //www.veritas.com, 2001

[19] Mercury Computer Systems Inc., High Speed Data Sharing among Multiple
Computer Platforms, http:/mww.saner gy.com.
[20] EMC Corporation, http:/Amww.emc.com, 2001

