
Appears in the Proceedings of the 3rd Conference on File and Storage Technologies (FAST’04). (31 Mar – 2 Apr
2004, San Francisco, CA). Published by USENIX, Berkeley, CA.

Buttress: A toolkit for flexible and high fidelity I/O benchmarking

Eric Anderson Mahesh Kallahalla Mustafa Uysal Ram Swaminathan

Hewlett-Packard Laboratories
Palo Alto, CA 94304

�anderse,maheshk,uysal,swaram�@hpl.hp.com

Abstract

In benchmarking I/O systems, it is important to generate,
accurately, the I/O access pattern that one is intending to
generate. However, timing accuracy (issuing I/Os at the
desired time) at high I/O rates is difficult to achieve on
stock operating systems. We currently lack tools to easily
and accurately generate complex I/O workloads on mod-
ern storage systems. As a result, we may be introduc-
ing substantial errors in observed system metrics when
we benchmark I/O systems using inaccurate tools for re-
playing traces or for producing synthetic workloads with
known inter-arrival times.

In this paper, we demonstrate the need for timing ac-
curacy for I/O benchmarking in the context of replaying
I/O traces. We also quantitatively characterize the impact
of error in issuing I/Os on measured system parameters.
For instance, we show that the error in perceived I/O re-
sponse times can be as much as�350% or�15% by using
naive benchmarking tools that have timing inaccuracies.
To address this problem, we present Buttress, a portable
and flexible toolkit that can generate I/O workloads with
microsecond accuracy at the I/O throughputs of high-end
enterprise storage arrays. In particular, Buttress can issue
I/O requests within 100µs of the desired issue time even
at rates of 10000 I/Os per second (IOPS).

1 Introduction

I/O benchmarking, the process of comparing I/O systems
by subjecting them to known workloads, is a widespread
practice in the storage industry and serves as the basis
for purchasing decisions, performance tuning studies, and
marketing campaigns. The main reason for this pursuit
is to answer the following question for the storage user:
“how does a given storage system perform for my work-
load?” In general, there are three approaches one might
adopt, based on the trade-off between experimental com-
plexity and resemblance to the application:

a) Connect the system to the production/test environ-

ment, run the real application, and measure applica-
tion metrics;

b) Collect traces from a running application and replay
them (after possible modifications) back on to the
I/O system under test; or

c) Generate synthetic workloads and measure the I/O
systems performance for different parameters of the
synthetic workload.

The first method is ideal, in that it measures the perfor-
mance of the system at the point that is most interesting:
one where the system is actually going to be used. How-
ever, it is also the most difficult to set up in a test envi-
ronment because of the cost and complexity involved in
setting up real applications. Additionally, this approach
lacks flexibility: the configuration of the whole system
may need to be changed to evaluate the storage system at
different load levels or application characteristics.

The other two approaches, replaying traces of the appli-
cation and using synthetic workloads (e.g., SPC-1 bench-
mark [9]), though less ideal, are commonly used because
of the benefits of lower complexity, lower setup costs,
predictable behavior, and better flexibility. Trace replay
is particularly attractive as it eliminates the need to un-
derstand the application in detail. The main criticism of
these approaches is the validity of the abstraction, in the
case of synthetic workloads, and the validity of the trace
in a modified system, in the case of trace replay.

There are two aspects of benchmarking: a) constructing
a workload to approximate a running environment (either
an application, trace, or synthetic workload), and b) actu-
ally executing the constructed workload to issue I/Os on
a target system. This paper focuses on the latter aspect;
in particular, we focus on accurately replaying traces and
generating synthetic workloads.

The main assumption in using traces and synthetic
workloads to benchmark I/O systems is that the workload
being generated is really the one that is applied to the test
system. However, this is quite difficult to achieve. Our re-
sults indicate that naive implementations of benchmark-
ing tools, which rely on the operating system to sched-

1

original
trace

replay
trace 1

replay
trace 2

Application

Buttress

alternativeStorage
System A

Storage
System B

Storage
System B

Application metrics 1

Application metrics 2

Ideal application
metrics

analyze

analyze

analyze

Figure 1: Illustration of our experimental methodology to compare performance of different trace replay techniques.
The input is the original trace of an application running on storage system A. We then replay the trace on system B
using different trace replay techniques and gather the resulting I/O trace (replay traces). We analyze the resultant traces
to determine parameters of interest to the application, such as response times and queue lengths. We then use these
metrics to compare the different trace replay techniques among each other and with the original trace if the storage
systems A and B were the same.

ule I/Os, could skew the mean inter-I/O issue times by
as much as 7ms for low I/O loads. This is especially er-
roneous in the case of high-end storage systems which
might have response times in the 100s of microseconds,
and can handle 10s of thousands of I/Os per second. As
we shall show in Section 2, this deviation can have signif-
icant impact on measured system parameters such as the
mean device response time.

The main challenge in building useful benchmarking
tools is to be able to generate and issue I/Os with accu-
racies of about 100µs, and at throughputs achieved by
high-end enterprise storage systems. In this paper, a) we
quantitatively demonstrate that timing errors in bench-
marking tools can significantly impact measured system
parameters, and b) we present and address the challenges
in building a timing accurate benchmarking tool for high
end storage systems.

The rest of the paper is organized as follows. In Sec-
tion 2 we analyze the impact of not issuing I/Os at the
right time on system metrics. Motivated by the need for
having accurate benchmarking tools, we first present the
complexities in designing such a system which runs on
commodity operating systems in Section 3. In Section 4
we present solutions in terms of a flexible and nearly sym-
metric architecture for Buttress. We detail some specific
optimizations of interest in Section 5. Experiments to val-
idate that our implementation achieves high fidelity are
described in Sections 6. We conclude with related work
in Section 7 and a summary in Section 8.

2 Need for high I/O issue accuracy

In this section, we quantify the impact of errors in issu-
ing I/O at the designated time on measured application
statistics. We define issue-error as the difference in time
between when an I/O is intended to be issued and when
it is actually issued by the benchmarking tool. One may
intuitively feel that I/O benchmarks can adequately char-

acterize applications despite timing inaccuracies in issu-
ing I/O, as long as the remaining characteristics of the
workload, such as sequentiality, read/write ratio, and re-
quest offsets are preserved. In fact, most studies that do
system benchmarking seem to assume that the issue accu-
racy achieved by using standard system calls is adequate.
Our measurements indicate that this is not the case and
that errors in issuing I/Os can lead to substantial errors in
measurements of I/O statistics such as mean latency and
number of outstanding I/Os.

Figure 1 illustrates our evaluation methodology. We
use I/O trace replay to evaluate different mechanisms of
I/O scheduling, each attempting to issue the I/Os as spec-
ified in the original trace. The I/O trace contains in-
formation on both when I/Os were issued and when the
responses arrived. During trace replay, we collect an-
other trace, called the replay trace, which includes the re-
sponses to the replayed I/Os. We then analyze the traces
to get statistics on I/O metrics such as I/O response times
and queue lengths at devices. We use these metrics to
compare the different trace replay methods.

Note that the I/O behavior of an application depends
upon the storage system; hence the I/O trace of the ap-
plication running on system A is generally quite different
from the I/O trace on system B. We expect the I/O is-
sue times to be similar if the replay program is accurate,
though the response time statistics and I/O queue sizes on
system B are likely to be different. In practice, we rarely
have the ability to use the actual application on system B;
for rare cases that we could run the application on system
B, we collect a replay trace running the application and
use it as an ideal baseline. We compare the results of the
analysis of the different traces between each other and to
the results of the analysis of the ideal trace to evaluate the
impact of I/O issue accuracy on the storage system per-
formance metrics.

We used four different mechanisms to replay the ap-
plication trace (original trace) on the storage system B.

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

harp on
tim

pani-
xp1024

harp on
piccolo-
va7400

harp on
bongo-

fc60

om
ail on

tim
pani-

xp1024

om
ail on

piccolo-
va7400

om
ail on

bongo-
fc60

Normalized response time
D

E
D

-C
LO

C
K

S
LE

E
P

S
E

LE
C

T

0 1 2 3 4 5 6 7 8 9 10

harp on
tim

pani-
xp1024

harp on
piccolo-
va7400

harp on
bongo-fc60

om
ail on

tim
pani-

xp1024

om
ail on

piccolo-
va7400

om
ail on

bongo-fc60

Normalized queue size (requests)

D
E

D
-C

LO
C

K
S

LE
E

P
S

E
LE

C
T

26.9

(a)
R

esponse
tim

e
(b)

Q
ueue

size

Figure
2:

Im
pactof

I/O
issue

accuracy
(norm

alized
to

B
uttress)

on
the

application
I/O

behavior
on

various
system

s.
A

llthe
num

bers
are

norm
alized

to
the

value
of

the
m

etric
reported

by
B

uttress.

A
ll

program
s

w
e

used
w

ere
m

ulti-threaded
and

used
the

pthreads
package.W

e
issued

I/O
s

synchronously,one
per

thread,and
allprogram

sused
the

sam
e

m
echanism

forI/O
issue.

T
he

m
ost

elaborate
of

these
program

s
is

B
uttress

and
is

the
m

ain
subjectof

this
paper

–
w

e
briefly

describe
the

other
three

program
s

below
.

T
he

first
tw

o
program

s,
S

E
L

E
C

T
and

S
L

E
E

P
used

standard
O

S
m

echanism
s

to
schedule

and
issue

I/O
s

(se-
lect()

and
usleep()

system
calls

respectively)
to

w
ait

un-
til

the
tim

e
for

an
I/O

issue
arrives.

E
ach

of
these

had
a

num
ber

of
w

orker
threads

to
issue

I/O
s

and
a

m
aster

thread
that

hands
I/O

s
to

available
w

orker
threads.

O
nce

a
w

orkerthread
is

assigned
to

issue
an

I/O
,itsleeps

using
either

the
select()

or
the

usleep()
call,and

the
O

S
sched-

uler
w

akes
the

w
orker

w
hen

the
tim

e
for

the
I/O

arrives.
T

hese
tw

o
program

s
rely

entirely
on

standard
O

S
m

echa-
nism

s
to

keep
the

tim
e

and
issue

the
I/O

s
and

hence
their

accuracy
is

determ
ined

by
the

scheduling
granularity

of
the

underlying
O

S.
T

he
third

program
,

D
E

D
-C

L
O

C
K

,
uses

a
dedicated

clock
thread,

and
C

PU
cycle

counters
to

schedule
the

I/O
s.

T
he

clock
thread

spins
continuously

and
w

akes
up

w
orker

threads
at

the
appropriate

tim
es

and
hands

them
I/O

s
to

issue.
T

he
C

PU
cycle

counters
are

usually
m

uch
m

ore
precise

than
the

standard
O

S
tim

ers,butthe
through-

putof
this

approach
depends

on
how

fastthe
clock

thread
can

w
ake

up
w

orkers
to

issue
I/O

s.
T

hese
three

program
s

are
sim

ple
approaches

of
how

one
m

ightnorm
ally

architecta
trace-replay

program
using

existing
m

echanism
s.

In
general,the

problem
w

ith
these

approaches
is

that
the

accuracy
of

I/O
scheduling

is
con-

tingentupon
the

thread
being

scheduled
at

the
righttim

e
by

the
O

S.A
s

a
result,they

are
unable

to
replay

I/O
bursts

accurately
and

tend
to

eitherclusterI/O
s

atO
S

scheduling
boundaries

or
flatten

bursts.

Figure
2

presents
tw

o
storage-level

perform
ance

m
et-

rics
using

various
trace-replay

m
echanism

s.
Itshow

s
the

relative
change

in
I/O

response
tim

e
and

average
queue

size
using

tw
o

applications
(om

ailand
harp),across

three
different

storage
arrays

and
benchm

ark
system

s
(the

de-
tails

of
the

experim
entalsetup

are
in

Section
6).

T
he

fig-
ure

presents
the

average
m

easured
response

tim
e,

w
hen

different
trace

replay
tools

w
ere

used,
norm

alized
to

the
average

response
tim

e
w

hen
B

uttress
w

as
used.T

he
m

ain
pointfrom

these
graphsis

thatthe
inaccuraciesin

schedul-
ing

I/O
s

in
tim

e
m

ay
result

in
as

m
uch

as
a

factor
of

3.5
difference

in
m

easured
response

tim
e

and
a

factorof26
in

m
easured

queue
sizes

(both
happen

for
SE

L
E

C
T

)
–

these
differences

are
too

large
to

ignore.

3
M

ain
challenges

It
is

surprisingly
difficult

to
achieve

tim
ing

accuracy
for

low
and

m
oderate

I/O
rates,and

even
harder

for
the

high
rates

thatenterprise
class

disk
arrays

can
support.A

chiev-
ing

tim
ing

accuracy
and

high
throughputinvolves

coping
w

ith
three

challenges:
a)

designing
for

peak
perform

ance
requirem

ents,
b)

coping
w

ith
O

S
tim

ing
inaccuracy,and

c)
w

orking
around

unpredictable
O

S
behavior.

First,
it

is
a

challenge
to

design
a

high
perform

ance
I/O

load
generator

that
can

effectively
utilize

the
avail-

able
C

PU
resources

to
generate

I/O
s

at
high

rates
accu-

rately.
E

xisting
m

id-range
and

high-end
disk

arrays
have

hundreds
to

thousands
of

disk
drives,

w
hich

m
eans

that
a

single
array

can
support

100,000
back-end

IO
PS.

T
he

large
array

caches
and

the
high-speed

interconnects
used

to
connectthese

arrays
to

the
hostsystem

s
exacerbate

this
problem

:
w

orkloads
could

achieve
500,000

IO
PS

w
ith

cache
hits.

T
hese

I/O
rates

im
ply

that
the

I/O
w

ork-

load generators have about a few microseconds to produce
each I/O to attain these performance rates. Therefore it is
necessary to use multiple CPUs in shared memory multi-
processors to generate these heavy workloads.

Second, the scheduling granularity of most operating
systems is too large (around 10ms) to be useful in accu-
rately scheduling I/Os. The large scheduling granularity
results in quantization of I/O request initiations around the
10ms boundary. This is despite the fact that most com-
puter systems have a clock granularity of a microsecond
or less. As shown in Figure 2, this quantization effect
distorts the generated I/O patterns, and as a result, the ob-
served behavior from the I/O system with a synthetic load
generator does not match the observed behavior under ap-
plication workload (details in Section 6).

Third, the complexity of modern non-real-time operat-
ing systems usually results in unpredictable performance
effects due to interrupts, locking, resource contention,
and kernel scheduling intricacies. These effects are most
pronounced for the shared memory multiprocessor plat-
forms as the OS complexity increases. For example, call-
ing the gettimeofday() function on an SMP from multiple
threads may cause locking to preserve clock invariance,
even though the threads are running on separate proces-
sors. An alternative is to use the CPU cycle counters;
however, this is also complicated because these counters
are not guaranteed to be synchronized across CPUs and
a thread moving from one CPU to another has difficulty
keeping track of the wall clock time.

4 Buttress toolkit

Based on our discussion in Sections 2 and 3, and our ex-
perience with using I/O benchmarking tools, we believe
that a benchmarking tool should meet the following re-
quirements:

a) High fidelity: Most I/Os should be issued close (a
few µs) to their intended issue time. Notice that a
few µs is adequate because it takes approximately
that much time for stock OSs to process an I/O after
it has been issued to them.

b) High performance: The maximum throughput pos-
sible should be close to the maximum achievable
by specialized tools. For instance, in issuing I/Os
as-fast-as-possible (AFAP), the tool should achieve
similar rates as tools designed specifically for issu-
ing AFAP I/Os.

c) Flexibility: The tool should be able to replay I/O
traces as well as generate synthetic I/O patterns. It
should be easy to add routines that generate new
kinds of I/O patterns.

Tim
er

ev
en

t

rea
dy

I/O

spinning

No worker

Wakeup

I/O ready

readyAll processed

Check event
queue

Call filament
Queue
events

Spin

Sleep Exit

I/O
event ready

Some worker

spinning
Event
ready

Ready to Exit

No events
All processed

Early queue
Execute

I/O

Figure 3: Worker thread state transition diagram in But-
tress. The nearly symmetric architecture (w.r.t workers)
means that all workers use the same state transition dia-
gram except a low priority thread spinning for timeout.

d) Portability: To be useful the tool should be highly
portable. Specifically it is desirable that the tool not
require kernel modification to run.

In the rest of this section and Section 5, we describe
how we developed Buttress to satisfy these requirements.
In Buttress we architecturally separated the logic for de-
scribing the I/O access pattern and the functionality for
scheduling and executing I/Os. This separation enables
Buttress to generate a variety of I/O patterns easily. Most
of the complexity of Buttress is in the “core”, which is re-
sponsible for actually scheduling and executing I/Os. The
Buttress core is architected as a multi-threaded event pro-
cessing system. The individual threads are responsible for
issuing the I/Os at the right time, and executing the appro-
priate I/O generation function to get future I/Os to issue.

As implemented currently, Buttress does not require
any kernel modifications. It uses POSIX pthreads and
synchronization libraries to implement its threads and
locking. This makes Buttress very portable – we have
been running Buttress on both Linux and HPUX. On the
flip side, the performance of Buttress in terms of its maxi-
mum throughput and accuracy in issuing I/Os depends on
the performance of the underlying OS.

4.1 Filaments, event, and workers

The logic for determining the I/O access pattern is imple-
mented in a collection of C++ objects, called filaments.
The functionality for scheduling and executing I/Os is em-
bedded in threads called workers. The implementation of
the workers and the interface to filaments forms the core

of Buttress. Filaments themselves are written by Buttress’
users, and currently we provide a library of filaments to
generate common I/O patterns.

A filament is called with the event that triggered a
worker to call that filament. The filament then generates
additional events to occur in the future, and queues them
up. Workers then remove events from the queues at the
time the event is to occur, and process them by either call-
ing the appropriate filament at the right time, or issuing
the I/O if the event represents an I/O. Currently, we have
three types of events in Buttress:

a) Timer events are used to schedule callbacks to fila-
ments at appropriate times;

b) I/O events are used to schedule I/O operations. The
event object encapsulates all the information neces-
sary to execute that I/O. The I/O completion events
are used by workers to indicate I/O completion to fil-
aments; and

c) Messaging events are used to schedule an inter-
filament message to be delivered in the future. Mes-
saging events can be used to implement synchroniza-
tion between multiple filaments or to transfer work.

From now on we refer to Timer and Messaging events
as filament events and differentiate them when necessary.

Workers are responsible for processing events at their
scheduled time. Each worker is implemented as a sepa-
rate thread so that Buttress can take advantage of multiple
CPUs. Workers wait until an event is ready to be pro-
cessed, and based on the event they either issue the I/O in
the event, or call the appropriate filament.

The last worker to finish processing an event main-
tains the time until the next event is ready to be pro-
cessed. In addition, because we found keeping time us-
ing gettimeofday() and usleep() to be slow and
inaccurate, the worker keeps time by spinning; that is, ex-
ecuting a tight loop and keeping track of the time using
the CPU cycle counter.

Let us now describe, with a simple example, the func-
tions that a worker performs. We will then translate these
worker functions into a generic state transition diagram.
We simplify the exposition below for convenience, and in
the following section, we discuss specific details needed
to achieve higher timing accuracy and throughput.

A worker (A) starts by checking if there are events to
be processed. Say it found a timer event, and that it was
time to process it. If this worker was spinning, then it
wakes up a worker thread (B) to keep time. Worker A
then processes the timer event by calling the appropriate
filament. Say that the filament generates an I/O to execute
in the future. Worker A queues it for later processing, and
then checks if any events are ready. Since none are ready
and worker B is spinning, it goes to sleep. Meanwhile
worker B spins until it is time to process the I/O event,

wakes up worker A (as before), while B issues the I/O.
Once the I/O completes worker B calls the filament with
the completed I/O and goes back to checking for ready
events. This procedure continues until there are no events
left and there, are no outstanding I/Os to be issued.

We now generalize the above example with generic
state transitions (see Figure 3).

1. Check event queue: This is the central dispatch
state. In this state, the worker determines if a filament is
runnable, or if an I/O is issuable, and transitions to the ap-
propriate state to process the filament or I/O. It also wakes
up another worker to replace itself to guarantee someone
will be spinning. If no event is ready, the worker either
transitions to the spin state or the sleep state based on
whether another worker is already spinning.

2. Call Filament: The worker calls the filament when
either a timer/messaging event is ready, or when an I/O
completes. The filament may generate more events. Once
all the ready events are processed, the worker transitions
to “Queue Events” state to queue the events the filament
generated. The worker may queue events while process-
ing filament events (“early queue”) to avoid waiting for
all events to get processed for slow filaments.

3. Queue events: In this state, the worker queues
events which were generated by a filament. If none of
those events are ready, the worker transitions into the
“check event queue” state. If any of the events is ready,
the worker transitions directly to processing it: either is-
suing the I/O or calling an appropriate filament.

4. Execute I/O: In this state, the worker executes
a ready I/O event. Because implementations of asyn-
chronous I/O on existing operating systems are poor, But-
tress uses synchronous I/O, and hence the worker blocks
for I/O completion. Once the I/O completes, the worker
transitions directly to calling the appropriate filament with
the completed I/O event.

5. Spin: A worker starts “spinning” when, after check-
ing the event queue for events to process, it finds that there
are no ready events and no other spinning worker.

To prevent deadlock, it is necessary to ensure that not
all workers go to sleep. Recall that in Buttress, there is
no single thread that is responsible for dispatching events;
the functionality is distributed among the workers. Hence
if all the workers went to “sleep”, there will be a dead-
lock. Instead, one of the workers always spins, periodi-
cally checking if the event at the head of the central queue
is ready to be processed.

When the event queue is empty and all other workers
are asleep, the spinning worker wakes one thread up and
exits; the rest of the workers repeat this process until all
threads exit.

4.2 Filament programming interface

There are two ways one can use Buttress: a) configure and
run pre-defined library filaments, and b) implement new
workloads by implementing new filaments.

Currently Buttress includes filaments that: a) imple-
ment different distributions for inter I/O time and device
location accessed, b) replay an I/O trace, and c) approxi-
mate benchmarks such as TPC-B [21] and SPC-1 [9].

To support programming new filaments, Buttress ex-
ports a simple single threaded event-based programming
interface. All the complexity of actually scheduling, issu-
ing, and managing events is completely hidden from the
filaments. The programmer needs to implement only the
logic required to decide what event to generate next. Pro-
grammers may synchronize between filaments using mes-
sage events.

4.3 Statistics gathering

To allow for shared and slow statistics, Buttress uses the
same event processing core to pass I/O completion events
to filaments which are dedicated to keeping statistics. The
set of statistics to keep is specified at run time in a con-
figuration file, which causes Buttress to build up multiple
statistic filaments that may be shared by I/O generating
filaments.

Some statistics, such as mean and standard deviation
are easy to compute, other statistics such as approximate
quantiles [16], or recording a full I/O trace can poten-
tially take much longer due to occasional sorting or disk
write. For this reason, we separate the steps of generat-
ing I/Os, which needs to run sufficiently fast that I/Os al-
ways reach the core before their issue time, and statistics,
which can be computed independent of the I/O process-
ing. In Buttress, information regarding each I/O is copied
into a collection buffer in a filament, without computing
the required statistics. Once the collection buffer is full,
it is sent to a “statistics thread” using a messaging event.
This allows the I/O generation filament to run quickly, and
it improves the efficiency of computing statistics because
multiple operations are batched together.

5 Key optimizations

The architecture presented in the previous section requires
optimization to achieve the desired high throughput and
low issue-error. Some of the important implementation
questions that need to be addressed are:

� How to minimize latency for accessing shared data
structures?

� How to ensure that time critical events get processing
priority?

� How to minimize the impact of a non real-time OS
with unpredictable system call latencies and preemp-
tion due to interrupts?

� How to synchronize timing between the multiple
CPUs on an SMP which is required to achieve high
throughput?

� How to work around the performance bottlenecks
due to the compiler and programming language with-
out sacrificing portability?

� How to identify performance bottlenecks?

In this section, we present some of the techniques we
use to address the above questions, and also describe our
technique for identifying where optimization is necessary.

5.1 Minimizing latency when accessing
shared structures

Shared data structures must be protected by locks. How-
ever locks cause trains of workers, contending on the lock,
which builds up increasing latency. Additionally, inter-
rupts can force locks to be held longer than expected.
Worse, we observed that on Linux, with the default 2.4
threads package, it takes about 10 times longer to release
a lock if another thread is waiting on it. Therefore it is
important to a) minimize waiting on shared locks, b) min-
imize the time spent in the critical section, and c) mini-
mize the total number of lock operations. We address the
locking problems using bypass locking to allow a thread
to bypass locked data structures to find something useful
to do, reduce the critical section time by pairing priority
queues with dequeues, and minimize lock operations us-
ing filament event batching and carried events.

Minimizing lock operations

The queues, where workers queue and pick events to
process, are shared data structues and accesses to these
queues is protected by locks. Hence to reduce the num-
ber of lock operations we try to avoid queuing events on
these central structures if possible, and attempt to process
events in batches.

Workers get new events in the queue-events state or
the execute-I/O state, and process events that are ready
to be processed in the execute-I/O or call-filament states.
To minimize lock operations we enable workers to carry,
without any central queuing, events that are ready to
be processed directly from the queue-events state to the
execute-I/O or call-filament states, or execute-I/O to the
call-filament state. This simple optimization directly re-
duces the number of lock operations. Buttress workers
prefer to carry I/O events over other events that could be
ready, because I/O events are the most time critical.

When processing filament events, workers remove all
of the ready events in a single batch; this allows a worker
to process multiple filament events with just one lock ac-
quisition (recall that a filament is single threaded and thus
locked by the worker executing it). To enable such batch
processing, Buttress keeps a separate event queue for each
filament rather than placing the events in a central priority
queue, which would tend to intermingle events from dif-
ferent filaments. To enable such distributed (per filament)
queues, while still allowing for a centrally ordered queue,
what is stored centrally is a hint that a filament may have
a runnable event at a specified time, rather than the actual
event. Workers thus skip hints which correspond to events
that have already been processed when working through
the central queues.

The same optimization cannot be performed for I/O
events because unlike filament events, I/O events cannot
be batched – Buttress uses synchronous I/O because we
found support for asynchronous I/O inadequate and lack-
ing in performance on stock operating systems. However
because I/Os happen frequently and are time critical, we
use different queues for the pending hints and pending I/O
events, and directly store the I/O events in their own pri-
ority queue.

Minimizing critical section time

Though removing an element from a priority queue is
theoretically only logarithmic in the length of the queue,
when shared between many separate threads in a SMP,
each of those operations becomes a cache miss. To alle-
viate this problem, we pair together a priority queue with
a deque, and have a thread move all of the ready events
into the deque. This benefits from the fact that, once the
queue is searched for a ready event, all the requisite cache
lines are already retrieved, and moving another event will
cause very few additional cache misses. Removing an
entry from the double ended queue only takes at most
2 cache misses: one to get the entry and one to update
the head pointer. This combination minimizes the time in
critical sections when bursts of events need to be removed
from the priority queues.

Bypass locking

While we have minimized the number of lock operations
and the time spent in critical sections, at high load it
is likely that a thread will get interrupted while holding
one of the filament hint or I/O locks. If there are multi-
ple runnable events, we would prefer that the thread re-
move one of the other events and continue processing,
rather than waiting on a single lock, and incurring the high
wakeup penalty.

Therefore, we partition the hint queue and the I/O

queues. When queuing events, the worker will try each
of the queues in series, trying to find one which is un-
locked, and then putting events on that one. If all the
queues are locked, it will wait on one of the locks rather
than spin trying multiple ones. When removing entries,
the worker will first check a queue-hint to determine if
it is likely that an entry is ready, and if so, will attempt
to lock and remove an entry. If the lock attempt fails, it
will continue on to the next entry. If it finds no event, and
couldn’t check one of the possibilities, it will wait on the
unchecked locks the next time around.

This technique generally minimizes the amount of con-
tention on the locks. Our measurements indicate that
going from one to two or three queues will reduce the
amount of contention by about a factor of 1000, greatly
reducing the latency of accessing shared data structures.
However, at very high loads, we still found that work-
ers were forming trains, because they were accessing the
different queues in the same order, so we changed each
worker to pick a random permutation order to access the
queues; this increases the chance that with three or more
queues two workers which simultaneously find one queue
busy will choose separate queues for trying next.

We use a similar technique for managing the pool of
pages for data for I/Os, except that in this case all threads
check the pools in the same order, waiting on the last
pool if necessary. This is because we cache I/O buffers
in workers, and so inherently have less contention, and by
making later page pools get used less, we pre-allocate less
memory for those pools.

5.2 Working around OS delays

Buttress is designed to run on stock operating systems
and multiprocessor systems, which implies that it needs to
work around delays in system calls, occasional slow ex-
ecution of code paths due to cache misses, and problems
with getting accurate, consistent time on multiprocessor
systems.

There are three sources of delay between when an event
is to be processed and when the event is actually pro-
cessed: a) a delay in the signal system call, b) a scheduling
delay between when the signal is issued and the signaled
thread gets to run, and c) a delay as the woken thread
works through the code-path to execute the event. Pre-
spinning and low priority spinners are techniques to ad-
dress these problems.

Pre-spin

Pre-spin is a technique whereby we start processing
events “early”, and perform a short, unlocked spin right
before processing an event to get the timing entirely right.
This pre-spin is necessary because the thread wake-up,

and code path can take a few 10s of µs under heavy load.
By setting the pre-spin to cover 95�99% of that time, we
can issue events much more accurately, yet only spin for
a few µs. Naturally setting the pre-spin too high results
in many threads spinning simultaneously, leading to bad
issue error, and low throughput.

Pre-spin mostly covers problems (a) and (c), but we
find that unless we run threads as non-preemptable,
that even the tight loop of while(cur time() <
target time) �� will very occasionally skip forward
by substantially more than the� 1µs that it takes to calcu-
late cur time(). This may happen if a timer or an I/O com-
pletion interrupt occurs. Since these are effectively un-
avoidable, and they happen infrequently (less than 0.01%
at reasonable loads), we simply ignore them.

Low priority spinners

If the spinning thread is running at the same priority as
a thread actively processing events, then there may be a
delay in scheduling a thread with real work to do unless
the spinning thread calls sched yield(). Unfortunately,
we found that calling sched yield() can still impact the
scheduling delay because the spinning thread is contin-
ually contending for the kernel locks governing process
scheduling. We found this problem while measuring the
I/O latency of cache hits with a single outstanding I/O.

Low priority spinners solve this problem by re-
prioritizing a thread as lowest priority, and only allow-
ing it to enter the spin state. This thread handles waking
up other threads, and is quickly preempted when an I/O
completes because it is low priority and so doesn’t need
to yield.

Handling multiprocessor clock skew

Typically, in event processing systems, there is an as-
sumption that the different event processing threads are
clock synchronized. Though this is always true on a
uniprocessor system, clock skew on multiprocessors may
affect the system substantially. This is especially tricky
when one needs to rely on CPU clock counters to get the
current time quickly.

In Buttress, each worker maintains its own time, re-
synchronizing its version of the time with gettimeofday()
infrequently, or when changes in the cycle counter in-
dicate the worker must have changed CPUs. However,
small glitches in timing could result in incorrect execu-
tion. Consider the following situation: worker 1 with a
clock of 11µs is processing a filament event, when worker
2 with a clock of 15µs tries to handle an event at 15µs.
Since the filament is already running, worker 2 cannot
process the event, but it assumes that worker 1 will pro-
cess the event. However worker 1 thinks the event is in the

future, and so with the hint removed, the event may never
get processed. This tiny 4µs clock skew can result in in-
correct behavior. The solution is for workers to mark fila-
ments with their current clock, so that inter-worker clock
skew can be fixed. The problem occurs rarely (a few times
in a 10+ minute run), but it is important to handle it for
correctness.

5.3 Working around C++ issues

One of the well known problems with the standard tem-
plate library (STL) is the abstraction penalty [20], the
ratio of the performance of an abstract data structure to
a raw implementation. We encountered the abstraction
penalty in two places: priority queues and double-ended
queues. The double ended queue is implemented with
a tree, which keeps the maximum operation time down
at the expense of slower common operations. Using a
standard circular array implementation made operations
faster at the expense of a potentially slow copy when the
array has to be resized. Similarly, a re-implementation
of the heap performed approximately 5� faster than STL
for insertion and removal when the heap is empty, and
about 1.2� faster when the heap is full (on both HP-
UX and Linux with two different compilers each). The
only clear difference between the two implementations
was that STL used abstraction much more (inserting a sin-
gle item nested about eight function calls deep in the STL,
and one in the rewrite).

Other performance problems were due to operations
on long long type, such as mod and conversion to
double. The mod operation was used in quantization;
our solution was to observe that the quantized values tend
to be close to each other, and therefore, we calculate a
delta with the previous quantized value (usually only 32-
bits long) and use the delta instead followed by addition.

5.4 Locating performance bottlenecks

Locating bottlenecks in Buttress is challenging because
many of them only show up at high loads. We addressed
this with two approaches. First, we added counters and
simple two-part statistics along many important paths.
The two part statistics track “high” and “low” values sepa-
rately for a single statistic, which is still fast, and allows us
to identify instances when variables are beyond a thresh-
old. This is used for example to identify the situations
when a worker picks up an event from the event queue be-
fore the event should happen or after; or the times when
few (say less than 75%) of the workers are active.

Second, we added a vector of (time, key, value) trace
entries that are printed at completion. These trace entries
allow us to reconstruct, using a few simple scripts, the
exact pattern of actions taken at runtime. The vectors are

per worker, and hence lock-free, leading to low overhead
when in used. The keys are string pointers, allowing us to
quickly determine at runtime if two trace entries are for
the same trace point, and optionally collapse the entries
together (important, for example, for tracing in the time-
critical spin state).

The counters and statistics identify which action paths
should be instrumented when a performance problem oc-
curs, and the trace information allows us to identify which
parts of those paths can be optimized.

6 Experimental evaluation

In this section, we present experimental results concern-
ing I/O issue speed, I/O issue error, and overhead of But-
tress for a wide variety of workloads and storage subsys-
tems. We also compare characteristics of the generated
workload and that of the original to determine the fidelity
of the trace replay.

6.1 Experimental setup

We used three SMP servers and five disk arrays covering
a wide variety of hardware. Two of the SMP servers were
HP 9000-N4000 machines: one with eight 440MHz PA-
RISC 8500 processors and 16GB of main memory (tim-
pani), the other with two 440MHz PA-RISC 8500 proces-
sors and 1 GB of main memory (bongo). The third was an
HP rp8400 server with two 750MHz PA-RISC 8500 pro-
cessors and 2 GB of main memory (piccolo). All three
were running HP-UX 11.0 as the operating system.

We used five disk arrays as our I/O subsystem: two
HP FC-60 disk arrays [11], and one HP XP512 disk array
[2], one HP XP1024 disk array [1], and one HP VA7400
disk array [3]. Both the XP512 and XP1024 had in-use
production data on them during our experiments.

The XP1024 is a high end disk array. We connected
timpani directly to front-end controllers on the XP1024
via eight 1 GBps fibre-channel links, and used two back
end controllers each with 24 four-disk RAID-5 groups.
The array exported a total of 340 14 GB SCSI logical units
spread across the array groups for a total of about 5 TB of
usable disk space.

Piccolo was connected via three 1 GBps links to a Bro-
cade Silkworm 2400 fibre-channel switch, that was also
connected to the XP512 and VA7400. The XP512 used
two array groups on one back-end controller exporting 17
logical units totaling 240 GB of space. The VA7400 is a
mid-range virtualized disk array that uses AutoRaid [24]
to change the RAID level dynamically, alternating be-
tween RAID-1 and RAID-6. It exported 50 virtual LUs,
each 14 GB in size for a total of 700 GB of space spread
across 48 disks.

Bongo was connected to two mid-range FC-60 disk ar-
rays via three 1GBps fibre channel links to a Brocade
Silkworm 2800 switch. The FC-60 is a mid-range disk ar-
ray; one exported 15 18GB 2-disk RAID-1 LUs, and the
other 28 36GB 2-disk RAID-1 LUs for a total of 1300 GB
of disk space.

6.2 Workloads

We used both synthetic workloads and two application
traces: a file server containing home directories of a re-
search group (harp), and an e-mail server for a large com-
pany (omail). In order to create controlled workloads for
our trace replay experiments, we also used a modified ver-
sion of the PostMark benchmark (postmark).

The synthetic workload consisted of uniformly spaced
1KB I/Os, issued to 10 logical units spread over all of
the available paths; the workload is designed so that most
of the I/Os are cache hits. We use timpani as the host
and the XP1024 disk array as the storage system for the
experiments that use this workload.

The file-system trace (harp) represents 20 minutes of
user activity on September 27, 2002 on a departmen-
tal file server at HP Labs. The server stored a total of
59 file-systems containing user home directories, news
server pools, customer workload traces, HP-UX OS de-
velopment infrastructure, among others for a total of 4.5
TB user data. This is a typical I/O workload for a re-
search group, mainly involving software development,
trace analysis, simulation, and e-mail.

The omail workload is taken from the trace of accesses
done by an OpenMail e-mail server [10] on a 640GB mes-
sage store; the server was configured with 4487 users, of
whom 1391 were active. The omail trace has 1.1 million
I/O requests, with an average size of 7KB.

The PostMark benchmark simulates an email system
and consists of a series of transactions, each of which per-
forms a file deletion or creation, together with a read or
write. Operations and files are randomly chosen. We used
a scaled version of the PostMark benchmark that uses 30
sets of 10,000 files, ranging in size from 512 bytes to
200KB. To scale the I/O load intensity, we ran multiple
identical copies of the benchmark on the same file-system.

6.3 I/O issue error

We now present a detailed analysis of various trace re-
play schemes, including Buttress, on their behavior to
achieve good timing accuracy as the I/O load on the sys-
tem changes for a variety of synthetic and real application
workloads. In Section 2, we demonstrated that the issue
error impacts the workload characteristics; in this section,
we focus on the issue error itself.

0

10

20

30

40

50

60

70

80

90

100

0 100 200 300 400 500 600 700 800 900 1000

F
ra

ct
io

n
of

 R
eq

ue
st

s

Issue Error (microseconds)

BUTTRESS
DED-CLOCK

SELECT
USLEEP

0

10

20

30

40

50

60

70

80

90

100

0 100 200 300 400 500 600 700 800 900 1000

F
ra

ct
io

n
of

 R
eq

ue
st

s

Issue Error (microseconds)

BUTTRESS
DED-CLOCK

SELECT
USLEEP

(a) Issue Error (normal) (b) Issue Error (4x load)

Figure 4: Issue error for the omail trace when replayed on timpani with the XP1024.

0

10

20

30

40

50

60

70

80

90

100

0 100 200 300 400 500 600 700 800 900 1000

F
ra

ct
io

n
of

 R
eq

ue
st

s

Issue Error (microseconds)

BUTTRESS
DED-CLOCK

SELECT
USLEEP

0

10

20

30

40

50

60

70

80

90

100

0 100 200 300 400 500 600 700 800 900 1000

F
ra

ct
io

n
of

 R
eq

ue
st

s

Issue Error (microseconds)

BUTTRESS
DED-CLOCK

SELECT
USLEEP

(a) Issue Error (normal) (b) Issue Error (4x load)

Figure 5: Issue error for the harp trace when replayed on timpani with the XP1024.

In Figures 4 and 5 we plot the CDF of the issue error for
Buttress, DED-CLOCK, SLEEP, and SELECT using
the harp and the omail workload. We use two variants of
these workloads: we replay the workload at the original
speed and quadruple the speed. This lets us quantify the
issue error as the throughput changes. These experiments
were performed on timpani using the XP1024 disk array.

These results show that Buttress issues about 98% of
the I/Os in the omail workload within 10 µs of the actual
time in the original workload and 95% of the I/Os in the
harp workload within less than 50 µs of their actual time.
On the other hand, OS-based trace replay mechanisms
fare worst: both SLEEP and SELECT could achieve 1
millisecond of issue accuracy for only about 30% of the
I/Os in either workload. The DED-CLOCK was slightly
better, issuing 89% of the I/Os in the harp trace and 60%
of the I/Os in the omail trace within 100 µs of their in-
tended time. This is because DED-CLOCK can more
accurately keep time using the CPU cycle counters, but
overwhelmed by the thread wakeup overhead when deal-

ing with moderate I/O rates.

The results with the faster replays indicate that Buttress
continues to achieve high I/O issue accuracy for moderate
loads: 92% of the I/Os in the harp workload and the 90%
of the I/Os in the omail workload are issued within 50 µs
of their intended issue times. An interesting observation
is that the SLEEP and SELECT based mechanisms per-
form slightly better at higher load (4x issue rate) than at
lower loads. This is because in the higher load case, the
kernel gets more opportunities to schedule threads, and
hence more I/O issuing threads get scheduled at the right
time. The dedicated clock-thread based approach, how-
ever, is restrained by the speed at which the clock-thread
can wake up worker threads for I/O issue – especially for
the omail workload where the I/O load steadily runs at a
moderate rate.

Figure 6 shows the issue error for the harp workload
when we use the 2-processor server bongo and the two
mid-range FC-60 disk arrays. While this environment has
sufficient resources to handle the steady state workload,

0

10

20

30

40

50

60

70

80

90

100

0 100 200 300 400 500 600 700 800 900 1000

F
ra

ct
io

n
of

 R
eq

ue
st

s

Issue Error (microseconds)

BUTTRESS
DED-CLOCK

SELECT
USLEEP

Figure 6: Issue error for harp trace on two-processor
bongo server, using two mid-range FC-60 disk arrays.

0

200

400

600

800

1000

1200

0 5000 10000 15000 20000 25000 30000 35000

Is
su

e
er

ro
r

in
 m

ic
ro

-s
ec

on
ds

IOps

Figure 7: Issue error of Buttress as a function of the num-
ber of I/Os per second issued.

it does not have enough resources to handle the peaks.
When the arrays fall behind in servicing I/Os, contention
occurs; as a result, both Buttress and DED-CLOCK
show heavy-tailed issue error graphs. Also, having only
two processors to handle all system events introduces ad-
ditional delays when interrupts are being processed.

We also used synthetic, more regular workloads to de-
termine how accurately Buttress issues I/Os as the load
increases. We measured the difference between the time
that the I/O was supposed to be issued and the time when
it was actually issued. The results presented are averages
of 3 runs of the experiments using 3 different sets of 10
destination devices. Figure 7 presents the results, with the
issue error being plotted against the number of IOPS per-
formed by Buttress. We use IOPS because it correlates
with the number of events that Buttress needs to handle.

Another measure of Buttress’ performane in terms of
its overhead, is whether Buttress can get throughputs
comparable to those of I/O generation tools specifically

engineered to generate only a particular pattern of I/Os.
To answer this question we wrote a special-purpose pro-
gram that uses multiple threads issuing I/Os using pread()
to each of the available devices. We used timpani with
the XP1024 for these experiments, and noticed that the
maximum throughput we could achieve using the special-
purpose program was 44000 IOPS (issuing I/Os to cached
1KB blocks). On the same hardware and setup, Buttress
could issue I/Os at 40000 IOPS, only 10% less.

6.4 Workload fidelity

In this section, we examine the characteristics of the I/O
workloads produced using trace replay and expand our
discussion in Section 2. We focus on two characteris-
tics of the I/O workload: response time and burstiness
– Figure 8 (the detailed version of Figure 2(a)) presents
the CDF of the measured response times across various
trace replay mechanisms; and Figure 10 compares the
burstiness characteristics of the original workload with
the burstiness characteristics of the workload generated
by Buttress. Figure 10 visually shows that Buttress can
mimic the burstiness characteristics of the original work-
load, indicating that Buttress may be “accurate enough”
to replay traces.

For the omail workload, all of the trace replay mecha-
nisms are comparable in terms of the response time of the
produced workload: the mean response times were within
15% of each other. For this trace, even though the I/Os
were issued at a wide range of accuracy, the effects on the
response time characteristics were not substantial. This
is not so for the harp workload – different trace replay
mechanisms produce quite different response time behav-
ior. This is partially explained by the high-burstiness ex-
hibited in the harp workload; sharp changes in the I/O rate
are difficult to reproduce accurately.

In order to understand the impact of I/O issue accuracy
on the application I/O behaviour, we studied the effect of
controlled issue error using two means: a) by introducing
a uniform delay to the issue times of each I/O and b) by
quantizing the I/O issue times around simulated schedul-
ing boundaries. Figure 9 shows the results of the sensi-
tivity experiments for two application metrics, response
time and burstiness. It shows that the mean response time
changes as much as 37% for the harp workload and 19%
for the omail workload. The effects of issue error on the
burstiness characteristics (mean queue size) is more dra-
matic: as much as 11 times for the harp workload and five
times for the omail workload. This shows that the bursty
workloads are more sensitive to the delays in I/O issue
times leading to modify their I/O behavior.

So far, we used application workloads collected on
different systems; we now look at the PostMark work-
load and present its characteristics from the trace replays

65

70

75

80

85

90

95

100

0 5 10 15 20 25 30

F
ra

ct
io

n
of

 r
eq

ue
st

s

Response Time (milliseconds)

BUTTRESS
DED-CLOCK

SELECT
USLEEP

40

50

60

70

80

90

100

0 5 10 15 20 25 30

F
ra

ct
io

n
of

 r
eq

ue
st

s

Response Time (milliseconds)

BUTTRESS
DED-CLOCK

SELECT
USLEEP

(a) omail trace (b) harp trace

Figure 8: Response time CDF of various trace-replay mechanisms for harp and omail traces on timpani with XP1024.

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

harp on timpani-
xp1024

harp on bongo-
fc60

omail on
timpani-xp1024

omail on bongo-
fc60

Q-1ms
Q-5ms
Q-10ms
UD-1ms
UD-5ms
UD-10ms

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

harp on timpani-
xp1024

harp on bongo-
fc60

omail on
timpani-xp1024

omail on bongo-
fc60

Q-1ms
Q-5ms
Q-10ms
UD-1ms
UD-5ms
UD-10ms

5.7 11.2 5.5

(a) Response time (b) Queue size

Figure 9: Sensitivity analysis for the impact of I/O issue accuracy (normalized to Buttress) on the application I/O
behavior on various systems. All the numbers are normalized to the value of the metric reported by Buttress. Q-X
denotes the quantization at X ms boundaries and UD-X denotes the random delay added using uniform distribution
with mean X ms.

when we use the same host and the array to replay trace
as we used running PostMark. Figure 11 shows the re-
sponse time characteristics of the PostMark workload on
the XP1024 measured from the workload and from the
trace replays. The high-accuracy of Buttress helps it to
produce almost the exact response time statistics as the
actual workload, while the less accurate mechanisms de-
viate significantly more.

7 Related Work

Several benchmarks attempt to emulate the real applica-
tion behavior: TPC benchmarks [22] emulate common
database workloads (e.g., OLTP, data warehousing), Post-
mark [15], SPECsfs97 [8], and Andrew [12] emulate file

system workloads. The I/O load generated from these
benchmarks still uses the real systems, e.g., a relational
database or a UNIX file system, but the workload (e.g.,
query suite, file system operations) are controlled in the
benchmark. In practice, setting up infrastructures for
some of these benchmarks is complex and frequently very
expensive; Buttress complements these benchmarks as a
flexible and easier to run I/O load generation tool, which
does not require expensive infrastructure.

A variety of I/O load generators measure the I/O
systems behavior at maximum load: Bonnie [6],
IOBENCH [25], IOmeter [13], IOstone [19], IOzone [14],
and lmbench [17]. While Buttress could also be used to
determine the maximum throughput of a system, it has
the capability to generate complex workloads with think-
times and dependencies (e.g., SPC-1 benchmark [9] and

500

1000

1500

2000

2500

3000

3500

4000

4500

0 100 200 300 400 500 600 700 800 900

N
um

be
r

of
 r

eq
ue

st
s

Elapsed time (seconds)

0

500

1000

1500

2000

2500

3000

3500

0 200 400 600 800 1000 1200

N
um

be
r

of
 r

eq
ue

st
s

Elapsed time (seconds)

(a) omail trace (original) (b) harp trace at 4X it’s original rate (original)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 100 200 300 400 500 600 700 800 900

N
um

be
r

of
 r

eq
ue

st
s

Elapsed time (seconds)

BUTTRESS

0

500

1000

1500

2000

2500

3000

0 200 400 600 800 1000 1200

N
um

be
r

of
 r

eq
ue

st
s

Elapsed time (seconds)

BUTTRESS

(a) omail (replay) (b) harp trace at 4X it’s original rate (replay)

Figure 10: Burstiness characteristics The X axis is the number of seconds past the start of the trace, and the Y axis
is the number of requests seen in the previous 1 second interval. These experiments were run on timpani with the
XP1024

TPC-B [21]) and can be used in trace replays. In addition,
many of these benchmarks can easily be implemented on
top of the Buttress infrastructure, due to its portability,
flexibility, and high-performance. Moreover, Buttress can
handle general open and closed I/O workloads in one tool.

Fstress [5], a synthetic, flexible, self-scaling [7] NFS
benchmark has a load generator similar to the one in But-
tress. While the Fstress load generator specifically targets
NFS, Buttress is general purpose and can be tailored to
generate a variety of I/O workloads. Furthermore, we ex-
pect that extending Fstress’s “metronome event loop” in
a multi-processor environment will face the same set of
design issues we address in this paper.

Several papers [18, 23, 4] have been written on pro-
gramming models based on events and threads, and they
make a case for one or the other. The architecture of But-
tress can be viewed as using both models. In particu-
lar, Buttress uses event-driven model implemented with
threads. Buttress uses pthreads so that it can run on
SMPs, and multiplexes event-based filaments across them

to support potentially millions of filaments each temporar-
ily sharing a larger stack space. Since Buttress is imple-
mented in C++, and C++ facilitates state packaging, we
have not found that it poses an issue for us as other re-
searchers have found for implementations in C.

8 Conclusions

We presented Buttress, an I/O generation tool that can be
used to issue pre-recorded traces accurately, or generate a
synthetic I/O workload. It can issue almost all I/Os within
a few tens of µs of the target issuing time, and it is built
completely in user space to improve portability. It pro-
vides a simple interface for programmatically describing
I/O patterns which allows generation of complex I/O pat-
terns and think times. It can also replay traces accurately
to reproduce workloads from realistic environments.

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30

F
ra

ct
io

n
of

 r
eq

ue
st

s

Response Time (milliseconds)

BUTTRESS
DED-CLOCK

PostMark
SELECT
USLEEP

Figure 11: Response time characteristics of the Postmark
benchmark and replaying its trace when run on timpani
with the XP1024.

9 Acknowledgements

We thank our shepherd Fay Chang for her help in mak-
ing the presentation better, and the anonymous referees
for their valuable comments. We also thank Hernan Laf-
fitte for the substantial help in setting up the machines and
arrays so that the experiments could actually be run.

References
[1] HP StorageWorks disk array xp1024. http://www.

hp.com/products1/storage/products/disk arrays/
highend/xp1024/.

[2] HP StorageWorks disk array xp512. http://www.
hp.com/products1/storage/products/disk arrays/
highend/xp512/.

[3] HP StorageWorks virtual array 7400. http://www.
hp.com/products1/storage/products/disk arrays
/midrange/va7400/.

[4] A. Adya, J. Howell, M. Theimer, W.J. Bolosky, and J.R.
Douceur. Cooperative task management without manual
stack management or, event-driven programming is not the
opposite of threaded programming. In Proceedings of the
USENIX 2002 Annual Technical Conference, June 2002.

[5] D. Anderson and J. Chase. Fstress: a flexible network file
system benchmark. Technical Report CS-2002-01, Duke
University, January 2002.

[6] T. Bray. Bonnie benchmark. http://www.textuality.com/
bonnie, 1988.

[7] P. Chen and D. Patterson. A new approach to I/O per-
formance evaluation – self-scaling I/O benchmarks, pre-
dicted I/O performance. In Proc. of the ACM SIGMET-
RICS Conf. on Measurement and Modeling of Computer
Systems, pages 1–12, May 1993.

[8] Standard Performance Evaluation Corporation. SPEC SFS
release 3.0 run and report rules, 2001.

[9] Storage Performance Council. SPC-1 benchmark.
http://www.storageperformance.org, 2002.

[10] Hewlett-Packard. HP OpenMail. http://www.
openmail.com/cyc/om/50/index.html.

[11] Hewlett-Packard Company. HP SureStore E Disk Array
FC60 - Advanced User’s Guide, December 2000.

[12] J.H. Howard, M.L. Kazar, S.G. Menees, D.A. Nichols,
M. Satyanarayanan, R.N. Sidebotham, and M.J. West.
Scale and performance in a distributed file system. ACM
Trans. on Computer Systems, 6(1):51–81, February 1988.

[13] IOmeter performance analysis tool. http://developer
.intel.com/design/servers/devtools/iometer/.

[14] IOzone file system benchmark. www.iozone.org, 1998.

[15] J. Katcher. Postmark: a new file system benchmark. Tech-
nical Report TR-3022, Network Appliance, Oct 1997.

[16] G.S. Manku, S. Rajagopalan, and B.G. Lindsay. Approx-
imate medians and other quantiles in one pass and with
limited memory. In Proc. of the 1998 ACM SIGMOD Intl.
Conf. on Management of data, pages 426–435, 1998.

[17] L. McVoy and C. Staelin. lmbench: portable tools for per-
formance analysis. In Proc. Winter 1996 USENIX Techni-
cal Conference, pages 279–84, January 1996.

[18] J. Ousterhout. Why Threads Are A Bad Idea
(for most purposes). Invited Talk at the 1996
USENIX Technical Conference, January 1996.
http://home.pacbell.net/ouster/threads.ppt.

[19] A. Park and J.C. Becker. IOStone: a synthetic file system
benchmark. Computer Architecture News, 18(2):45–52,
June 1990.

[20] A.D. Robison. The Abstraction Penalty for Small Objects
in C++. In Parallel Object-Oriented Methods and Appli-
cations ’96, Santa Fe, New Mexico, February 1996.

[21] The transaction processing performance council. TPC
Benchmark B. http://www.tpc.org/tpcb/spec/
tpcb current.pdf, June 1994.

[22] Tpc – transaction processing performance council.
www.tpc.org, Nov 2002.

[23] R. von Behren, J. Condit, and E. Brewer. Why events are
a bad idea (for high-concurrency servers). In Proc. of the
9th Wkshp. on Hot Topics in Operating Systems (HotOS
IX), pages 19–24, 2003.

[24] J. Wilkes, R. Golding, C. Staelin, and T. Sullivan. The hp
autoraid hierarchical storage system. In Proc 15th ACM
Symposium on Operating Systems Principles (SOSP),
pages 96–108, 1995.

[25] B.L. Wolman and T.M. Olson. IOBENCH: a system in-
dependent IO benchmark. Computer Architecture News,
17(5):55–70, September 1989.

