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Why care about storage security?

How secure is your storage?
– Laptop      Network      Disk       Tape
– Trust galore:

• laptop / hard-disks can be stolen
• network is shared
• storage is outsourced

– Securing the network alone is not enough
– How much do you trust your administrator / ssp?



What’s out there?

– Network security
• doesn’t have storage semantics

– Encrypt-on-wire
• layered system
• typically trusts server
• NASD, iSCSI w/ IPSec, NFS w/ secure RPC

– Encrypt-on-disk
• encrypt before it leaves clients
• stored encrypted, typically used only for local storage
• “sharing” problem not yet addressed
• CFS,  CryptFS, Truffles, Cepheus, Win EFS



Where are we going?
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Our mantra

The fundamental design principles
– Decentralize key management and distribution

• clients all the key related work
• better scalability
• better security
• flexibility in policy

– Minimize server trust requirement
• server can be broken into
• anyway assuming untrusted network



Translation…

Encrypt-on-disk system
• Data on disk encrypted

– files and (optionally) directory entries
• Data on network integrity protected 

– no need to re-encrypt bulk data
Client-centric system

• Client does most of the work
– crypto, key management and distribution

• Server: store and retrieve bits from disk
– validate writes



Plutus techniques summary

• Store all data encrypted
– asymmetric read/write keys

• Owners distribute keys to share data
• Protect network integrity
• Server verified writes
• File-groups
• Lazy revocation 

– key rotation



Plutus techniques summary

• Store all data encrypted
– asymmetric read/write keys

• Owners distribute keys to share data
• Protect network integrity
• Server verified writes
• File-groups
• Lazy revocation 

– key rotation



Plutus

• Store all data encrypted
– say we use something like DES

• Owners distribute keys to share data
• Protect network integrity
• Server verified writes

Attack:
– Reader and server collude to update data

• a data modify attack



Preventing readers from writing:
asymmetric encryption

• Observations
– Readers and writers need to be given different keys
– Readers need to see what writers have written
– Try converting into data destroy attack

• should only be able to detect it

• Solution: asymmetric keys
– Encrypt file with “file block key”
– Protect integrity with “file-sign / file-verify” keys



Differentiating read/write access

encrypt with file block key

Alice

file sign key can write valid data

writer
Bob

reader
Charlie

file verify key
cannot write valid data



Overhead: Too many keys!

• Problem
– Key distribution overhead
– Clients not always online
– Key generation overhead

• Observation: use same key on multiple files

• Solution: file-groups
– Use same key for files with similar sharing
– Translating to unix

• file-group = files with same owner, group, mode bits
• study: appx 30 keys per user



You’re outa here!
revocation

– How to revoke a user’s access to a file

– Change keys and hand them out again
• re-encryption effort
• key re-distribution effort



You’re … yawn … outa … zzz …here
lazy revocation

• Observations
– might be ok to leave unchanged data open

• Solution: lazy re-encryption
– On revocation

• change keys
• mark files for re-encryption

– Only re-encrypt when written next



Complication:
lazy revocation + file-groups

– File-groups
• same key multiple files

– On write following revocation
• key for re-encrypted file different!

– Don’t want explosion in keys due to revocations



Recursive keys

• Keys for a file-group
– rotate file lockbox key
– only owner can generate next in sequence
– given current key, readers generate previous keys

• On revocation owner generates new keys
• Writers get latest file-sign key
• Readers are given latest file lockbox key

– rotate back to get older keys on seeing older files
– derive file-verify keys from corresponding lockbox key



Key-rotation

initial key first 
revocation

second 
revocation

K1=EPr[K0] K2=EPr[K1]

K0=EPu[K1] K1=EPu[K2]

owner

reader

K0 K1 K2



Key-rotation: the math

Owner (and reader)
– generate random prime e greater than sqrt(N)

• use file lockbox key as seed
Owner

– generate corresponding “d” (file-sign key)
Writer

– given “d” 
Note

– Reader cannot get file-sign key
– Writer cannot get file-verify key



Design summary

• Store all data encrypted
– asymmetric read/write keys

• Owners distribute keys to share data
• Protect network integrity
• Server verified writes
• File-groups
• Lazy revocation 

– key rotation
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AFS incarnation

key cache

vnode
interface

secure rpc

secure rpc

xtnd vnode

w
rite verification

Kernel module

files

Server (user level)

key xchg

ioctlinterface

secure rpc

Client (mostly kernel)

revocation

• Implmented in Linux, OpenAFS
• Crypto: SHA1, RSA1024, 3DES



Key summary – the file side

file header
file data



How long does it take

• RSA key generation
– 2500 ms paid by owner on every filegroup creation

• File read/write
– per 4KB block: 0.7 ms of crypto
– per file: 28.5 ms by writer, 8.5 ms by reader

– write verification: 0.01ms per file

1.26GHz P3 with 512MB ram: SHA1, RSA1024, 3DES



Data structures overhead

Accessing a remote 40 MB file
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• Hash tree structure doesn’t take much time



Encrypt-on-disk vs. wire-encryption

Accessing a remote 40 MB file

• Comparable performance
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Plutus performance (overall)

Accessing a remote 40 MB file OpenAFS’s fcrypt comparable to DES
SFS’s ARC4 14X faster than 3DES

• Plutus compares favorably with SFS
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The key takeaways

1. Use keys to pass “access rights”
+ don’t need to maintain lists
– complicates revocation

2. File groups: use same keys for similarly shared objects
+ simpler key management

3. Key rotation: keys can be related but secure
+ useful for evolving keys

4. Lazy re-encryption
• don’t do the crypto till absolutely necessary


