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Abstract

Current disk arrays, the basic building blocks of high-
performance storage systems, are built around two mem-
ory technologies: magnetic disk drives, and non-volatile
DRAM caches. Disk latencies are higher by six orders
of magnitude than non-volatile DRAM access times, but
cache costs over 1000 times more per byte. A new stor-
age technology based on microelectromechanical sys-
tems (MEMS) will soon offer a new set of performance
and cost characteristics that bridge the gap between disk
drives and the caches. We evaluate potential gains in per-
formance and cost by incorporating MEMS-based stor-
age in disk arrays. Our evaluation is based on exploring
potential placements of MEMS-based storage in a disk
array. We used detailed disk array simulators to replay
I/O traces of real applications for the evaluation. We
show that replacing disks with MEMS-based storage can
improve the array performance dramatically, with a cost
performance ratio several times better than conventional
arrays even if MEMS storage costs ten times as much as
disk. We also demonstrate that hybrid MEMS/disk ar-
rays, which cost less than purely MEMS-based arrays,
can provide substantial improvements in performance
and cost/performance over conventional arrays.

1 Introduction

Disk arrays [16] are the main building blocks used to sat-
isfy the performance and dependability requirements of
current high-end storage systems. A disk array consists
of a large number of disk drives, partially used to store
redundant data that will allow transparent recovery from
disk failures; controllers that interface with client hosts
and maintain redundant data; and large battery-backed,
non-volatile RAM (NVRAM) caches that allow opti-
mizations such as prefetching, write-behind, and back-
ground destaging to mitigate the effects of high disk la-
tencies. Most modern disk array architectures are based
on the two-level NVRAM/disk hierarchy.
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The access latency gap between disk and NVRAM is cur-
rently almost six orders of magnitude (10 ms vs 50 ns),
and is widening by about 50% per year. NVRAM costs
about three orders of magnitude more per byte than disk
drives. While specific applications may enjoy high hit
rates from array caches, Wong and Wilkes [25] show that
in most cases, NVRAM caches in high-end arrays can
only hold 5% of the working set of applications, leading
to low hit ratios. NVRAM is much less reliable than disk
drives: typical mean time to failure for battery-backed
NVRAM is only about 15K hours, compared to over a
million hours for disk drives [19]. As a result, almost
all disk arrays keep at least two copies of all dirty data
in separate NVRAM buffers, further increasing cost. Fi-
nally, battery packs are cumbersome, as they must be ca-
pable of supplying enough power for the whole array;
they can reach hundreds of pounds in weight and many
cubic feet in size.

A disruptive new storage technology based on microelec-
tromechanical systems (MEMS) will soon offer a new
set of performance, cost and reliability characteristics
that bridge the gap between NVRAM and disk drives.
MEMS-based storage consists of chips containing thou-
sands of small, mechanical probe tips that access data
located on flat rectangles of storage media. The media
is moved in two dimensions over fixed probe-tip heads,
until the desired bits coincide with the heads. Position-
ing delays for MEMS-based storage are much smaller
and more deterministic [8] than those of conventional
disk drives. First, there is no rotational delay component
in the positioning times. Second, MEMS-based storage
is expected to achieve much higher densities (260–720
Gbit/���) [3], so seek distances are much shorter than
in disk drives. Finally, since moving parts have much
smaller masses than those in disks, they are much eas-
ier to accelerate. As a result, MEMS-based storage has
the potential to bridge the cost and performance gaps be-
tween disk drives and NVRAM.

We explore the cost/performance implications of incor-
porating MEMS-based storage into disk array architec-
tures. The total space of possible disk array architec-
tures is too large to be explored systematically: the pos-
sibilities include the use of different data layouts, re-



dundancy schemes, caching methods, partial and com-
plete replacement of disk and NVRAM with MEMS stor-
age, variation in the proportions of MEMS storage, disk
and NVRAM, as well as combinations of these meth-
ods. This study is intended to narrow the focus of fu-
ture explorations by finding a few disk array architec-
tures where the use of MEMS is most beneficial. We do
this by devising a number of novel architectures to exam-
ine the potential placements of MEMS-based storage in
a disk array. We concentrate on the performance part of
users’ requirements [28], as no predictions are yet avail-
able of the reliability and availability characteristics of
MEMS chips—not even the cost of mass-produced chips
is known precisely. Given that MEMS-based storage
chips will not be commercially available before 2004, we
used a detailed simulator replaying I/O traces from real
applications for our performance study. By providing in-
sight into the various architectural tradeoffs, our result-
ing cost/performance analysis can be seen as a first-cut
indication on where to best spend money when design-
ing disk arrays using MEMS-based storage devices. We
found that replacing disks with MEMS storage in disk
arrays improves both the performance and the perfor-
mance/cost significantly, even if the MEMS storage costs
ten times as much per byte as disks do. We also found
that some hybrid MEMS/disk architectures offer an inter-
mediate performance and cost between conventional disk
arrays and MEMS-based arrays, with a performance/cost
similar to MEMS-based arrays.

The remainder of this paper is organized as follows. Sec-
tion 2 gives an overview of MEMS-based storage de-
vices. We describe the disk array architectures under
consideration in Section 3, and evaluate their perfor-
mance and cost/performance characteristics in Section 4.
Section 5 surveys related work; Section 6 contains a final
discussion.

2 MEMS-based storage basics

MEMS-based storage chips consist of arrays of scanning
probe tips that access a rectangular storage media sled.
MEMS storage chips are built using standard photolitho-
graphic CMOS processes, and are expected to be mas-
sively produced around 2004. While the final design pa-
rameters for MEMS-based storage chips are still an ac-
tive area of study, we concentrate on high-level device
characteristics, as they relate to the present work. Car-
ley, Ganger and Nagle [3] and Griffinet al. [8] provide
detailed descriptions of MEMS-based storage.

As shown in Figure 1, MEMS-based storage chips con-
tain one (or more than one, depending on design deci-
sions [6]) rectangular array of several thousand probe
tips. Data is stored on a rectangular media sled that
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Figure 1: High-level schematic of a MEMS-based stor-
age chip. All four sides of the media sled have actuators,
and every crossing point in the tip array has a read/write
tip. The sled is supported on top of the array by an en-
semble of cantilevered springs, that move in two dimen-
sions to seek to the coordinates where the data are.

moves in two dimensions with respect to the array of
tips. We study the prevalent variety in which data storage
is magnetic, as in disk drives; other recording materials
such as phase-change media as in re-writable CDs are
also possible. Each probe tip accesses a rectangular re-
gion on the media sled, and no two such regions overlap.
For a given access, the media sled simultaneously seeks
in the � and� directions until the corresponding tip is
positioned on top of the start bit; then, the sled keeps
moving in the� direction, while reading or writing con-
secutive bits along its trajectory. Since multiple probe
tips can be active at any given time, most proposed data
layouts rely on bit-interleaving, with multiple tips per-
forming parallel reads or writes.

This design has several important consequences. First,
stored data is persistent and does not depend on con-
tinuous availability of a power source, as in battery-
backed DRAM caches. Second, positioning delays de-
pend on the relative positions of the sled and of the des-
tination coordinates. Third, positioning delays are much
smaller than in disk drives as there are no rotational de-
lays, ranges of motion are in the order of a few millime-
ters, and components have small masses. Schlosseret al.
found, using simulation [20], that typical access times for
MEMS are in the order of 1–2 ms. The advantage over
disk drives is still more pronounced for random work-
loads, where the disk spends most of the time positioning
the head over the right bits instead of actually transfer-
ring data to/from the platters. Thus, MEMS positioning
times are not only smaller on average than those of disks,



bit width (nm) 50
sled acceleration (�) 70
access speed (kbit/s) 400

settling time on� (ms) 0.431
total tips 6400

simultaneously active tips 640
max. throughput (MB/s) 25.6

number of sleds 1
per-sled capacity (GB) 2.56

Table 1: MEMS-chip parameters.

but their variances are also much lower.

Table 1 summarizes the parameters of the MEMS-based
storage chips we used. These parameters correspond to
conservative predictions [20] for the characteristics of
the first generation of MEMS-based storage chips. Our
simulated chips do not allow bidirectional reads,i.e., ac-
cesses along the� axis must always be done while mov-
ing the sled in the same direction.

3 MEMS-based array architectures

Current high-end disk arrays store data in two main
locations. They typically contain a fully-associative
NVRAM cache in the order of tens of gigabytes. User
data is ultimately stored in theback-end disk drives, for
a total capacity of many terabytes. For fault tolerance,
arrays keep redundant data at both levels in the memory
hierarchy: as mirror copies or erasure-correcting codes
on disks (RAID) [1, 16], and as dirty blocks mirrored
in separate NVRAM cache banks in independent power
domains. Disk arrays organize data storage intoLogical
Units (LUs), exporting a linear address space of blocks to
client hosts.

The NVRAM cache in the disk arrays serves several pur-
poses. First, it acts as a speed-matching buffer between
the disks and storage area networks. Second, it allows the
array to report the completion of write accesses as soon
as the dirty data is in the (fault-tolerant) cache, without
waiting for the disk write to complete. This optimization,
commonly known as write-behind, decreases I/O service
times and allows writes to be performed more efficiently
in the background. Third, the NVRAM cache exploits
the temporal locality in the workloads: multiple over-
writes on the same data in the NVRAM cache are folded
into a single write to the back-end during destaging; sim-
ilarly, multiple read accesses to the same data can be di-
rectly served from the cache. Finally, read-ahead opti-
mizations can exploit spatial locality in the workloads.

Our primary goal is to propose and evaluate alternative
ways in which MEMS-based storage could improve both

the performance and the cost/performance ratio of cur-
rent disk arrays. We study architectures that use MEMS
as either a total replacement for all back-end disks, or
as a replacement for only some of them (hybrid archi-
tectures), or as a total replacement of current NVRAM
cache. The hybrid architectures we have studied include
several different data layouts and corresponding IO ac-
cess policies, in order to determine if the different char-
acteristics of disks and MEMS storage can be exploited
for better performance. Despite the obvious fact that
many other ways exist to incorporate MEMS into storage
architectures, this methodology includes multiple points
across the cost/performance spectrum for a reasonable
degree of coverage of the potential alternatives.

3.1 MEMSdisk: Array disk replacement

The MEMSdisk architecture replaces each disk drive in
the disk array by a bank of MEMS-based storage devices
of the same capacity. Since the access latencies are much
smaller for MEMS-based devices, the MEMSdisk archi-
tecture provides an upper bound on performance for all
arrays that utilize MEMS-based storage for a fixed cache
size. However, this comes at a potentially high cost per
byte—up to an order of magnitude more expensive than
disk drives of the same capacity.

3.2 MEMSmirror: Hybrid mirrored back-end

A RAID1/0 Logical Unit(LU) in a conventional disk ar-
ray comprises a number of disk pairs where both disks in
each pair contain exactly the same data. Writes complete
as soon as they are written to the redundant NVRAM
cache. The data is later flushed to the disks in the back-
ground, when the disks are otherwise idle, or when the
cache starts filling up. Reads of data not found in the
cache, however, require disk accesses, which have sub-
stantial latency.

MEMSmirror, depicted in Figure 2, alleviates this prob-
lem by having hybrid mirrored pairs: one disk drive and
one bank of MEMS storage of the same capacity. Reads
of data not in the cache are directed to the MEMS copy,
which has much lower latency and higher throughput
than the disk copy. Since the disk copy only handles
writes, it can sustain a fairly high throughput, and the
disk latencies are not an issue because of the NVRAM
cache.

3.3 Logdisk: Hybrid replication with log-
structured disk storage

As an attempt to get as close as possible to the perfor-
mance of a purely MEMS-based array without the con-
sequent cost, we propose an alternative where the data
in MEMS storage devices is mirrored for redundancy on
magnetic disks. In order to diminish the impact of slow
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Figure 2: MEMSmirror: each disk is mirrored by a
MEMS bank of equal capacity

positioning times of the disk copy, data is written to disks
as a log for near-to-zero positioning latency. Our disks
are standard—they follow the standard update-in-place
allocation policies, but we use them in a mostly append-
only fashion.

Consider an array of� MEMS storage devices��, ��,
� � �, ��, plus “mirror” disks��, ��, � � �, ��, of greater
capacity than the corresponding MEMS devices. The
MEMS storage devices are organized as a RAID 0 (stripe
only, no redundancy) array [4]. Other components in-
clude NVRAM for saving metadata and for temporary
storage of writes, and a RAM buffer for copying data
between the MEMS storage devices and the disks. All
data reads are serviced from the MEMS array. Writes are
inserted into the NVRAM write cache and later flushed
to both the MEMS array and the magnetic disk copies
(when both copies are written, the data is cleared from
the write cache.) Figure 3 depicts a simplified version
of the LogDisk architecture, containing a single pair of
devices.

Updates to the data stored in�� are mirrored in�� in
a log-structured fashion. The disk writing algorithm is
designed to minimize the fraction of time the disk head
spends idle or seeking. The space in each disk is divided
into fixed-size extents, one of which is marked ascur-
rent. To write data on the disk copy, the array creates
a fresh (active) copy of each overwritten block at the
end of the current extent, and updates metadata stored
in NVRAM to reflect the new status. Disks are therefore
mostly used in sequential mode to append new data, sus-
taining their peak transfer rates with minimal position-
ing overhead. An I/O operation which overwrites a data
block may supersede portions of a previously-written ex-
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Figure 3: LogDisk architectural diagram: the RAM
buffer allows asynchronous transfers between MEMS
and disks. The current extent on disk is used in append-
only mode, from top to bottom in the figure. Newer
writes may render old data (e.g., block B) invalid.

tent on disk, thus making the older extent sparsely popu-
lated with active data. Such extents are transformed into
usable empty space by cleaning. At most one extent is
being cleaned at any point in time. During idle periods
the data corresponding to active blocks is read from the
MEMS devices into the RAM buffer; whenever the disk
is idle (i.e., there is no write data in the write cache to be
written to disk), it appends this data to the current extent,
marking the corresponding data block in the extent being
cleaned as invalid. An extent isdirty as long as it has
active blocks; it becomes clean when no active blocks
remain in it. The operation of the log-structured disk
is quite similar to that of the log-structured file system
LFS [18].

3.4 DualStripe: Hybrid replication for multiple
access types

When redundancy is provided in a storage array by repli-
cating the data, the replicas can be stored in different
ways to optimize performance. In the LogDisk archi-
tecture described above, the disk copy is organized as
a log to minimize the cost of writes; reads are directed
primarily to the MEMS copy. However, disks can per-
form sequential reads very efficiently; we now describe
an architecture in which the disk copy can service se-
quential accesses. The DualStripe architecture dynami-
cally detects the sequentiality characteristics of the work-
load, and services accesses from the devices that are best
suited for them according to the recent access history.

Consider an array with� MEMS storage devices,�
magnetic disks, and a mirrored NVRAM write cache
(Figure 4). The MEMS devices are organized in a
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Figure 4: DualStripe hybrid array. Data is mirrored, one
copy on magnetic disks with large stripes, another on
MEMS storage devices with a small stripe size. Total
capacity is equal on MEMS and disk.

RAID 0 layout and store one copy of the data stored on
the array; the disks similarly form a RAID 0 group and
store another copy. The stripe unit size for the MEMS
RAID 0 group is small, to distribute accesses evenly and
avoid hot-spots. The stripe unit size for the disk RAID 0
group is large, to reduce the positioning time cost for
large sequential reads or writes.

Data written to the array is stored in the NVRAM write
cache, to be flushed to the copies on MEMS and on disk
when the devices are idle, or when forced because the
cache’s high-water mark is reached. Read data are ob-
tained from the cache if present there. If not, they are
read preferentially from the MEMS copy if the queue is
short and from the disk copy if the queue length exceeds
a threshold. However, if the read is detected to be part of
a sequential run, the data are read from disk and a large
subsequent block is prefetched to serve future requests
in this sequential run. We expect this architecture to per-
form well for workloads where a substantial fraction of
the reads are sequential.

Sequentiality detection works as follows: the array
controller keeps a record of the addresses of the last
�	
�	����������� read requests. When a new
read request arrives, this record is checked to see if the
�	
�	���������	����� data blocks sequentially pre-
vious to this have been recently accessed. If so, the re-
quest is treated as part of a sequential run. In our imple-
mentation, we used�	
�	����������� � ��� and
�	
�	���������	������ ����.

3.5 MEMScache: MEMS as array cache

The array architectures described so far explore the use
of MEMS as a part of a redundancy scheme: for exam-
ple, to store one of a pair of data replicas. In this sec-

tion, we look at the other alternative: use of MEMS as
a replacement for the NVRAM cache. Any redundant
organization can be used for the disk back-end; in our
implementations we have assumed a RAID-1/0 layout.

The operation of the MEMS primary cache is similar to
that of the usual NVRAM cache. Reads are served from
the cache if the data is already present in the cache; oth-
erwise, the data are fetched from disk, and kept in the
cache until flushed. Writes are saved in the cache, to be
flushed in the background; usually, there are two copies
of a data in the cache for redundancy. The dirty data is
flushed to the back-end disk drives, when the amount of
dirty data in the cache reaches a high-water mark; flush-
ing continues in the background until the remaining dirty
data is less than a low-water mark. The flushing process
considers the location of dirty blocks in the disk storage
so that: (a) the dirty blocks with continuous addresses are
aggregated to be flushed in larger chunks and (b) the dirty
blocks are written in ascending order of the addresses so
that the access pattern for the flushes at the back-end is
as close to sequential as possible.

The MEMS cache is a RAID-5 array of MEMS storage
devices, organized as a log of cache lines. When data is
written into the cache (whether due to a read from disk or
an external write), one or more cache lines are appended
to the log. If those addresses existed in the cache already,
the corresponding locations are marked empty and later
reclaimed by a log-cleaning process.

4 Experimental evaluation

We compared the performance and the cost/performance
of the proposed architectures against a DiskOnly archi-
tecture using synthetic workloads and application IO
traces. Performance comparisons are made by ignor-
ing cost and looking at the proposed architectures con-
figured to have equal capacity: we call these theiso-
capacity comparisons. Cost performance is compared in
two sets of experiments: by comparing the performance
of MEMSdisk and DiskOnly architectures configured to
cost same (iso-cost comparisons) and by comparing the
cost/performance ratio of selected configurations of all
architectures. Since MEMS-based storage chips are not
currently available, we made these comparisons using a
detailed simulator. We present the experiments and the
results below.

4.1 Evaluation environment

We used a detailed event-driven storage system simula-
tor called Pantheon [26]. Pantheon contains independent
modules for separate components of the storage system,
such as disks, controllers, non-volatile caches, array con-
trollers, and buses. Each module’s simulation can be



made extremely accurate, up to the extreme of running
the code from the corresponding component’s firmware.
To exercise the simulated system, we had Pantheon gen-
erate synthetic workloads, and replay traces taken on real
systems. In the configurations we used, Pantheon issued
each I/O at the same time it was issued in the original
trace (for the same replay speed), regardless of whether
previous accesses had completed or not.

Our instantiations of Pantheon contain MEMS mod-
ules based on the state-of-the-art performance model de-
scribed by Sivan-Zimet and Madhyastha [21]. We con-
figured those modules to simulate a conservative version
of the first generation of MEMS-based device character-
istics used by Schlosseret al. [20]. Table 1 contains the
parameters for the MEMS-based storage device charac-
teristics used in our study. We also updated the disk
models in Pantheon to simulate a disk drive based on
an aggressive extrapolation of performance characteris-
tics of modern high-performance disks — 3 ms average
seek time, 20K rpm rotational speed, and a transfer band-
width of 125 MB/s to/from the media. We configured the
simulator to use four back-end buses to connect the disks
to the disk array controller, we used an extrapolated bus
bandwidth of 1GB/s for our simulations.

Our cost-performance comparisons used a cost of $6/GB
for disks, based approximately on 2001 list prices for
enterprise-class disks [17] and $8/MB for NVRAM,
based on recent Dallas Semiconductor list prices. Since
the cost for MEMS is unknown, we varied the relative
per-byte cost of MEMS storage to disks between 1 and
10.

4.2 The workloads

In our evaluation, we used both synthetic workloads and
several application traces: a file server containing home
directories of a research group (cello), an e-mail server
for a large company (omail), a database server running an
on-line decision-support benchmark (tpcd), and a trans-
action processing benchmark (tpcc).

The filesystem trace (cello) represents one hour of user
activity on April 20, 1999 on our main file server at HP
Labs. The server stored a total of 63 filesystems contain-
ing user home directories, news server pools, customer
workload traces, HP-UX OS development infrastructure,
etc., for a total of 238 GB user data in a 479 GB physi-
cal storage. This is a typical I/O workload for a research
group, involving software development, trace analysis,
simulation, e-mail, etc. This trace has 370,000 I/O re-
quests, with an average size of 23KB.

The omail workload is taken from the trace of accesses
done by an OpenMail e-mail server [10] on a 640GB
message store; the server was configured with 4487
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Figure 5: Performance comparison of architectures using
synthetic workloads. Numbers above bars show normal-
usage latency inms (taken at 50% utilization).

users, of whom 1391 were active. Theomail trace has
1.1 million I/O requests, with an average size of 7KB.

The tpcd workload represents decision support systems;
it consists of queries 5 and 7 from the TPC-D benchmark
at the 300GB scale factor. This benchmark displays long
complex database queries with both sequential and ran-
dom accesses. Thetpcd trace has 71,000 I/O requests,
with an average size of 56KB.

The tpcc workload represents on-line transaction pro-
cessing environments. It is based on a mid-range TPC-C
benchmark configuration using one disk array and a two-
processor server; overall, the transaction rate was 16.5K
tpmC. Thetpcc trace has 4.2 million I/O requests with an
average size of 2KB.

We also used synthetic workloads in our experiments.
Request sizes were drawn from an exponential distribu-
tion with a mean of 4KB, start addresses were drawn
from a uniform distribution over the entire available de-
vice address range. The workloads had a varying ra-
tio of read and write requests with 67% reads and the
33% writes as the default ratio, and a request inter-arrival
times from an exponential distribution with a variable
mean to simulate a variety of workload access intensity.

4.3 Results

Since MEMS-based devices have the potential to affect
both the throughput and latency characteristics of disk
arrays, we consider both performance metrics. Our base-
line is the conventional DiskOnly architecture,i.e., the
combination of NVRAM cache and disk back-end found
on current disk arrays, with a 2 GB of raw NVRAM and
a 2 TB raw physical disks. For the MEMScache, we used
100 GB of logical MEMS storage (120GB raw including



the parity). Given that most of the architectures we intro-
duced have a higher cost per byte than DiskOnly, it is le-
gitimate to ask what the performance of DiskOnly would
be if the extra money spent on MEMS were to be spent on
additional disks instead, to get more spindles in the back-
end. If the data is striped over all disks, there are two
potential performance advantages: more disk arms im-
ply more potential parallelism, and partially-empty disks
incur shorter seeks. To address this question we studied
theIsocost-X architectures,i.e., instances of DiskOnly in
which the number of disk drives is increased until the
cost matches that of a MEMSdisk architecture, assuming
that the per-byte cost ratio of MEMS storage to disk is
� .

4.3.1 Synthetic workloads

Our first set of experiments were designed to out-
line the performance of all the architectures studied.
We used synthetically-generated workloads, which are
easily scaled, to determine the maximum throughput
and normal-usage of each architecture. The maximum
throughput is found by measuring throughput with an
offered load of 1 million IO/s, which is well above the
throughput limit of any of the architectures. We then
measured thenormal-usage latency at 50% utilization by
using a workload with an IO rate equal to half the maxi-
mum throughput.

Figure 5 shows the measured maximum throughput and
normal-usage latencies for all the architectures studied.
As one would expect, the MEMSdisk architecture is
the clear leader in maximum throughput, with 380,000
IO/s, a 20-fold increase over the DiskOnly architec-
ture. Among the hybrid (disk+MEMS) architectures, the
LogDisk architecture is the best, with an approximately
177,000 IO/s maximum throughput; the MEMSdisk and
the DualStripe architectures had substantially lower per-
formance, with around 51,000 IO/s, as they are not as
efficient as the LogDisk architecture for writes. In the
DiskOnly-� iso-cost architectures, which increased the
number of disk spindles to match the cost of the MEMS-
disk architecture, the maximum throughput increased
with the cost factor� , but even with a MEMS/disk cost
factor of� � ��, the throughput was approximately half
that for the MEMSdisk and slightly less than that for the
LogDisk. The MEMScache architecture that replaced
the NVRAM cache with a MEMS cache, improved the
performance only slightly as the larger, MEMS-based
cache was not effective for this workload.

The normal-usage latency numbers reflected the pres-
ence (or absence) of MEMS in the architecture: the
DiskOnly architectures show a latency of 2.5–5.4ms,
whereas the architectures using MEMS storage show a

latency of 0.7–1.1ms.

We conclude that arrays using MEMS storage will offer
substantially higher throughputs and lower latencies than
those using disks alone, even if the number of disk spin-
dles is increased. The hybrid architectures, which com-
bine disks and MEMS devices, improved the IO latency
significantly, but only the LogDisk showed a significant
improvement in throughput for the synthetic workloads.
In the next section, we examine the LogDisk architecture
more closely to better understand its performance char-
acteristics.

4.3.2 Comparing LogDisk variants

Our hybrid disk/MEMS architectures are predicated on
the assumption that, with an appropriate layout and ac-
cess policies, mirroring data on MEMS storage and disks
can provide most of the performance of purely MEMS-
based arrays at a lower cost. By default, we used MEMS
storage and disks of equal capacity; however, it takes
several MEMS chips to equal the capacity of a single
disk, and these MEMS chips can sustain a higher ag-
gregate IO rate than the disk. For the 36 GB disks we
used in our experiments, we used 15 MEMS chips; each
disk was able to sustain about 250 IO/s and each MEMS
chip were sustaining about 1000 IO/s with 4K random
requests. To determine whether increasing the number
of disks would improve the performance of hybrid archi-
tectures, we compare the maximum throughput obtained
from a LogDisk architecture with a varying number of
disks. We use synthetic workloads with varying fractions
of reads, for small (4KB) IOs and large (64KB) IOs.

Figure 6 shows the throughput obtained. The base-
lines are MEMSdisk (with only MEMS storage) and
LogDisk (with equal capacities of MEMS and disk stor-
age). The LogDisk architecture has two disks and 30
MEMS chips organized into two logical disks of 15 chips
each. LogDisk-� represents a LogDisk variant with
2+K disks. For small IOs, the maximum throughput in
LogDisk does not improve significantly when the num-
ber of disks is increased. Since the LogDisk uses large
sequential writes to the disks with a bandwidth of about
125 MB/s per disk, disks do not become a bottleneck
and the additional disks provide no performance bene-
fits. For large IOs, the maximum throughput improves,
especially for workloads with mostly writes, when the
number of disks is increased by 2; beyond that, the im-
provements due to increasing the number of disks are
small. For workloads with at least 50% reads, there is
little difference between the various LogDisk variants.

Overall, we conclude that providing a number of disks to
match the capacity of the MEMS storage is adequate for
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Figure 6: Maximum throughputs for LogDisk variants with increased numbers of disks. LogDisk+� has� additional
disks.

the LogDisk architecture. Adding extra disks for the log
improves the maximum throughput when the workload
consists mostly of large writes and the demand for disk
bandwidth for log-writes is the greatest.

4.3.3 Comparisons using application traces

In order to be able to saturate all array architectures
by replaying traces, we varied the intensity by scaling
all inter-arrival times in the traces by a constant factor.
Hence, the scale factor of one corresponds to replaying
the trace at its original speed; the scale factor of two cor-
responds to replaying the trace twice as fast, and so on.

Figures 7 and 8 present the iso-capacity results, where
equal capacity MEMS storage is used for the disks they
replace. The MEMSdisk architecture had the highest
maximum throughput for all the workloads studied and
the lowest latencies for all but one (tpcd). Compared
with the DiskOnly architecture, MEMSdisk decreased
the mean I/O latency by a factor of between 4.0 and 6.5 at
the knee of the latency curve for the DiskOnly architec-
ture and increased the maximum throughput by a factor
of between 4 and 28.

As expected, the hybrid architectures (MEMSmirror,
DualStripe, and LogDisk) have a performance between
that of DiskOnly and MEMSdisk. Maximum through-
put ranged between 3 and 20 times that of DiskOnly.
Among the hybrid architectures, LogDisk had the best
performance for three of the four traces:cello, omail
andtpcc. While all of the hybrid architectures improve
read throughput by accessing the data in the MEMS
copy, only the LogDisk architecture offers a significantly
higher write throughput for a wide range of workloads
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Figure 7: Maximum throughputs for hybrid architectures
for the trace workloads.

(Section 4.3.2). For thetpcd workload, DualStripe had
the highest throughput among the hybrid architectures
and an I/O latency even lower than MEMSdisk. The ag-
gressive prefetching behavior of DualStripe is particu-
larly well suited to this workload, which exhibits mainly
large sequential reads.

Replacing the NVRAM cache in a conventional disk ar-
ray with a (much larger) MEMS cache is effective in
reducing average response time, but does not improve
throughput. For the original trace replay speed, MEM-
Scache was able to reduce the I/O latency between 23%
and 82%; this improvement in I/O latency is far lower
than in the architectures where MEMS devices stored at
least one copy of the data. The MEMS cache is ineffec-
tive for cold misses for the read operations, which con-
tributes substantially to the latency. Although the MEMS
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Figure 8: Comparison of architectures of the same capacity for thecello, omail, tpcc, andtpcd traces.

cache is able to sustain write bursts of much longer dura-
tion, there is a substantial performance penalty for each
write compared to the NVRAM cache. On the other
hand, the larger MEMS cache reduces the load on the
back-end by eliminating most over-writes and coalesc-
ing dirty blocks in the cache.

Overall, we conclude that replacing back-end disks in a
disk array with MEMS storage has a dramatic impact on
the performance of the array. A large part of that im-
provement can be obtained by placing only one of the
two replicas of the data on MEMS storage, and it is effec-
tive to organize the disk replica in a log-structured fash-
ion. Replacing the array NVRAM cache with a much
larger MEMS cache is less effective in reducing the la-
tency, and does not improve the throughput significantly.

4.3.4 Cost/performance analyses

We now study cost/performance ratios in two different
ways. First, we compare MEMSdisk with DiskOnly ar-

chitectures of equal cost,i.e., the “Isocost-X” architec-
tures. Then, we compare the cost/performance of several
hybrid architectures with DiskOnly and MEMSdisk.

Recall that the architecture cost is based on the cost of
the disks, NVRAM and MEMS used. We used a cost of
$6/GB for disks, based approximately on 2001 list prices
for enterprise-class disks [17] and $8/MB for NVRAM,
based on recent Dallas Semiconductor list prices. Since
the cost for MEMS is unknown, we varied the relative
per-byte cost of MEMS storage to disks between 1 and
10.

Figure 9 compares the performance of disk arrays with
MEMS-based storage and several iso-cost architectures.
For the sake of clarity, we have shown only one hy-
brid architecture (LogDisk). The results show that ar-
ray architectures with MEMS-based storage always ex-
hibit lower latencies than purely disk-based ones, even
when the number of disk spindles is increased. The max-
imum throughput offered by MEMS-based arrays is also
substantially higher than that for DiskOnly architectures.



0

5

10

15

20

0 50 100 150 200

Trace replay speed

M
ea

n
 IO

 la
te

n
cy

 (
m

s)

DiskOnly
MEMSdisk
DiskOnly-3x
DiskOnly-5x
DiskOnly-10x
LogDisk

0

5

10

15

20

0 200 400 600 800

Trace replay speed

M
ea

n
 IO

 la
te

n
cy

 (
m

s)

DiskOnly
MEMSdisk
DiskOnly-3x
DiskOnly-5x
DiskOnly-10x
LogDisk

(a)cello trace (b)omail trace

0

5

10

15

20

0 50 100 150 200

Trace replay speed

M
ea

n
 IO

 la
te

n
cy

 (
m

s)

DiskOnly
MEMSdisk
DiskOnly-3x
DiskOnly-5x
DiskOnly-10x
LogDisk

0

5

10

15

20

1 10 100 1000

Trace replay speed

M
ea

n
 IO

 la
te

n
cy

 (
m

s)

DiskOnly
MEMSdisk
DiskOnly-3x
DiskOnly-5x
DiskOnly-10x
LogDisk

(c) tpcc trace (d)tpcd trace

Figure 9: Comparison of architectures of equal cost for trace replays, in scenarios where the cost per byte for MEMS
is 1 time, 3 times, 5 times, and 10 times that of magnetic disks.

We conclude that it is more cost-effective to replace disks
with MEMS storage than simply to add more disks.

Figure 10 compares the performance per unit cost of the
hybrid architectures against MEMSdisk and DiskOnly.
Performance is measured by the maximum throughput
achieved, averaged across the four trace workloads. As
expected, MEMSdisk is the most cost-effective archi-
tecture when the MEMS-based storage costs no more
than disks. LogDisk and MEMScache have similar cost-
performance, with LogDisk sligtly higher. The per-
formance/cost of LogDisk declines more slowly than
that of MEMSdisk as MEMS cost increases: when the
MEMS/disk cost ratio is 10, its performance/cost ex-
ceeds that of MEMSdisk by 38%. The performance/cost
of the remaining hybrid architectures (MEMSmirror and
DualStripe) is about the same as that of the DiskOnly ar-
chitectures; however, when the MEMS/disk cost ratio is
10, the performance/cost of these hybrids drops below
that of DiskOnly.

5 Related work

This paper combines the use of MEMS storage devices
with several different redundancy schemes and layouts in
efficient storage array architectures. The physical char-
acteristics and performance of MEMS-based storage de-
vices are discussed in several papers from the CMU Par-
allel Data Laboratory [3, 20, 8].

The use of redundant data layouts for reliability, load
balance and improved performance is well established
[1, 2, 16], and these are commonly used in modern disk
arrays. In most such layouts, the performance of the
disk is limited by the disk head seek time and rota-
tional delays, particularly for workloads with small, non-
sequential I/Os. Several mechanisms have been proposed
to ameliorate the impact of positioning time for writes. A
write cache can substantially reduce the number of disk
writes and the perceived delay for writes [22, 9]; how-
ever, for reliability, these caches must generally use ex-
pensive NVRAM, ideally in a redundant configuration.
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Several papers have explored the use of logging (writ-
ing data to a sequential log) or eager-writing (writing to
an unused location near the current position of the disk
head). RAPID-Cache [12] provides redundancy to the
NVRAM write cache through a logging disk, which is
less expensive than replicating the NVRAM cache. In
DCD (Disk Caching Disk)[11] and in Trail [5], a log disk
is used to cache writes. Eager-writing was explored in
the Loge disk controller [7]: writes were made to the free
block closest to the current location of the disk head, and
its location maintained through an indirection table in
NVRAM. In Distorted Mirrors [23], data is mirrored, but
only one of the copies (the master copy) is kept in a fixed
order. Blocks in the master copy are updated in-place,
but in the slave copy a block update can be written to the
free block closest to the disk head. The main advantage
is that write costs for the slave copy are lower than for
mirrored disks where both copies are in a fixed location.
In Doubly distorted mirrors [15], this is amended to de-
fer the update to the master copy; the block is kept in
a RAM cache, and redundancy is maintained by writing
slave copies to both disks using eager-writing. The mas-
ter location is updated from cache (and the slave loca-
tion on that disk released) when there is a read from that
cylinder, or the cache fills up, in which case the dirtiest
cylinder is written out. Although this requires three disk
writes for an update, the overall cost is lower than that
of updating the master block immediately. Dual striping
[13] attempts to reduce the cost of positioning time in a
mirrored layout for reads while allowing load balancing
across disks by using a large stripe size for one copy and
a small stripe size for the other. Large reads can use the
large stripe copy to reduce positioning time costs while
small reads go to the small stripe copy.

The cost of small writes is particularly severe in RAID-
4 and RAID-5 layouts, where every small write engen-

ders four physical accesses: a read each of the old data
and the corresponding parity (in order to compute the
new parity value), and a write of the new data and the
new parity. Parity logging [24] buffers parity updates in
NVRAM and a log disk, eventually writing the parity out
as large writes. AutoRAID [27] organizes the data hier-
archically, with a RAID-10 level acting as a cache for a
RAID-5 level; the RAID-5 level is log structured. Hot
Mirroring [14] similarly combines RAID-1 and RAID-5
layouts, keeping hot data in the RAID-1 portion and cold
data in the RAID-5 portion.

6 Conclusions and future work

We explored the performance and the performance/cost
implications of incorporating MEMS-based storage into
disk array architectures. We examined several possible
placements for the MEMS storage in the disk array by
(1) replacing all the disks with MEMS storage, (2) re-
placing the NVRAM cache with MEMS storage, and (3)
replacing half the disks with MEMS storage. In the lat-
ter case, we proposed several novel alternative disk-array
architectures designed to take advantage of the combina-
tion of disks and MEMS storage.

Replacing the disks with MEMS storage improves per-
formance substantially in terms of latency (by a factor of
4 – 6.5) and throughput (by a factor of 4 – 28) depending
on workload, but at high cost. Performance/cost, based
on the average throughput of the trace workloads used,
ranges between 2–7 times that of DiskOnly, depending
on the MEMS/disk cost ratio.

The hybrid architectures, which store one copy of the
data in MEMS storage, are able to achieve a significant
fraction of the performance benefits of completely re-
placing disks with MEMS storage in disk arrays. Of the
hybrid architectures studied, the LogDisk architecture
offered the most consistent improvement in performance
and the best performance/cost. The performance/cost of
LogDisk is similar to that of purely MEMS-based arrays,
and better than DiskOnly by a factor of 2.5–5.5, depend-
ing on the MEMS/disk cost ratio. Average latency is sub-
stantially lower than DiskOnly for all the hybrid archi-
tectures — by a factor of between 4 and 16 for the trace
workloads studied here.

Replacing the NVRAM cache with a (much larger)
MEMS cache is effective in reducing average response
time by as much as 82%, but does not improve through-
put because working set sizes are large. However, this
may still be worth doing because of the low cost, as the
performance/cost improvement over the conventional ar-
chitectures ranged between 2.1–4.2, depending on the
MEMS/disk cost ratio.



Overall, we conclude that replacing disks with MEMS
storage in disk arrays will improve performance and per-
formance/cost, even if MEMS storage costs ten times as
much as disks on a per-byte basis. Placing one copy of
the data on MEMS storage is also effective, offering an
intermediate cost and performance between conventional
disk arrays and purely MEMS-based arrays.

Extensions of our work include studying the perfor-
mance of the different alternatives after an unrepaired
failure, in degraded mode and during online reconstruc-
tion. Another extension would be to incorporate reliabil-
ity metrics into the architectural comparison when relia-
bility estimates become available for MEMS-based stor-
age devices.
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