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motivation

• storage security is not the 
same as network security

– integrity & privacy of 
persistent data

– secure sharing of data 
over the long term

– specific optimizations 
possible for storage

• security work must be 
(more) quantitative

– compare systems
– informed performance, 

security, and user 
inconvenience trade-offs



protect and share

Alice encrypts file using key, 
places it into shared storage

Alice

Bob

Bob wishes to read 
file, must obtain 

key from Alice

problem - Alice 
doesn’t want Bob 

to read all her files



core issues

• our context
– enterprise-scale and 

global-scale systems
– large numbers of users
– many, many data items

• challenges
– scale is the overriding 

concern
– too many keys
– avoid centralization 

whenever possible
– handle revocation as a 

common case



outline

• framework
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– attacks
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• design alternatives
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• conclusions



players

• owners
– create data
– determine access to data

• readers -- read

• writers -- modify

• storage servers
– store/retrieve bits

• group servers (many flavors)

– handle “delegated” keys
• adversaries

– tampers with data
– may collude w/ others

framework
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attacks

• attacks on data
– leak
– change
– destroy

• adversary
– act alone
– collude w/ server
– revoked user

• compromise group server

• denial of service

framework
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• checksums (integrity)
– needed by any scheme
– including signatures
– session keys
– pre-computed is a big help

• encryption (privacy)
– expensive

> clients & servers both do 
encryption work

– session keys
– can’t do pre-computation

• upside
– straightforward layering

• downside
– stored data is unprotected
– expensive on critical path

encrypt-on-wire 
systems

Alice

Bob
NASD-like

storage 
server

integrity

privacy



• owners encrypt data
– place into shared storage 

system
– keep the keys

• readers/writers
– contact owner for key
– read/write data at will

• per-directory or per-file keys
– entire sub-trees [Blaze94]
– extreme is individual files

• upside
– distributed, owner-managed

• downside
– lots of keys
– revocation expensive

Blaze-style 
encrypt-on-disk

Alice

Bob

Blaze-style 

storage 
server



• owners encrypt data
– place into shared storage 

system
– keys also stored on a server

• readers/writers
– get key from group server
– read/write data at will

• file groups vs. individual file keys
– use same key for all files 

with the “same” permissions
– rw-r--r-- root bin

• upside
– distributed

• downside
– centralized key server
– revocation expensive*

Cepheus & similar 
encrypt-on-disk

Alice

Bob

Cepheus & 
similar

group server

storage 
server
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revocation

• what happens when a user 
leaves the group or 
organization?

– still has keys
– could have copied data 

to floppies
• two consequences

– stop using revoked keys
– re-encrypt data

• problem
– amount of re-encryption 

work for encrypt-on-disk 
is large



re-encryption

• lazy re-encryption [Fu99]
– revoke user
– change keys
– mark files for re-encryption
– only re-encrypt when file is 

next written
• performance improved at 

revocation time

• security reduced
– “hole” closed only slowly

revocation

files touched 
by charlie

files potentially
exposed to charlie



re-encryption

• quantifying performance

• total encryption work
– encrypt-on-disk

>per-file 2 GB
>per-group 91 GB

– encrypt-on-wire
>per-session 144 GB

• per-group encrypt-on-disk is 
2x better performance than 
per-session encrypt-on-wire

• cost further reduced with 
lazy re-encryption    
(another 2x at least)

revocation
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summary

• evaluation framework
– compare trade-offs

• comprehensive solution
– integrity-on-wire
– encrypt-on-disk

> more efficient & secure
– key distribution

> can be highly scalable
– revocation

> must be treated as a 
common operation

• security must be end-to-end
– optimize locally
– best efficiency achieved 

at individual functions



future work

• design & prototype
– large scale, shared 

storage system
– key management
– optimized revocation

• security metrics
– further toward 

quantitative metrics
• user inconvenience

– even more difficult to 
quantify

• denial of service
– not explored yet



information 
shadow

wherever you go, 
your data is 

always with you
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• cost of the various cryptographic functions
– either bandwidth/cycles required from hosts & devices
– or bandwidth required from a hardware assist
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additional 
concerns

• differential cryptanalysis
– volume of data encrypted 

with the same key
– “known plaintext” attacks

• system is only as strong as it’s 
weakest link

– authentication
(verify who is who)

– trusted OS
(APIs, trust cores/rings)

– key storage
(smart cards, trust cores)

• destruction of data
– information dispersal

> replica management
• denial of service

– not yet explored


