
a framework for
evaluating storage

system security

mahesh kallahalla,
erik riedel,

ram swaminathan

hp labs
january 2002

motivation

• storage security is not the
same as network security

– integrity & privacy of
persistent data

– secure sharing of data
over the long term

– specific optimizations
possible for storage

• security work must be
(more) quantitative

– compare systems
– informed performance,

security, and user
inconvenience trade-offs

protect and share

Alice encrypts file using key,
places it into shared storage

Alice

Bob

Bob wishes to read
file, must obtain

key from Alice

problem - Alice
doesn’t want Bob

to read all her files

core issues

• our context
– enterprise-scale and

global-scale systems
– large numbers of users
– many, many data items

• challenges
– scale is the overriding

concern
– too many keys
– avoid centralization

whenever possible
– handle revocation as a

common case

outline

• framework
– players
– attacks
– existing systems

• design alternatives

• evaluation

• conclusions

players

• owners
– create data
– determine access to data

• readers -- read

• writers -- modify

• storage servers
– store/retrieve bits

• group servers (many flavors)

– handle “delegated” keys
• adversaries

– tampers with data
– may collude w/ others

framework

����------------436%denial of service
----����--------4594%virus
����--����--------518%sabotage
--����--��������----649%unauth access by insiders
--����----����----15026%theft of proprietary info
----����--����----964%laptop theft

----��������������������1940%system penetration

----------����--n/m2%active wiretap

------------����110%telecom eavesdropping

denial of
service

revoked user

destroy

change

leak

change

leak

dam
age

($ m
illions)*

datamsgs%
 surveyed

attacks, as reported in
survey of system managers
by CSI/FBI, Spring 2001
*of ~500 responses, 78% had financial
losses, only 37% could estimate damage

threats and attacks

attacks

• attacks on data
– leak
– change
– destroy

• adversary
– act alone
– collude w/ server
– revoked user

• compromise group server

• denial of service

framework

xx��������x������������������������SNAD

x--������������x����������������--OceanStore
x------����������������------PASIS/S4
x
x
x
x
x

x
x
x

denial of
service

x
����

--
--
x

x
����

--

subvert group
server

��������xxx����������������NFSv4
��������xxx����������������AFS
xxxxxxxxxLUN security
��������xxxxx��������iSCSI w/ IPsec
��������xxx����������������NASD

��������x������������������������Cepheus
--xx��������x������������SFS-RO
----x��������x��������--CFS

change

leak

destroy

change

leak

destroy

change

leak

revokedw/ storage srvadversarym
essage

attacks

system

security guarantees - existing systems

outline

• framework

• design alternatives
– encrypt-on-wire
– encrypt-on-disk

• evaluation

• conclusions

• checksums (integrity)
– needed by any scheme
– including signatures
– session keys
– pre-computed is a big help

• encryption (privacy)
– expensive

> clients & servers both do
encryption work

– session keys
– can’t do pre-computation

• upside
– straightforward layering

• downside
– stored data is unprotected
– expensive on critical path

encrypt-on-wire
systems

Alice

Bob
NASD-like

storage
server

integrity

privacy

• owners encrypt data
– place into shared storage

system
– keep the keys

• readers/writers
– contact owner for key
– read/write data at will

• per-directory or per-file keys
– entire sub-trees [Blaze94]
– extreme is individual files

• upside
– distributed, owner-managed

• downside
– lots of keys
– revocation expensive

Blaze-style
encrypt-on-disk

Alice

Bob

Blaze-style

storage
server

• owners encrypt data
– place into shared storage

system
– keys also stored on a server

• readers/writers
– get key from group server
– read/write data at will

• file groups vs. individual file keys
– use same key for all files

with the “same” permissions
– rw-r--r-- root bin

• upside
– distributed

• downside
– centralized key server
– revocation expensive*

Cepheus & similar
encrypt-on-disk

Alice

Bob

Cepheus &
similar

group server

storage
server

outline

• framework

• design alternatives

• evaluation
– key distribution
– revocation

• conclusions

5
29
21
11

5
18

keys
distributed*

15
130

33
17
13
28

groups
owned^

per-group+

<500
180

3,200
1,000

7
640

keys
distributed*

11,000news
26,000root
23,000bin
14,000bob

1,400alice
6,400wilkes

dirs
owned^

per-directory
user

key distribution effort

* number of keys distributed by owners during a 12-hour trace
^ static numbers for the entire system (~500 GB, 4 million files total)
+ group is defined as same <owner>, <group>, <mode> permissions

5
29
21
11

5
18

keys
distributed*

15
130

33
17
13
28

groups
owned^

per-group+

550
630

8,500
3,200

21
4,000

keys
distributed*

1,570,000news
240,000root
191,000bin
216,000bob

19,400alice
54,500wilkes

files
owned^

per-file
user

key distribution effort

* number of keys distributed by owners during a 12-hour trace
^ static numbers for the entire system (~500 GB, 4 million files total)
+ group is defined as same <owner>, <group>, <mode> permissions

revocation

• what happens when a user
leaves the group or
organization?

– still has keys
– could have copied data

to floppies
• two consequences

– stop using revoked keys
– re-encrypt data

• problem
– amount of re-encryption

work for encrypt-on-disk
is large

re-encryption

• lazy re-encryption [Fu99]
– revoke user
– change keys
– mark files for re-encryption
– only re-encrypt when file is

next written
• performance improved at

revocation time

• security reduced
– “hole” closed only slowly

revocation

files touched
by charlie

files potentially
exposed to charlie

re-encryption

• quantifying performance

• total encryption work
– encrypt-on-disk

>per-file 2 GB
>per-group 91 GB

– encrypt-on-wire
>per-session 144 GB

• per-group encrypt-on-disk is
2x better performance than
per-session encrypt-on-wire

• cost further reduced with
lazy re-encryption
(another 2x at least)

revocation

121,000546,0004693,740files to be
re-encrypted

lazyaggressive#

per-group+

lazy^aggressive*

per-file

re-encryption effort

* total number of files accessed by charlie in 10 days
^ total number of these files also accessed by someone else
number of files in all the groups accessed by charlie in 10 days

+ group is defined as same <owner>, <group>, <mode> permissions

144 GB144 GB144 GB144 GBbytes encrypted
by encrypt-on-wire

43 GB

lazy

91 GB

aggressive#

per-group+

0.5 GB

lazy^

2 GBbytes to be
re-encrypted

aggressive*

per-file

re-encryption effort

* total bytes in files accessed by charlie in 10 days
^ total bytes in these files also accessed by someone else
all bytes in files in all the groups accessed by charlie in 10 days

+ group is defined as same <owner>, <group>, <mode> permissions

outline

• framework

• design alternatives

• key distribution

• revocation

• conclusions
– summary
– future work

summary

• evaluation framework
– compare trade-offs

• comprehensive solution
– integrity-on-wire
– encrypt-on-disk

> more efficient & secure
– key distribution

> can be highly scalable
– revocation

> must be treated as a
common operation

• security must be end-to-end
– optimize locally
– best efficiency achieved

at individual functions

future work

• design & prototype
– large scale, shared

storage system
– key management
– optimized revocation

• security metrics
– further toward

quantitative metrics
• user inconvenience

– even more difficult to
quantify

• denial of service
– not explored yet

information
shadow

wherever you go,
your data is

always with you

extra slides

integrity

--

����

����

iSCSI
w/

IPsec

C
epheus

����----����5.15,100pre-computed cksum

--����n/a--13.910,100checksums

��������n/a����n/a10,200message signatures

SFSCFS

N
A

SD

bandw
idth

(M
B/s)

m
essages

(req/s)

systemspeak load
(one minute)operations, basic crypto

functions, and which systems
bear which costs, data from
10-day cello trace

cryptographic operations

• cost of the various cryptographic functions
– either bandwidth/cycles required from hosts & devices
– or bandwidth required from a hardware assist

privacy
- client

privacy
- server

integrity

����

����

����

--

����

����

iSCSI
w/

IPsec

C
epheus

����������������4.92,700encrypt/decrypt

------����10.71,700decryptions (writes)

------����7.91,100encryption (reads)

����----����5.15,100pre-computed cksum

--����n/a--13.910,100checksums

��������n/a����n/a10,200message signatures

SFSCFS

N
A

SD

bandw
idth

(M
B/s)

m
essages

(req/s)

systemspeak load
(one minute)operations, basic crypto

functions, and which systems
bear which costs, data from
10-day cello trace

cryptographic operations

additional
concerns

• differential cryptanalysis
– volume of data encrypted

with the same key
– “known plaintext” attacks

• system is only as strong as it’s
weakest link

– authentication
(verify who is who)

– trusted OS
(APIs, trust cores/rings)

– key storage
(smart cards, trust cores)

• destruction of data
– information dispersal

> replica management
• denial of service

– not yet explored

