+
nven.t

a framework for
evaluating storage
system security

mahesh kallahalla,

erik riedel,
ram swaminathan

hp labs
January 2002

motivation

= storage security Is not the
same as network security

— Integrity & privacy of
persistent data

— secure sharing of data
over the long term
— specific optimizations
possible for storage
e security work must be
(more) quantitative
— compare systems

— Informed performance,
security, and user
Inconvenience trade-offs

protect and share

Alice encrypts file using key, l%

places it into shared storage

W

doesn’t want Bob Bob wishes to read

to read all her files file, must obtain
key from Alice

problem - Alice

e OQur context

— enterprise-scale and
global-scale systems

— large numbers of users
— many, many data items

= challenges

core iSSUGS — scale Is the overriding

concern
— too many keys

— avoid centralization
whenever possible

— handle revocation as a
common case

outline

e framework

— players

— attacks

— existing systems
= design alternatives
= evaluation

e conclusions

framework

players

® Owners

— Ccreate data
— determine access to data

e readers - read
e writers - modify

e storage servers

— store/retrieve bits
® group servers (many flavors)

— handle “delegated” keys
= adversaries

— tampers with data
— may collude w/ others

threats and attacks

attacks, as reported in
survey of system managers
by CSI/FBI, Spring 2001

*of ~500 responses, 78% had financial
losses, only 37% could estimate damage

pPakanins o

~(suolfjiw $)

abewep

data

1asn PayoAal

90IAISS
JO [eluap

telecom eavesdropping

active wiretap

system penetration

laptop theft

theft of proprietary info

unauth access by insiders

sabotage

Virus

denial of service

framework

e attacks on data
— |leak
— change
— destroy
e adversary
— act alone

— collude w/ server
— revoked user

e cOmpromise group server

e denial of service

denial of

mmmz_omxxxxxxxxxxx

S ["ommgen | s x| x| x| |]S |

e

QVﬂw%%% NS IS IS xS IS] s
-

) | o

=l 2" <IN SIS xS S]]

._w mem:Q\XXXXXXXXX//

B %.Vo:m:m

Xm FEINIS NS [x| x| x| x| <[> x

D |5

_W_mmx NSNS | x| x| x| x| x[>S]S

)

ev,n_mm:oV\XX//v/xx////

._n_l.bmo:m:@m/ N\ AN

ad

Ma_mmx//////x/« S

=AF-JHNNNNNENE

> 2

= %WJ ©

S —|'S o

< | O

- ol & HE: 2| &

(@ = RMDD|S MS%
) : || D =

Dl g 2232952228

7p) = Oln|O|n|Z|2|2|<|Z|a|0

outline

e framework

e design alternatives
— encrypt-on-wire
— encrypt-on-disk

= evaluation

e conclusions

= checksums (integrity)
— needed by any scheme
— Including signatures
— session keys
— pre-computed is a big help

encrypt-on-wire
systems

e encryption (privacy)
— expensive

> clients & servers both do
encryption work

— session keys

— can’t do pre-computation
e upside

— straightforward layering

Alice) storage

SN e downside

integrity — stored data is unprotected
privacy — expensive on critical path

Blaze-style
encrypt-on-disk

o

< B

Alice ﬁ\ t
!ﬁ\ o W
=

s Blaze-style

Bob

e owners encrypt data

— place into shared storage
system

— keep the keys
e readers/writers

— contact owner for key
— read/write data at will

= per-directory or per-file keys
— entire sub-trees [Blaze94]
— extreme is individual files
e upside

— distributed, owner-managed

e downside

— lots of keys
— revocation expensive

Cepheus & similar
encrypt-on-disk

(M =
]

storage
server

T«‘@/

/

Cepheus &
similar

= P
F ﬁ

ﬁ

group server f

e owners encrypt data

— place into shared storage
system

— keys also stored on a server
e readers/writers

— get key from group server
— read/write data at will

= file groups vs. individual file keys

— use same key for all files
with the “same” permissions

— I'Wr--r-- root bin
e upside

— distributed
e downside

— centralized key server
— revocation expensive*

outline

e framework
= design alternatives

e evaluation
— key distribution
— revocation

e conclusions

key distribution effort

per-directory

per-group+

dirs
owned”®

keys
distributed*

groups
owned”®

keys
distributed*

wilkes

6,400

640

28

18

alice

1,400

~

13

)

bob

14,000

1,000

17

11

bin

23,000

3,200

33

21

root

26,000

180

29

NEWS

11,000

<500

15

)

* number of keys distributed by owners during a 12-hour trace

N static numbers for the entire system (~500 GB, 4 million files total)
+ group is defined as same <owner>, <group>, <mode> permissions

key distribution effort

per-file

per-group+

HIES
owned”®

keys
distributed*

groups
owned”®

keys
distributed*

wilkes

54,500

4,000

28

18

alice

19,400

21

13

)

bob

216,000

3,200

17

11

bin

191,000

8,500

33

21

root

240,000

630

29

NEWS

1,570,000

550

15

)

* number of keys distributed by owners during a 12-hour trace

N static numbers for the entire system (~500 GB, 4 million files total)
+ group is defined as same <owner>, <group>, <mode> permissions

revocation

« what happens when a user
leaves the group or
organization?

— still has keys

— could have copied data
to floppies

e tWO consequences
— stop using revoked keys
— re-encrypt data

e problem

— amount of re-encryption
work for encrypt-on-disk
Is large

files potentially

exposed to charlie files touched

by charlie

revocation

e lazy re-encryption [Fu99]
revoke user
change keys
mark files for re-encryption

only re-encrypt when file is
next written

= performance improved at

re-en Cryptl on revocation time

= security reduced
— “hole” closed only slowly

revocation

re-encryption

e quantifying performance

« total encryption work

— encrypt-on-disk
> per-file 2 GB
>pergroup 91 GB

— encrypt-on-wire
> per-session 144 GB
e per-group encrypt-on-disk is
2X better performance than
per-session encrypt-on-wire

= cost further reduced with
lazy re-encryption
(another 2x at least)

re-encryption effort

per-file per-group+

aggressive™* lazy”™ aggressive# lazy

files to be 3,740 469 546,000| 121,000
re-encrypted

* total number of files accessed by charlie in 10 days
" total number of these files also accessed by someone else
number of files in all the groups accessed by charlie in 10 days

+ group is defined as same <owner>, <group>, <mode> permissions

re-encryption effort

per-file

per-group+

aggressive™

lazy”™

aggressive#

lazy

bytes to be
re-encrypted

2 GB

0.5 GB

91 GB

43 GB

bytes encrypted
by encrypt-on-wire

144 GB

144 GB

144 GB

144 GB

* total bytes in files accessed by charlie in 10 days
 total bytes in these files also accessed by someone else
all bytes in files in all the groups accessed by charlie in 10 days

+ group is defined as same <owner>, <group>, <mode> permissions

outline

e framework

e design alternatives
e key distribution

e revocation

e conclusions

— summary
— future work

summary

= evaluation framework
— compare trade-offs
e comprehensive solution
Integrity-on-wire
encrypt-on-disk
> more efficient & secure

key distribution
> can be highly scalable

revocation

> must be treated as a
common operation

e security must be end-to-end

— optimize locally

— best efficiency achieved
at individual functions

future work

e design & prototype

— large scale, shared
storage system

— key management
— optimized revocation

e security metrics

— further toward
guantitative metrics

e User inconvenience

— even more difficult to
guantify
e denial of service

— not explored yet

Information
shadow

wherever you go,
your data Is
always with you

extra slides

cryptographic operations

peak load systems
operations, basic crypto (one minute)
functions, and which systems | =
bear which costs, data from
10-day cello trace

ISCSI
w/
|IPsec

(s/79IN)
UipImpueq

v

>
N\
QD

message signatures | 10,200

integrity| checksums 10,100 | 13.9| - | v

pre-computed cksum | 5,100 51| v

= cost of the various cryptographic functions

— elther bandwidth/cycles required from hosts & devices
— or bandwidth required from a hardware assist

cryptographic operations

operations, basic crypto
functions, and which systems
bear which costs, data from
10-day cello trace

peak load
(one minute)

systems

~~

(s/79IN)
UipImpueq

ISCSI
w/
|IPsec

message signatures

>
N\
QD

v

integrity| checksums

v

pre-computed cksum

orivacy | €NCryption (reads)

- SEIVer | decryptions (writes)

privacy | encrypt/decrypt
- client

= differential cryptanalysis

— volume of data encrypted
with the same key

— “known plaintext” attacks

e system is only as strong as it’s
weakest link

— authentication

additional (verify who is who)

— trusted OS

concerns (APIs, trust cores/rings)
— key storage
(smart cards, trust cores)

e destruction of data

— Information dispersal
> replica management

e denial of service
— not yet explored

