

a framework for evaluating storage system security

mahesh kallahalla, erik riedel, ram swaminathan

> hp labs january 2002

motivation

- storage security is not the same as network security
 - integrity & privacy of persistent data
 - secure *sharing* of data over the long term
 - specific optimizations possible for storage
- security work must be (more) quantitative
 - compare systems
 - informed performance, security, and user inconvenience trade-offs

protect and share

Alice encrypts file using key, places it into shared storage

Alice

problem - Alice doesn't want Bob to read <u>all</u> her files

Bob

Bob wishes to read file, must obtain key from Alice

core issues

• our context

- enterprise-scale and global-scale systems
- large numbers of users
- many, many data items
- challenges
 - scale is the overriding concern
 - too many keys
 - avoid centralization whenever possible
 - handle revocation as a common case

outline

• framework

- players
- attacks
- existing systems
- design alternatives
- evaluation
- conclusions

framework

players

• *owners*

- create data
- determine access to data
- readers -- read
- writers -- modify
- storage servers
 - store/retrieve bits
- group servers (many flavors)
 - handle "delegated" keys
- adversaries
 - tampers with data
 - may collude w/ others

threats and attacks

attacks, as reported in	%	(\$ 0	ms	msgs		data			<u> </u>	
survey of system managers by CSI/FBI, Spring 2001 *of ~500 responses, 78% had financial losses, only 37% could estimate damage	surveyed	amage millions)*	leak	change	leak	change	destroy	oked user	lenial of service	
telecom eavesdropping	10%	1	✓							
active wiretap	2%	n/m		✓						
system penetration	40%	19	✓	✓	\checkmark	\checkmark	√			
laptop theft	64%	9			\checkmark		\checkmark			
theft of proprietary info	26%	150			\checkmark			\checkmark		
unauth access by insiders	49%	6			\checkmark	\checkmark		\checkmark		
sabotage	18%	5					\checkmark		\checkmark	
virus	94%	45					\checkmark			
denial of service	36%	4							\checkmark	

framework

attacks

attacks on data

- leak
- change
- destroy
- adversary
 - act alone
 - collude w/ server
 - revoked user
- compromise group server
- denial of service

security guarantees - existing systems

	m	adversary		w/ storage srv			revoked		supv	رد م	
system	essage ttacks	leak	change	destroy	leak	change	destroy	leak	change	/ert group server	enial of service
CFS		~	~	X	✓	✓	X				X
SFS-RO	\checkmark	\checkmark	\checkmark	Х	\checkmark	\checkmark	Х	Х		\checkmark	Х
Cepheus	 ✓ 	~	~	~	~	~	X	 ✓ 	~	X	X
SNAD	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	Х	\checkmark	\checkmark	X	Х
NASD	 ✓ 	~	~	~	X	X	X	~	~	X	X
iSCSI w/ IPsec	\checkmark	\checkmark	Х	Х	Х	Х	Х	\checkmark	\checkmark		Х
LUN security	X	Х	Х	Х	Х	Х	Х	Х	Х		Х
AFS	 ✓ 	\checkmark	\checkmark	\checkmark	Х	Х	Х	\checkmark	\checkmark	\checkmark	Х
NFSv4	\checkmark	\checkmark	\checkmark	\checkmark	Х	Х	Х	\checkmark	\checkmark	X	Х
PASIS/S4				\checkmark	\checkmark	\checkmark	\checkmark				Х
OceanStore		\checkmark	\checkmark	\checkmark	\checkmark	Х	\checkmark	\checkmark	\checkmark		Х

outline

framework
design alternatives

encrypt-on-wire
encrypt-on-disk

evaluation
conclusions

encrypt-on-wire systems

- checksums (integrity)
 - needed by any scheme
 - including signatures
 - session keys
 - pre-computed is a big help
- encryption (privacy)
 - expensive
 - > clients & servers both do encryption work
 - session keys
 - can't do pre-computation
- upside
 - straightforward layering
- downside
 - stored data is unprotected
 - expensive on critical path

Blaze-style encrypt-on-disk

- owners encrypt data
 - place into shared storage system
 - keep the keys
- readers/writers
 - contact owner for key
 - read/write data at will
- per-directory or per-file keys
 - entire sub-trees [Blaze94]
 - extreme is individual files
- upside
 - distributed, owner-managed
- downside
 - lots of keys
 - revocation expensive

Cepheus & similar encrypt-on-disk

- owners encrypt data
 - place into shared storage system
 - keys also stored on a server
- readers/writers
 - get key from group server
 - read/write data at will
- file groups vs. individual file keys
 - use same key for all files with the "same" permissions
 - rw-r--r-- root bin
- upside
 - distributed
- downside
 - centralized key server
 - revocation expensive*

outline

framework
design alternatives
evaluation

key distribution
revocation

conclusions

key distribution effort

	per-dir	ectory	per-group+			
user	dirs owned^	keys distributed*	groups owned^	keys distributed*		
wilkes	6,400	640	28	18		
alice	1,400	7	13	5		
bob	14,000	1,000	17	11		
bin	23,000	3,200	33	21		
root	26,000	180	130	29		
news	11,000	<500	15	5		

* number of keys distributed by owners during a 12-hour trace
^ static numbers for the entire system (~500 GB, 4 million files total)
+ group is defined as same <owner>, <group>, <mode> permissions

key distribution effort

	per	file	per-group+			
user	files owned^	keys distributed*	groups owned^	keys distributed*		
wilkes	54,500	4,000	28	18		
alice	19,400	21	13	5		
bob	216,000	3,200	17	11		
bin	191,000	8,500	33	21		
root	240,000	630	130	29		
news	1,570,000	550	15	5		

* number of keys distributed by owners during a 12-hour trace
^ static numbers for the entire system (~500 GB, 4 million files total)
+ group is defined as same <owner>, <group>, <mode> permissions

revocation

- what happens when a user leaves the group or organization?
 - still has keys
 - could have copied data to floppies
- two consequences
 - stop using revoked keys
 - re-encrypt data
- problem
 - amount of re-encryption work for encrypt-on-disk is large

revocation

re-encryption

files *potentially* exposed to charlie

files touched by charlie

- lazy re-encryption [Fu99]
 - revoke user
 - change keys
 - mark files for re-encryption
 - only re-encrypt when file is next written
- performance improved at revocation time
- security reduced
 - "hole" closed only slowly

revocation

re-encryption

 quantifying performance total encryption work encrypt-on-disk > per-file 2 GB > per-group 91 GB - encrypt-on-wire >per-session 144 GB • per-group encrypt-on-disk is 2x better performance than per-session encrypt-on-wire

 cost further reduced with lazy re-encryption (another 2x at least)

re-encryption effort

	per-f	ile	per-group+			
	aggressive*	lazy^	aggressive#	lazy		
files to be re-encrypted	3,740	469	546,000	121,000		

* total number of files accessed by charlie in 10 days
^ total number of these files also accessed by someone else
number of files in all the groups accessed by charlie in 10 days

+ group is defined as same <owner>, <group>, <mode> permissions

re-encryption effort

	per-f	ile	per-grc	oup+
	aggressive*	lazy^	aggressive#	lazy
bytes to be re-encrypted	2 GB	0.5 GB	91 GB	43 GB
bytes encrypted by encrypt-on-wire	144 GB	144 GB	144 GB	144 GB

* total bytes in files accessed by charlie in 10 days
^ total bytes in these files also accessed by someone else
all bytes in files in all the groups accessed by charlie in 10 days

+ group is defined as same <owner>, <group>, <mode> permissions

outline

- framework
- design alternatives
- key distribution
- revocation
- conclusions
 - summary
 - future work

summary

 evaluation framework
 compare trade-offs
 comprehensive solution
 integrity-on-wire
 – encrypt-on-disk
> more efficient & secure
 key distribution
> can be highly scalable
 revocation
> must be treated as a common operation
 security <i>must</i> be end-to-end
 optimize locally
 best efficiency achieved at individual functions

future work

- design & prototype
 - large scale, shared storage system
 - key management
 - optimized revocation
- security metrics
 - further toward quantitative metrics
- user inconvenience
 - even more difficult to quantify
- denial of service
 - not explored yet

information shadow

wherever you go, your data is always with you

invent

extra slides

cryptographic operations

operations, basic crypto		peak I (one mi	systems					
functions bear wh 10-day	s, and which systems lich costs, data from cello trace	messages (req/s)	bandwidth (MB/s)	NASD	iSCSI w/ IPsec	CFS	SFS	Cepheus
integrity	message signatures	10,200	n/a	✓	✓	n/a	✓	✓
	checksums	10,100	13.9		✓	n/a	~	
	pre-computed cksum	5,100	5.1	\checkmark				\checkmark

• cost of the various cryptographic functions

– either bandwidth/cycles required from hosts & devices

- or bandwidth required from a hardware assist

cryptographic operations

operations, basic crypto		peak load (one minute)		systems					
functions bear wh 10-day	s, and which systems ich costs, data from cello trace	messages (req/s)	bandwidth (MB/s)	NASD	iSCSI w/ IPsec	CFS	SFS	Cepheus	
integrity	message signatures	10,200	n/a	✓	✓	n/a	~	✓	
	checksums	10,100	13.9		✓	n/a	~		
	pre-computed cksum	5,100	5.1	\checkmark				\checkmark	
privacy - server	encryption (reads)	1,100	7.9	\checkmark	\checkmark				
	decryptions (writes)	1,700	10.7	\checkmark	\checkmark				
privacy - client	encrypt/decrypt	2,700	4.9	✓	✓	✓	✓	✓	

additional concerns

- differential cryptanalysis
 - volume of data encrypted with the same key
 - "known plaintext" attacks
- system is only as strong as it's weakest link
 - authentication (verify who is who)
 - trusted OS
 (APIs, trust cores/rings)
 - key storage (smart cards, trust cores)
- destruction of data
 - information dispersal
 - > replica management
- denial of service
 - not yet explored