
Conference on File and Storage Technologies (FAST’02), pp. 219–230,
28–30 January 2002, Monterey, CA. (USENIX, Berkeley, CA.)

Aqueduct: online data migration
with performance guarantees

Chenyang Lu
Department of Computer Science

University of Virginia
chenyang@cs.virginia.edu

Guillermo A. Alvarez John Wilkes
Storage and Content Distribution Department

Hewlett-Packard Laboratories
{galvarez, wilkes}@hpl.hp.com

Abstract

Modern computer systems are expected to be up continuously: even planned downtime to accomplish system recon-
figuration is becoming unacceptable, so more and more changes are having to be made to “live” systems that are
running production workloads. One of those changes is data migration: moving data from one storage device to
another for load balancing, system expansion, failure recovery, or a myriad of other reasons. Traditional methods
for achieving this either require application down-time, or severely impact the performance of foreground applica-
tions – neither a good outcome when performance predictability is almost as important as raw speed. Our solution
to this problem, Aqueduct, uses a control-theoretical approach to statistically guarantee a bound on the amount of
impact on foreground work during a data migration, while still accomplishing the data migration in as short a time
as possible. The result is better quality of service for the end users, less stress for the system administrators, and
systems that can be adapted more readily to meet changing demands.

1. Introduction
Current enterprise computing systems store tens of
terabytes of active, online data in dozens to hundreds
of disk arrays, interconnected by storage area networks
(SANs) such as Fibre Channel [4] or Gigabit Ethernet
[1]. Keeping such systems operating in the face of
changing access patterns (whether gradual, seasonal, or
unforeseen), new applications, equipment failures, new
resources, and the needs to balance loads to achieve
acceptable performance requires that data be moved, or
migrated, between storage system components – some-
times on short notice. (We note in passing that creating
and restoring online backups can be viewed as a par-
ticular case of data migration in which the source copy
is not erased.)

Existing approaches to data migration either take the
data offline while it is moved, or allow the I/O resource
consumption engendered by the migration process it-
self to interfere with foreground application accesses
and slow them down – sometimes to unacceptable lev-
els. The f
global, alwa
from around

night. The latter is almost as bad, given that the pre-
dictability of information-access applications is almost
as much a prerequisite for the success of a modern
business as is their raw performance. We believe there
is a better way; this paper explores our approach to the
problem of performing general, online data migrations
while maintaining performance guarantees for fore-
ground loads.

1.1. Problem formulation
We formalize the problem as follows. The data to be
migrated is accessed by client applications that con-
tinue to execute in the foreground in parallel with the
migration. The inputs to the migration engine are (1) a
migration plan, a sequence of data moves to rearrange
the data placement on the system from an initial state
to the desired final state [3], and (2) client application
quality-of-service (QoS) demands – I/O performance
specifications that must be met while migration takes
place. Highly variable service times in storage systems
(e.g., due to unpredictable positioning delays, caching,
and I/O request reordering) and workload fluctuations

ormer is clearly undesirable in today’s
ys-on Internet environment, where people
 the globe are accessing data day and

on arbitrary time scales [10] make it difficult to provide
absolute guarantees, so statistical guarantees are pref-
erable unless gross over-provisioning can be tolerated.

The data migration problem is to complete the data
migration in the shortest possible time that is compati-
ble with maintaining the QoS goals.

1.2. QoS contracts
One of the keys to the problem is a useful formaliza-
tion of the QoS goals. We use the following. A store
is a logically contiguous array of bytes, such as a data-
base table or a file system; its size is typically meas-
ured in gigabytes. Stores are accessed by streams,
which represent I/O access patterns; each store may
have one or multiple streams. The granularity of a
stream is somewhat at the whim of the definer, but
usually corresponds to some recognizable entity such
as an application.

Global QoS guarantees bound the aggregate perform-
ance of I/Os from all client applications in the system,
but do not guarantee the performance of any individual
store or application. They are seldom sufficient for
realistic application mixes, for access demands on dif-
ferent stores may be significantly different during mi-
gration (as shown in Sections 5 and 6). On the other
hand, stream-level guarantees have the opposite diffi-
culty: they can proliferate without bound, and so run
the risk of scaling poorly due to management overhead.

An intermediate level, and the one adopted by Aque-
duct, is to provide store-level guarantees. (In practice,
this has similar effects to stream-level guarantees for
our real-life workloads because the data-gathering sys-
tem we use to generate workload characterizations cre-
ates one stream for each store by default.) Let the av-
erage latency ALi of a store i in the workload be the
average latency of I/Os directed to store i by client ap-
plications throughout the execution of a migration plan,
and let the latency contract for store i be denoted LCi.
The latency contract is expressed as a bounded average
latency: it requires that ALi ≤ LCi for every store i.

In practice, such QoS contract specifications may be
derived from application requirements (e.g., based on
the timing constraints and buffer size of a media-
streaming server), or specified by hand, or empirically
derived from workload monitoring and measurements.

We also monitor how often the latency bounds are vio-
lated over shorter time intervals than the entire migra-
tion, by dividing the migration into equal-sized sam-
pling periods, each of duration W. Let M be the number
of such periods needed for a given migration. Let the
sampled latency Li(k) of store i be its the average la-
tency in the kth sampling period, which covers the time
interval ((k-1)W, kW) since the start of the migration.
We define the violation fraction VRi as the fraction of

sampling periods in which QoS contract violations
occur: VRi = |{k:Li(k) > LCi, k = 1,...,M}| / M.

1.3. Summary
The main contribution of the work we report here is a
novel, control-theoretic approach to achieving these
requirements. Our tool, Aqueduct, adaptively tries to
consume as much as possible of the available system
resources left unused by client applications while sta-
tistically avoiding QoS violations. It does so by dy-
namically adjusting the speed of data migration to
maintain the desired QoS goals while maximizing the
achieved data migration rate, using periodic measure-
ments of the storage system’s performance as per-
ceived by the client applications. It guarantees that the
average I/O latency throughout the execution of a mi-
gration will be bounded by a pre-specified QoS con-
tract. If desired, it could be extended straightforwardly
to provide a bound on the number of sampling periods
during which the QoS contract was violated – but we
found that it did so reasonably effectively without ex-
plicitly including this requirement, and suspected that
doing so would reduce the data migration rate achieved
– possibly more than was beneficial.

The focus in this paper is on providing latency guaran-
tees because (1) our early work showed that bounds on
latency are considerably harder to enforce than bounds
on throughput – so a technique that could bound la-
tency would have little difficulty with throughput; and
(2) the primary beneficiaries of QoS guarantees are
customer-facing applications, for which latency is a
primary criterion.

To test Aqueduct, we ran a series of experiments on a
state-of-the-art disk array [15] connected to a high-end
host by a FibreChannel storage area network. Aqueduct
successfully decreased the average I/O latencies of our
client application workloads by as much as 76% com-
pared with non-adaptive migration methods, success-
fully enforced the QoS contracts, and migrated data at
close to the maximum speed allowed by the QoS guar-
antees. Although the current Aqueduct prototype does
not explicitly guarantee a bound on the violation frac-
tion VRi, we nonetheless observed values of less than
17% in all our experiments.

The remainder of the paper contains a description of
the Aqueduct system and our evaluation of it. We de-
scribe related work in Section 2, and the Aqueduct sys-
tem architecture in Section 3. We then present the re-
sults of our experimental evaluation in Sections 4, 5
and 6, first describing our experimental infrastructure,
and then the results of testing Aqueduct with two work-

loads: one purely synthetic, and the other a real, traced
e-mail application. We conclude with some observa-
tions on our findings, and some suggestions for future
work, in Section 7.

2. Related work
An old approach to performing backups and data relo-
cations is to do them at night, while the system is idle.
As discussed, this does not help with many current
applications such as e-business that require continuous
operation and adaptation to quickly changing sys-
tem/workload conditions. The approach of bringing the
whole (or parts of the) system offline is often impracti-
cal due to the substantial business costs it incurs.

Perhaps surprisingly, true online migration and backup
are still in their infancy. But existing logical volume
managers (e.g., the HP-UX logical volume manager,
LVM [22], and the Veritas Volume Manager, VxVM
[27]) have long been able to provide continuing access
to data while it is being migrated. This is achieved by
creating a mirror of the data to be moved, with the new
replica in the place where the data is to end up. The
mirror is then silvered – the replicas made consistent
by bringing the new copy up to date – after which the
original copy can be disconnected and discarded. Aq-
ueduct uses this trick, too. However, we are not aware
of any existing solution that bounds the impact of mi-
gration on client applications while this is occurring in
terms that relate to their performance goals. Although
VxVM provides a parameter, vol_default_iodelay, that
is used to throttle I/O operations for silvering, it is ap-
plied regardless of the state of the client application.
High-end disk arrays (e.g., the HP Surestore Disk Ar-
ray XP512) provide restricted support for online data
migration [14]: the source and destination devices must
be identical Logical Units (LUs) within the same array,
and only global, device-level QoS guarantees such as
bounds on disk utilization are supported. Some com-
mercial video servers [16] can re-stripe data online
when disks fail or are added, and provide guarantees
for the specific case of highly-sequential, predictable
multimedia workloads. Aqueduct does not make any
assumptions about the nature of the foreground work-
loads, nor about the devices that comprise the storage
subsystem; it provides device-independent, application-
level QoS guarantees.

Existing storage management products such as the HP
OpenView-Performance Manager [13] can detect the
presence of performance hot spots in the storage sys-
tem when things are going wrong, and notify system
administrators about them – but it is still up to humans

to decide how to best solve the problem. In particular,
there is no automatic throttling system that might ad-
dress the root cause once it has been identified.

Although Aqueduct eagerly uses excess system re-
sources in order to minimize the length of the migra-
tion, it is in principle possible to achieve zero impact
on the foreground load by applying idleness-detection
techniques [9] to migrate data only when the fore-
ground load has temporarily stopped. Douceur and
Bolosky [7] developed a feedback-based mechanism
called MS Manners that improves the performance of
important tasks by regulating the progress of low-
importance tasks. MS Manners cannot provide guaran-
tees to important tasks because it only takes as input
feedback on the performance of the low-importance
tasks. In contrast, Aqueduct provides performance
guarantees to applications (i.e., the “important tasks”)
by directly monitoring and controlling their perform-
ance.

There has been substantial work on fair scheduling
techniques since their inception [23]. In principle, it
would be possible to schedule migration and fore-
ground I/Os at the volume manager level without rely-
ing on an external feedback loop. However, real-world
workloads are complicated and have multiple, nontriv-
ial properties such as sequentiality, temporal locality,
self-similarity, and burstiness. How to assign relative
priorities to migration and foreground I/Os under these
conditions is an open problem. For example, a simple
1-out-of-n scheme may work if the foreground load
consists of random I/Os, but may cause a much higher
than expected interference if foreground I/Os were
highly sequential. Furthermore, any non-adaptive
scheme is unlikely to succeed: application behaviors
vary greatly over time, and failures and capacity addi-
tions occur very frequently in real systems. Fair
scheduling based on dynamic priorities has worked
reasonably well for CPU cycles; but priority computa-
tions remain an ad hoc craft, and the mechanical prop-
erties of disks plus the presence of large caches result
in strong nonlinear behaviors that invalidate all but the
most sophisticated latency predictions.

Recently, control theory has been explored in several
computer system projects. Li and Nahrstedt [18] util-
ized control theory to develop a feedback control loop
to guarantee the desired network packet rate in a dis-
tributed visual tracking system. Hollot et al. [11] ap-
plied control theory to analyze a congestion control
algorithm on IP routers. While these works apply con-
trol theory on computing systems, they focus on man-
aging the network bandwidth instead the performance
of end servers.

Feedback control architectures have also been devel-
oped for web servers [6][19] and e-mail servers [25]. In
the area of CPU scheduling, Steere et al. [26] devel-
oped a feedback based CPU scheduler that synchronize
the progress of consumers and supplier processes of
buffers. In [20], scheduling algorithms based on feed-
back control were developed to provide deadline miss
ratio guarantees to real-time applications with unpre-
dictable workloads. Although these approaches show
clear promise, they do not guarantee I/O latencies to
applications, nor do they address the storage subsys-
tem, which is the focus of Aqueduct. The feedback-
based web cache manager described in [21] achieves
differentiated cache hit ratio by adaptively allocating
storage spaces to user classes. However, they also did
not address I/O latency or data migration in storage
systems.

3. Aqueduct
The overall architecture of Aqueduct, and the way in
which it interacts with its environment, are shown in
Figure 1. It takes in a QoS contract and a migration
plan, and interacts with the storage system to migrate
data by using the existing HP-UX LVM’s [22] primi-
tives. As discussed above, Aqueduct relies upon the
LVM silvering operation to achieve a move without
having to disable client application accesses.

Ideally, Aqueduct would be integrated with the LVM,
so that it could directly control the rate at which data
were moved in order to achieve its QoS guarantees.
Alternatively, if a dynamically-alterable parameter had
been provided to control LVM’s silvering rate (i.e.,
data movement speed), Aqueduct could have used that
to effect its control. Unfortunately, neither was possi-
ble for our experiments, so we resorted to a (somewhat
crude) approximation to these more tightly-coupled
approaches. Fortunately, despite the overheads it im-
posed, it proved adequate to our goal of confirming the
potential benefits of the control-feedback loop ap-
proach.

Aqueduct divides each store into small, fixed-size sub-
stores that are migrated one at a time, in steps called
submoves. This allows relatively fine control over the
migration speed, as substores are relatively small: we
chose 32MB as a reasonable compromise between man-
agement overheads and control finesse. With LVM,
we were forced to implement each substore as a com-
plete logical volume in its own right; unfortunately,
this had the undesirable property that store migrations
were visible at the application level. (VxVM might
have let us lift this restriction, but we did not have easy

access to a running implementation.) The resulting
large numbers of logical volumes incur considerable
LVM-related overheads. Nonetheless, despite the
overheads, this implementation allowed us to evaluate
the key part of the Aqueduct architecture – the feed-
back control loop – which was the primary point of this
exercise.

Controller

Actuator

Monitor

{LCi}
{Li(k)}

Rm(k)

Storage system Submover

storage
devices

I/Os

Aqueduct
migration executor

Client Applications

data
migration

QoS
Contract

Migration
Plan

Figure 1 The internal structure of the Aqueduct migra-
tion executor, and its relationship to the external world.

3.1. Feedback control loop in Aqueduct
The Aqueduct monitor component is responsible for
collecting the sampled latency of each store at the end
of each sampling period, and feeding these results to
the controller. We were able to extract this data di-
rectly from an output file periodically generated by our
workload generation tool; but it could also have been
obtained from other existing performance monitoring
tools (e.g., the GlancePlus tool of HP OpenView [13]).

The controller compares the sampled latencies for the
time window ((k-1)W, kW) with the QoS contract, and
computes the submove rate Rm(k) (the control input) to
be used during the next sampling period (kW, (k+1)W).
Intuitively, Aqueduct should slow down data migration
when some sampled store latencies are larger than their
corresponding contracts, and speed up data migration
when latencies are smaller than the corresponding con-
tracts for all stores. The controller computes the sub-
move rate based on the sampled store latencies so that
the sampled store latencies stay close to their corre-
sponding contracts. Aqueduct incorporates an integral
controller, a well-studied law in control theory [8];
integral controllers are typically robust in the presence
of a wide range of workload variations. It operates as
follows:

1) For each store i (0 ≤ i < N) in the system, compute
its error
 Ei(k) = P∗LCi - Li(k),

where P (0 < P < 1) is a configurable parameter,
and P∗LCi is called the reference in control theory.
More negative values of Ei(k) represent larger la-
tency violations.

2) Find the smallest (i.e., potentially most negative)
error Emin(k) among all stores:
 Emin(k) = min{Ei(k)| 0 ≤ i < N};
thus taking account of the worst contract violation
observed.

3) Compute the submove-rate according to the inte-
gral control function (K is another configurable pa-
rameter of the controller):

 Rm(k) = Rm(k-1) + K∗Emin(k);

4) Notify the actuator of the new submove rate Rm(k).

Because the control input Rm(k) is computed from the
Ei(k) corresponding to the worst violation, it forces the
system to satisfy its latency goals by arranging for Emin
to converge to zero. Thanks to random workload
variations, store I/O latencies will typically oscillate
around the reference value, so instead of choosing the
actual latency target LCi as the reference, the controller
uses a slightly smaller target: P∗LCi. The value of P is
related to the burstiness of the workload: the more
bursty a workload is, the smaller P should be, to give
the controller enough leeway to avoid contract viola-
tions. On the other hand, overly small values of P will
result in an overly conservative controller, and there-
fore slow down migration. In our experiments, we
observed that a P between 0.8 and 0.9 was sufficient to
achieve satisfactory violation fractions for significantly
different workloads.

Parameter K needs to be tuned to achieve stability (i.e.,
to prevent the submove rate and sampled latencies
from oscillating excessively) and short settling time
(i.e., fast convergence of the output to the reference).
This can be done using systematic, standard control
theory techniques. An example is provided in Section
5.1. A similar tuning method was described in detail,
and applied to a real-time CPU scheduler in [20]. Aq-
ueduct could be extended in a fairly straightforward
way to set (and adjust) K automatically, using an on-
line estimation of the gain [5] in order to handle differ-
ent categories of workloads without the need for pre-
computed parameter values.

The last module in Figure 1 is the actuator. It executes
a migration plan at the submove rate computed by the
controller. During the sampling period (kW, (k+1)W),
the actuator enforces the submove rate Rm(k) by sleep-
ing for (W/Rm(k) - Tj) time units between the end of
submove j and the start of the next, where Tj is the time
it took to complete submove j.

4. Experiment overview
We evaluated the performance of Aqueduct in our stor-
age area network, using both a synthetic workload and
an I/O trace from a production e-mail server.

The hardware used for our tests includes an HP FC-60
disk array [15] with 512 MB of cache, two redundant
controllers, and six disk enclosures with 5 disks each,
for a total unprotected capacity of 1.05TB. All LUs in
the array were 6-disk RAID-5s with 16-KB stripe units.
The FC-60 array was connected to a Brocade Silkworm
2800 switch via two 1Gb/s Fibre Channel links. Both
Aqueduct and the load generators ran on the same HP
9000-N4000 server, which has eight 440 MHz PA-
RISC 8500 processors and 16GB of RAM. The host ran
the HP-UX 11.0 operating system. We used our own
workload-generation tool, Buttress, which is capable of
generating synthetic workloads and replaying an exist-
ing I/O trace with very high fidelity.

We compared Aqueduct against two baselines:

• Whole-store, moves a whole store in each step as
fast as possible, with no delays between store-
moves; stores are not divided into smaller sub-
stores. This is designed to reflect what a system
administrator would do when migrating data by
hand or by running simple scripts.

• Sub-store is similar to Whole-store, but divides
each store into substores and performs each move
as a sequence of submoves. It is a fairer baseline
for comparison with Aqueduct because it uses the
same number of logical volumes (substores) and
hence incurs similar amounts of LVM overhead.

In these experiments, all stores were given the same
latency contract, LC = 10 ms, and we always used a
sampling period (W), of 60 seconds, and a substore size
of 32MB. The following table lists the configurable
parameters we used for the two workloads:

 Synthetic OpenMail

K 1.09 0.36
P 0.90 0.80

Since the OpenMail workload is more sensitive to
changes in the submove rate than the synthetic work-
load, we tuned K to be smaller for the OpenMail work-
load based on control theory (described in Section 5.1).
We found that the first value we tried for P (0.9) was
adequate for the synthetic workload, but not for
OpenMail—the second trial for OpenMail resulted in
the final, slightly smaller P = 0.8. This was not unex-
pected, as OpenMail is more bursty than our deliber-
ately well-behaved synthetic workload.

We define the victim latency VL(k) as the highest sam-
pled latency of all stores in the kth sampling period, i.e.,
VL(k) = max{Li(k): 0 ≤ i < N}. In this special case in
which all stores share a same latency contract LC, all
stores satisfy their contracts if and only if the victim
latency stays lower than the contract. Similarly, the
average victim latency AVL is the average of the values
of VL(k) over all M sampling periods during the migra-
tion. AVL reflects the “correctness” of the migration
speed. Ideally, AVL should be close to the latency con-
tract. If AVL > LC, the migration runs too fast and
causes excessive contract violations. On the other hand,
if AVL < LC, the migration could have run faster with-
out violating the latency contract.

5. Synthetic workload experiments
Figure 2 illustrates the initial state and the migrations
that were effected in this test. The synthetic workload
is composed of multiple streams with fixed, identical
parameters, and tests Aqueduct in the presence of de-
liberately steady workloads. We configured two LVM
volume groups, aq0 and aq1. All stores are 640 MB in
size, and are therefore divided into 20 substores each.
Group aq0 contains six stores. In the initial assign-
ment, three of them (the migrate-stores M0, M1, M2)
are mapped onto logical unit LU1 of the disk array; the
remaining three stores of aq0 (the fixed-stores F0, F1,
F2) are in another logical unit LU0.

These experiments emulate the following use scenario:
assume that we find that LU1 is likely to fail (e.g., by
using system monitoring tools such as [17]), so we
want to move the migrate-stores in LU1 to a new logi-
cal unit LU3. Hence, the migrate- and the fixed-stores
belong to the same LVM volume group. We hypothe-
sized that stores contained within the same volume
group where data is being migrated would suffer some
performance penalty from LVM overhead, even if they
were not being migrated. To test that assumption, we
created group aq1 on LU2, whose stores (the alone-
stores A0, A1, A2) should not be affected because they
are totally separate from aq0.

To generate the workload from the client applications,
we simulated the file system workload described in [2]
by issuing two synthetic streams on each store. Each
stream has a Poisson arrival process, 16KB request
size, with a run count of 3 (this is the average number
of consecutive I/O requests performed on consecutive
addresses), 64% of the requests are reads, and the re-
quest rate is 32/second.

F0 F1 F2

M0 M1 M2

A0 A1 A2

LU1

LU0

LU3

LU2

Volume group aq0 Volume group aq1

FC-60 disk array

Figure 2 Placement of stores on disk array logical
units for the synthetic workload, and the migration that
was performed.

5.1. Tuning K
We demonstrate here how the parameter K was se-
lected for the synthetic workload using the Root-Locus
design technique [8]. The controlled system includes
the storage system, the monitor, and the actuator. The
output is the victim latency VL(k+1), i.e., the sampled
latency of the store with the smallest error Emin(k+1) in
the sampling period (kW, (k+1)W). The input to the
controlled system is the submove rate Rm(k) in the
sampling period (kW, (k+1)W). (Rm(k) instead of
Rm(k+1) is used to denote the submove rate in (kW,
(k+1)W) because the controller outputs Rm(k) at time
kW instead of (k+1)W). In our design, we approximate
the controlled system with the following linear model:

))1()(()()1(−−=−+ kRkRGkVLkVL mm
 (1)

The process gain, G, is the derivative of the output
VL(k+1) with respect to the input Rm(k). G represents
the sensitivity of the victim latency with regard to the
change in submove rate. We approximate G by
running a set of system profiling experiments. In each
run, migration is performed at a fixed submove rate,
and different submove rates are used in different runs.
The average victim latencies observed throughout
migration for different submove rates are plotted in
Figure 3. Using linear regression, we estimate that G =
1.12 with an R2 of 99% for the synthetic workload.

We now transform the controlled system model into
the z-domain, which is amenable to control analysis.
The controlled system model in Equation 1 is
equivalent to the following transfer function from Rm(z)
to VL(z) in z-domain: H(z) = G∗z-1. The integral
controller is transformed to the following transfer
function from the minimum error Emin(z) to the
submove rate, Rm(z), in the z-domain:C . ())1/(−= zKzz

It follows that the whole feedback control system
composed of the controlled system and the integral
controller is modeled as the following transfer function
from the reference to the victim latency:

() ()
())(1

)(
zHzC

zHzCzH C +
= (2)

Assume that all the stores share a common contract
P∗LC, the z-transform of the victim latency is:

()
1

)(
−

∗∗∗=
z

zLCPzHzVL C
 (3)

y = 1.41x + 5.80
R2 = 0.98

6

8

10

12

14

16

0 1 2 3 4 5 6 7

Submove Rate

A
ve

ra
ge

 V
ic

tim
 L

at
en

cy
 (m

s)

Openmail Synthetic

Linear (Openmail) Linear (Synthetic)

y = 1.12x + 7.55
R2 = 0.99

Figure 3 Victim latency as a function of submove rate
for the synthetic workload and openmail workload.

Given the dynamic model of the closed loop system,
we tune the control parameter K analytically using lin-
ear control theory [8], which states that the perform-
ance of a system depends on the poles of its closed
loop transfer function. Since the closed loop transfer
function (Equation 2) of Aqueduct has a single pole p =
1-KG, we can set p to the desired value by choosing the
right value of K. The sufficient and necessary condition
for Aqueduct to guarantee stability is: |p| < 1 ⇔ 0 < K
< 2/G. The settling time represents the time it takes to
converge the victim latency to the reference. A smaller
settling time leads to a faster response to workload
variations. The settling time is determined by the
damping ratio of the closed loop system. A larger G
(e.g., in a workload whose latency is more sensitive to
the submove rate) needs a smaller K to get the same
pole and achieve the same level of stability and settling
time. Using the root-locus method, we set p = -0.22 by
choosing K = (1-p)/G = 1.09 to guarantee stability and
a short settling time. The OpenMail has a larger gain
than the synthetic workload, so it benefits from a lower
value of K.

5.2. Experimental results
We now explore the results of applying Aqueduct to
migrating data that is being accessed by the synthetic
workload.

The sampled latencies of store M0 in typical runs of
Aqueduct and the baselines are illustrated in 0. (We
pick M0 because it is the store most affected by migra-
tion, as shown in Figure 6.) Whole-store causes long
latencies throughout migration; latencies are especially
severe near the end of the migration when they jump to
25.17 ms. This is because near the end of the migra-
tion, more application I/Os target at the new logical
unit, LU3, and contend more severely with Whole-
store which writes into LU3 in parallel. Interestingly,
in the beginning of migration, more application I/Os
target at the replaced logical unit LU1 and contend
with Whole-store which reads data from LU1, but the
impact of migration on latencies is less severe. This is
because writes are more expensive than reads on
RAID5 (especially if they are small, as done by LVM
when silvering), and therefore migration consumes
more resources on LU3 than on LU1. Although Whole-
store completes data migration within the shortest time,
it violates the latency contract (10 ms) throughout the
data migration period.

0.00

5.00

10.00

15.00

20.00

25.00

30.00

0 5 10 15 20

Time (min)

la
te

nc
y

(m
s)

M0 (Aqueduct)
M0 (Sub-store)

M0 (Whole-store)

Figure 4 Data from three typical runs in the synthetic
workload experiments, showing foreground application
I/O latency on store M0 during the execution of the Aq-
ueduct, Sub-store, and Whole-store migration algo-
rithms.

Sub-store migrates data more slowly, and with smaller
impact on client applications, than Whole-store. How-
ever, the latency contracts are still violated in most
sampling periods. Since neither Sub-store nor Whole-
store sleeps between subsequent (sub)moves, we at-
tribute the difference between their migration times and
interference on client applications to the overhead of
managing large number of logical volumes in Sub-
store—which is slowed down by this effect.

In comparison, in the case of Aqueduct, the latency of
M0 stays below the latency contract in most of the
sampling periods. This result demonstrates that Aque-
duct effectively reduces migration’s impact on client
applications. Note that the latency of M0 stays close to

the contract latency. This indicates that, although Aq-
ueduct has a longer migration time than the baselines,
it achieves a submove rate that is close to the maxi-
mum allowed by the QoS contract.

To demonstrate the quality of control by Aqueduct, we
plot the traces of sampled latency on M0 and submove
rate (the control input) during the same sample run. We
can see that Aqueduct effectively keeps latency close
to the reference (9 ms) by dynamically adapting the
submove rate—peaks and valleys are strongly corre-
lated in the two curves. Furthermore, Aqueduct
achieves satisfactory stability because it does not cause
excessive oscillation in submove rate or latency
throughout the run.

0
2
4
6
8

10
12
14

0 5 10 15 20

Time (min)

su
bm

ov
e

ra
te

la
te

nc
y

(m
s)

Latency
Submv Rate

Figure 5 Foreground application latency on store M0
during a sample Aqueduct migration, together with a
plot of the rate at which sub-stores were being moved
(in moves per minute).

5.3. QoS guarantees
We now evaluate how Aqueduct provides QoS guaran-
tees for the synthetic workload. Every data point pre-
sented in this section and Section 5.4 is the mean of 5
repeated runs. We also report the 90% confidence in-
tervals for every data point.

Aqueduct
Sub-store
Whole-store

 M0 M1 M2 F0 F1 F2 A0 A1 A2
0

2

4

6

8

10

12

14

16

A
ve

ra
ge

 L
at

en
cy

 (
m

s)

M0 M1 M2 F0 F1 F2 A0 A1 A2
0

1

V
io

la
tio

n
R

at
io

Aqueduct Sub-store Whole-store
0

200

400

600

800

1000

1200

M
ig

ra
tio

n
T

im
e

(s
ec

)

(a) Migration Time

Figure 6 Average application I/O latencies in the syn-
thetic workload experiments.

The average latencies for Aqueduct and the baselines
are illustrated in Figure 6. The latencies of the alone-
stores and the fixed-stores are similar, and therefore the
impacts of LVM overhead on fixed-stores are negligi-
ble. Migration has negligible impacts on the average
latencies of the fixed-stores or the alone-stores with all
migration methods. However, different migration
methods perform differently on the migrated stores. In

particular, Whole-store achieves an average latency on
M0 of 16.4 (±0.5) ms,, which is 80% higher than Aq-
ueduct’s 9.1 (±0.4) ms. Similarly, Sub-store achieves
an average latency of 12.2 (±0.9) ms, or 34% higher
than Aqueduct. More importantly, Aqueduct’s average
latencies of all stores are lower than the latency con-
tract of 10 ms, while the average latencies of Sub-store
and Whole-store are higher than the contract in two and
three migrate-stores, respectively.

Aqueduct
Sub-store
Whole-store

Figure 7 Contract violation fractions in the synthetic
workload experiments.

The contract violation fractions for the synthetic work-
load are shown in Figure 7. Whole-store violates the
latency contract in all sampling periods during migra-
tion. While Sub-store achieves a lower contract viola-
tion fraction due to LVM overheads in data migration,
it still causes a much higher violation fraction than
Aqueduct. In particular, Sub-store violates the latency
contract in 70% (±0%) of all sampling periods during
migration, while Aqueduct only violates 17% (±5%) of
all sampling periods. The contract violation fraction is
important because a lower value means that client ap-
plications suffer violations less frequently and hence
the storage service has more acceptable performance.

5.4. Migration efficiency
As expected, Aqueduct provides QoS guarantee to ap-
plications at the expense of slowing down data migra-
tion. Figure 8a shows that it takes Aqueduct 1219
(±43) sec on average to complete the migration plan,
while Sub-store only needs 556 (±3) sec. Sub-store
migrates data more slowly than Whole-store due to the
LVM overhead.

Aqueduct Sub-store Whole-store
0

2

4

6

8

10

12

14

16

A
ve

ra
ge

 V
ic

tim
 L

at
en

cy
 (

m
s)

(b) Average Victim Latency
Figure 8 Migration times in synthetic workload ex-
periments.

In order to determine whether Aqueduct achieves the
maximum speed allowed by the QoS contracts, we look
at average victim latencies. The rationale is that, to
guarantee that no stores violate the latency contract, the
victim latency must be the same or lower than the la-
tency contract, i.e., the latency contract must be an up-
per bound on the victim latency. Figure 8b shows that
Aqueduct achieves an average victim latency of 9.30
(±0.46) ms, which is only 7% lower than the latency
contract. Given that the average submove rate is below
3 submoves/min., even an increase of 1 submove/min.
in the control input would result in service contract
violations. This result shows that Aqueduct’s bound is
tight: Aqueduct is not overly conservative, and it
achieves a migration speed close to the maximum that
is possible given the constraint of providing latency
guarantees. In addition, note that the average victim
latency is close to the actual reference to the controller
(P*LC = 9 ms), which shows that the controller cor-
rectly enforces the reference.

In summary, the synthetic-workload experiments dem-
onstrate that Aqueduct can effectively provide latency
guarantees to applications having steady, regular access
patterns, while performing online data migration effi-
ciently. Aqueduct guarantees the average latencies of
all stores to be lower than the latency contract, and
achieves a contract violation fraction of no more than
17%. For the same migration plan, Whole-store and
Sub-store cause average latencies higher than the la-
tency contract in migrated-stores and contract viola-
tions as high as 100% and 70%, respectively. In term
of migration efficiency, Aqueduct achieves a migration
speed close to the maximum allowed by the latency
contract.

6. OpenMail experiments
The OpenMail workload was originally gathered by
tracing an e-mail server running HP OpenMail [12].
The original workload trace was collected on an HP
9000 K580 server system with an I/O subsystem com-
prised of four EMC Symmetrix 3700 disk arrays. The
server was sized to support a maximum of about 4500
users, although only about 1400 users were actively
accessing their email during the trace collection period,
which corresponded to the server’s busiest hour of the
day. The majority of accesses in the trace are to the
640 GB message store, which is striped uniformly
across all of the arrays.

In order to create a trace comparable to our syntheti-
cally generated workloads, we replayed the portion of
the original trace corresponding to a single representa-

tive array on our FC-60 array. Since the LVM on HP-
UX 11.0 has a limitation that each volume group can
contain at most 255 logical volumes, and each logical
volume corresponds to one substore (32 MB each) in
our current Aqueduct prototype, we shrank the sizes of
the corresponding stores proportionally to a total size
of 3.8 GB to fit them into one volume group. (This size
limitation can be fixed by a future Aqueduct
implementation with modifications on the LVM.)

This workload has significantly more complex behav-
iors than our synthetic one. The OpenMail system be-
ing traced kept a small amount of metadata (an index
table) at the beginning of the message store’s address
space, and filled up the remainder with e-mail mes-
sages. For each email retrieval request from a user, or
on each incoming email, the server accesses the initial
index table and then jumps to actually access the mes-
sage, to a random location uniformly distributed across
the upper portion of the store. Consequently, the small
amount of metadata becomes a hotspot that gets ac-
cessed much more frequently than the other data.

LU1

Volume group aq0

FC-60 disk array

LU0

tiny0 big0 tiny1 big1

Figure 9 Store migration plan for the OpenMail work-
load.

We create one volume group, aq0, which includes 4
stores called tiny0, tiny1, big0, and big1, respectively.
tiny0 and tiny1 are 96 MB each, and big0 and big1 are
1854 MB each. In the initial assignment, all the stores
are located on a single logical unit LU0.

The OpenMail experiments emulate a LU-addition
scenario. We model the case of wanting to increase the
server capacity by adding a new Logical Unit, LU1, to
the array. To make use of the new LU, we migrate two
stores, tiny0 and big0, from LU0 to LU1.

Similarly to the synthetic workload, we approximate
the process gain, G, for the openmail workload with a
set of system profiling experiments. In each run,
migration is performed at a fixed submove rate, and
different submove rates are used in different runs. The
average victim latencies observed throughout migration

for different submove rates are plotted in Figure 3.
Using linear regression, we estimate that G = 1.41 with
an R2 of 98% for the openmail workload. Compared
with the synthetoc workload, the process gain of the
openmail workload larger. This result means that
openmail is more senstive to the impacts of migration
and therefor a smaller K is needed. In our experiments
we set K = 0.36 (corresponding to a pole p = 0.49) to
guarantee stability and a short settling time for the
openmail workload.

0

10

20

30

40

50

0 5 10 15 20 25

Time (min)

La
te

nc
y(

m
s)

big0 (Aqueduct)
big0 (Sub-store)
big0 (Whole-store)

Figure 10 Sampled latency for the OpenMail work-
load during migration.

0

5

10

15

20

0 10 20
Time (min)

#s
ub

m
ov

e/
m

in
la

te
nc

y
(m

s)

big0

Submv Rate

Figure 11 Sampled latency and substore move rate
(in moves per minute) of Aqueduct for a typical migra-
tion of the OpenMail workload.

The sampled latencies of store big0 in typical runs of
Aqueduct and the baselines are illustrated in Figure 10.
Both Whole-store and Sub-Store cause extremely long
latencies on big0 and violate the latency contract
throughout migration. In comparison, with Aqueduct,
big0’s latencies stay below the latency contract (10 ms)
in most sampling periods. Figure 11 shows the traces
of sampled latency on big0 and submove rate during
the same sample run. Aqueduct effectively keeps la-
tency close to the reference (8 ms) by dynamically
adapting the submove rate without causing excessive
oscillation.

In the following subsections, we present the detailed
evaluation results of Aqueduct in the OpenMail ex-
periments. Every data point presented in this section is
the mean of five repeated runs. The 90% confidence
intervals are also plotted.

Aqueduct
Sub-store
Whole-store

 big1 big0 tiny0 tiny1
0

5

10

15

20

25

30

35

A
ve

ra
ge

 L
at

en
cy

 (
m

s)

Figure 12 Average application I/O latencies during
migrations for the OpenMail workload.

6.1. QoS guarantees
The average latencies in the OpenMail experiments are
shown in Figure 12. The OpenMail application is much
more sensitive to data migration overheads than the
synthetic workload. For example, Sub-store increases
the average latencies of accesses to the migrated-stores,
big0 and tiny0, to 18.74 (±0.92) ms and 22.46 (±0.81)
ms – which are 87% and 125% higher than the latency
contract (10 ms), respectively. In comparison, Aque-
duct achieves an average latency no higher than 7.70
(±0.36) ms, or 23% lower than the contract in all
stores. This result demonstrates the efficacy of Aque-
duct in applications that are very vulnerable to online
data migrations.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

100 1000 10000 100000
request latency (us)

C
D

F

Whole-store Aqueduct Sub-store
Before After

Figure 13 Cumulative distribution of I/O times during
data migration by the three different schemes for the
OpenMail workload, across the entire workload. Aque-
duct has the smallest impact on the I/O request laten-
cies. The “before” and “after” values on this plot are for
the sub-store case, but the differences with the other
alternatives are almost too small to show. Note the log
scale on the x-axis.

A study of the distribution of I/O request latencies dur-
ing a migration (Figure 13) shows that the effect of
Aqueduct is to reduce the number of requests that suf-
fer significantly longer I/O times: application I/Os
queued behind a data migration operation result in
large delays.

The contract violation fractions for the different migra-
tion algorithms are shown in Figure 14. Aqueduct sig-

nificantly reduces the contract violation fractions of the
migrated stores, big0 and tiny0. For example, the con-
tract violation fraction of tiny0 is reduced from 98%
with Sub-store to only 7% with Aqueduct. Thus, Sub-
store causes applications to suffer contract violations in
almost every sampling period during data migration,
while contract violations rarely occur with Aqueduct.

Aqueduct
Sub-store
Whole-store

 big1 big0 tiny0 tiny1
0.0

0.2

0.4

0.6

0.8

1.0

V
io

la
tio

n
R

at
io

Aqueduct Sub-store Whole-store
0

200
400
600
800

1000
1200
1400
1600
1800

M
ig

ra
tio

n
T

im
e

(s
ec

)

(a) Migration Time

Figure 14 Contract violation fractions in OpenMail
experiments.

6.2. Migration efficiency
As shown in Figure 15a, Aqueduct increases the migra-
tion time more significantly in the case of OpenMail
than in the case of the synthetic workload. Because
OpenMail is affected more severely by migration, Aq-
ueduct is forced to perform migration more slowly.

The average victim latency (see Figure 15b) of Aque-
duct is 8.46 (±0.31) ms, or 15% lower than the latency
contract. Again, the migration speed is close to the
maximum speed allowed by the latency contract. We
also note that the average victim latency is within 6%
of the reference (8 ms), which shows that the Aqueduct
controller is able to successfully track the control refer-
ence even in the presence of bursty workloads such as
OpenMail.

In summary, the OpenMail experiments demonstrate
that Aqueduct provides latency guarantee to real-world
applications that are especially sensitive to migration.
In particular, Aqueduct meets its QoS guarantees, and
achieves an average victim latency that is only 15%
below the latency contract. As in the synthetic experi-
ments, Aqueduct performs migration at a speed close to
the maximum allowed by the latency contract.

Aqueduct Sub-store Whole-store
0

5

10

15

20

25

30

35

40

A
ve

ra
ge

 V
ic

tim
 L

at
en

cy
 (

m
s)

(b) Average Victim Latency
Figure 15 Migration time in OpenMail experiments.

7. Conclusions and future work
We have developed Aqueduct, an online data migration
architecture that provides QoS guarantees to client ap-
plications. Aqueduct features a feedback control loop
that dynamically adapts migration speed to maintain
performance guarantees in the presence of workload
and system variations.

We evaluated a prototype on a real storage system,
using a high-end host and disk arrays similar to the
ones used in large enterprise installations. Our experi-
ments show that Aqueduct successfully provides QoS
guarantees in term of bounded average latencies, while
causing only a small percentage of contract violations.
Aqueduct reduces the average I/O latency experienced
by client applications by as much as 76% with respect
to the traditional method: while accesses to a store in
an e-mail server have an average I/O latency of 32.6
ms while a non-adaptive migration is in progress, ac-
cesses to the same store have an average latency of
only 7.7 ms with Aqueduct. Aqueduct also reduces the
violation fraction from 100% to only 12%. Further-
more, Aqueduct performs data migration very close to
the maximum speed allowed by the latency contract, as
evidenced by the small slack of only 15% between the
average victim latency and the latency contract.

Potential future work items include a more general
implementation that interacts with performance moni-
toring tools, developing a low overhead mechanism for
finer-grain control of the migration speed, making the
controller self-tuning to handle different categories of
workloads, and implementing a new control loop that
can simultaneously bound latencies and violation frac-
tions.

Acknowledgements: we thank Eric Anderson, Mi-
chael Hobbs, Kimberly Keeton, and Mustafa Uysal for
clarifying many infrastructure-related questions. We
also want to thank Jack Stankovic for helpful com-
ments on an earlier version of this paper. The FAST
referees and our shepherd, Roger Haskin, have helped
us to improve this paper with their useful feedback.

References
[1] 3Com Corporation, “Gigabit Ethernet Comes of Age,”

Technology white paper, June 1996.

[2] G. A. Alvarez, E. Borowsky, S. Go, T. H. Romer, R.
Becker-Szendy, R. Golding, A. Merchant, M. Spaso-
jevic, A. Veitch, and J. Wilkes. “Minerva: an automated
resource provisioning tool for large-scale storage sys-
tems,” ACM Transactions on Computer Systems, vol.
19, no. 4, November 2001.

[3] E. Anderson, J. Hall, J. Hartline, M. Hobbs, A. Karlin, J.
Saia, R. Swaminathan, and J. Wilkes. “Experimental
Study of Data Migration Algorithms,” 5th Workshop on
Experimental Algorithms, August 2001.

[4] ANSI, “Fibre Channel Arbitrated Loop,” Standard
X3.272-1996, April 1996.

[5] T. F. Abdelzaher, “An Automated Profiling Subsystem
for QoS-Aware Services,” IEEE Real-Time Technology
and Applications Symposium, pp. 208-217, June 2000.

[6] T. F. Abdelzaher and N. Bhatti, “Web Server QoS Man-
agement by Adaptive Content Delivery,” International
Workshop on Quality of Service, pp. 216-225, 1999.

[7] J. R. Douceur and W. J. Bolosky. “Progress-based regu-
lation of low-importance processes,” 17th ACM Sympo-
sium on Operating Systems Principles, pp. 247-260. Dec
1999.

[8] G. F. Franklin, J. D. Powell and M. L. Workman, Digi-
tal Control of Dynamic Systems (3rd Ed.), Addison-
Wesley, 1998.

[9] R. Golding, P. Bosch, C. Staelin, T. Sullivan, and John
Wilkes. “Idleness is not Sloth,” Winter'95 USENIX Con-
ference, pp 201-212, Jan. 1995.

[10] S. Gribble, G. Manku, E. Roselli and E. Brewer, “Self-
similarity in File Systems,” SIGMETRICS’98, pp. 141-
150, April 1998.

[11] C. V. Hollot, V. Misra, D. Towsley, and W. Gong, ”A
Control Theoretic Analysis of RED,” IEEE INFOCOM,
pp. 1510-1519, April 2001.

[12] Hewlett-Packard Company, Openmail,
http://www.OpenMail.com/cyc/om/00/index.html.

[13] Hewlett-Packard Company, HP OpenView Homepage,
http://www.openview.hp.com/.

[14] Hewlett-Packard Company, HP SureStore E Auto LUN
XP User’s Guide, May 2000.

[15] Hewlett-Packard Company, HP SureStore E Disk Array
FC60 – Advanced User’s Guide, Dec 2000.

[16] International Business Machines Corp., Content Man-
ager VideoCharger Administrator’s Guide, January
2001.

[17] International Business Machines Corp., Drive Fitness
Test, August 1999.

[18] B. Li and K. Nahrstedt, “A Control-based Middleware
Framework for Quality of Service Adaptations,” IEEE
Journal of Selected Areas in Communication, Special Is-
sue on Service Enabling Platforms, 17(9), pp. 1632-
1650, Sept. 1999.

[19] C. Lu, T. F. Abdelzaher, J. A. Stankovic, and S. H. Son,
“A Feedback Control Approach for Guaranteeing Rela-
tive Delays in Web Servers,” IEEE Real-Time Technol-
ogy and Applications Symposium, pp. 51-62, June 2001.

[20] C. Lu, J. A. Stankovic, G. Tao, and S. H. Son, “Feed-
back Control Real-Time Scheduling: Framework, Mod-
eling, and Algorithms,” Journal of Real-Time Systems,
Special Issue on Control-Theoretical Approaches to
Real-Time Computing, 22(3), March 2002.

[21] Y. Lu, A. Saxena, and T. F. Abdelzaher, “Differentiated
Caching Services; A Control-Theoretical Approach,” In-
ternational Conference on Distributed Computing Sys-
tems, pp. 615-622, April 2001.

[22] T. Madell, Disk and File Management Tasks in HP-UX,
Prentice-Hall, 1997.

[23] J. Nagle. "On packet switches with infinite storage,"
IEEE Trans. on Communications, vol. 35, no. 4, pp.
435-38, April 1987.

[24] G. Papadopoulos, “Moore’s Law Ain’t Good Enough,”
keynote speech at Hot Chips Х, August 1998.

[25] S. Parekh, N. Gandhi, J. L. Hellerstein, D. Tilbury, T. S.
Jayram, J. Bigus, "Using Control Theory to Achieve
Service Level Objectives in Performance Management,"
IFIP/IEEE International Symposium on Integrated Net-
work Management, 2001.

[26] D. Steere, A. Goel, J. Gruenberg, D. McNamee, C. Pu,
J. Walpole, "A Feedback-driven Proportion Allocator
for Real-Rate Scheduling," Symposium on Operating
Systems Design and Implementation, pp. 145-158, Feb
1999.

[27] Veritas Software Corp., Veritas Volume Manager,
http://www.veritas.com/us/products/volumemanager.

http://www.openmail.com/cyc/om/00/index.html
http://www.openview.hp.com/
http://www.veritas.com/us/products/volumemanager

	Abstract
	Introduction
	Problem formulation
	QoS contracts
	Summary

	Related work
	Aqueduct
	Feedback control loop in Aqueduct

	Experiment overview
	Synthetic workload experiments
	Tuning K
	Experimental results
	QoS guarantees
	Migration efficiency

	OpenMail experiments
	QoS guarantees
	Migration efficiency

	Conclusions and future work
	References

