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Abstract 

Modern computer systems are expected to be up continuously: even planned downtime to accomplish system recon-
figuration is becoming unacceptable, so more and more changes are having to be made to “live” systems that are 
running production workloads.  One of those changes is data migration: moving data from one storage device to 
another for load balancing, system expansion, failure recovery, or a myriad of other reasons.  Traditional methods 
for achieving this either require application down-time, or severely impact the performance of foreground applica-
tions – neither a good outcome when performance predictability is almost as important as raw speed.  Our solution 
to this problem, Aqueduct, uses a control-theoretical approach to statistically guarantee a bound on the amount of 
impact on foreground work during a data migration, while still accomplishing the data migration in as short a time 
as possible.  The result is better quality of service for the end users, less stress for the system administrators, and 
systems that can be adapted more readily to meet changing demands. 

 

1. Introduction 
Current enterprise computing systems store tens of 
terabytes of active, online data in dozens to hundreds 
of disk arrays, interconnected by storage area networks 
(SANs) such as Fibre Channel [4] or Gigabit Ethernet 
[1].  Keeping such systems operating in the face of 
changing access patterns (whether gradual, seasonal, or 
unforeseen), new applications, equipment failures, new 
resources, and the needs to balance loads to achieve 
acceptable performance requires that data be moved, or 
migrated, between storage system components – some-
times on short notice.  (We note in passing that creating 
and restoring online backups can be viewed as a par-
ticular case of data migration in which the source copy 
is not erased.) 

Existing approaches to data migration either take the 
data offline while it is moved, or allow the I/O resource 
consumption engendered by the migration process it-
self to interfere with foreground application accesses 
and slow them down – sometimes to unacceptable lev-
els.  The f
global, alwa
from around

night.  The latter is almost as bad, given that the pre-
dictability of information-access applications is almost 
as much a prerequisite for the success of a modern 
business as is their raw performance.  We believe there 
is a better way; this paper explores our approach to the 
problem of performing general, online data migrations 
while maintaining performance guarantees for fore-
ground loads.  

1.1. Problem formulation 
We formalize the problem as follows.  The data to be 
migrated is accessed by client applications that con-
tinue to execute in the foreground in parallel with the 
migration.  The inputs to the migration engine are (1) a 
migration plan, a sequence of data moves to rearrange 
the data placement on the system from an initial state 
to the desired final state [3], and (2) client application 
quality-of-service (QoS) demands – I/O performance 
specifications that must be met while migration takes 
place.  Highly variable service times in storage systems 
(e.g., due to unpredictable positioning delays, caching, 
and I/O request reordering) and workload fluctuations 
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on arbitrary time scales [10] make it difficult to provide 
absolute guarantees, so statistical guarantees are pref-
erable unless gross over-provisioning can be tolerated.   



The data migration problem is to complete the data 
migration in the shortest possible time that is compati-
ble with maintaining the QoS goals. 

1.2. QoS contracts 
One of the keys to the problem is a useful formaliza-
tion of the QoS goals.  We use the following.  A store 
is a logically contiguous array of bytes, such as a data-
base table or a file system; its size is typically meas-
ured in gigabytes.  Stores are accessed by streams, 
which represent I/O access patterns; each store may 
have one or multiple streams.  The granularity of a 
stream is somewhat at the whim of the definer, but 
usually corresponds to some recognizable entity such 
as an application.   

Global QoS guarantees bound the aggregate perform-
ance of I/Os from all client applications in the system, 
but do not guarantee the performance of any individual 
store or application. They are seldom sufficient for 
realistic application mixes, for access demands on dif-
ferent stores may be significantly different during mi-
gration (as shown in Sections 5 and 6).  On the other 
hand, stream-level guarantees have the opposite diffi-
culty: they can proliferate without bound, and so run 
the risk of scaling poorly due to management overhead.  

An intermediate level, and the one adopted by Aque-
duct, is to provide store-level guarantees.  (In practice, 
this has similar effects to stream-level guarantees for 
our real-life workloads because the data-gathering sys-
tem we use to generate workload characterizations cre-
ates one stream for each store by default.)  Let the av-
erage latency ALi of a store i in the workload be the 
average latency of I/Os directed to store i by client ap-
plications throughout the execution of a migration plan, 
and let the latency contract for store i be denoted LCi.  
The latency contract is expressed as a bounded average 
latency: it requires that ALi ≤ LCi for every store i. 

In practice, such QoS contract specifications may be 
derived from application requirements (e.g., based on 
the timing constraints and buffer size of a media-
streaming server), or specified by hand, or empirically 
derived from workload monitoring and measurements. 

We also monitor how often the latency bounds are vio-
lated over shorter time intervals than the entire migra-
tion, by dividing the migration into equal-sized sam-
pling periods, each of duration W. Let M be the number 
of such periods needed for a given migration. Let the 
sampled latency Li(k) of store i be its the average la-
tency in the kth sampling period, which covers the time 
interval ((k-1)W, kW) since the start of the migration.  
We define the violation fraction VRi as the fraction of 

sampling periods in which QoS contract violations 
occur: VRi = |{k:Li(k) > LCi, k = 1,...,M}| / M.  

1.3. Summary 
The main contribution of the work we report here is a 
novel, control-theoretic approach to achieving these 
requirements.  Our tool, Aqueduct, adaptively tries to 
consume as much as possible of the available system 
resources left unused by client applications while sta-
tistically avoiding QoS violations.  It does so by dy-
namically adjusting the speed of data migration to 
maintain the desired QoS goals while maximizing the 
achieved data migration rate, using periodic measure-
ments of the storage system’s performance as per-
ceived by the client applications.  It guarantees that the 
average I/O latency throughout the execution of a mi-
gration will be bounded by a pre-specified QoS con-
tract.  If desired, it could be extended straightforwardly 
to provide a bound on the number of sampling periods 
during which the QoS contract was violated – but we 
found that it did so reasonably effectively without ex-
plicitly including this requirement, and suspected that 
doing so would reduce the data migration rate achieved 
– possibly more than was beneficial.  

The focus in this paper is on providing latency guaran-
tees because (1) our early work showed that bounds on 
latency are considerably harder to enforce than bounds 
on throughput – so a technique that could bound la-
tency would have little difficulty with throughput; and 
(2) the primary beneficiaries of QoS guarantees are 
customer-facing applications, for which latency is a 
primary criterion.   

To test Aqueduct, we ran a series of experiments on a 
state-of-the-art disk array [15] connected to a high-end 
host by a FibreChannel storage area network. Aqueduct 
successfully decreased the average I/O latencies of our 
client application workloads by as much as 76% com-
pared with non-adaptive migration methods, success-
fully enforced the QoS contracts, and migrated data at 
close to the maximum speed allowed by the QoS guar-
antees.  Although the current Aqueduct prototype does 
not explicitly guarantee a bound on the violation frac-
tion VRi, we nonetheless observed values of less than 
17% in all our experiments. 

The remainder of the paper contains a description of 
the Aqueduct system and our evaluation of it.  We de-
scribe related work in Section 2, and the Aqueduct sys-
tem architecture in Section 3.  We then present the re-
sults of our experimental evaluation in Sections 4, 5 
and 6, first describing our experimental infrastructure, 
and then the results of testing Aqueduct with two work-

 



loads: one purely synthetic, and the other a real, traced 
e-mail application.  We conclude with some observa-
tions on our findings, and some suggestions for future 
work, in Section 7. 

2. Related work 
An old approach to performing backups and data relo-
cations is to do them at night, while the system is idle.  
As discussed, this does not help with many current 
applications such as e-business that require continuous 
operation and adaptation to quickly changing sys-
tem/workload conditions. The approach of bringing the 
whole (or parts of the) system offline is often impracti-
cal due to the substantial business costs it incurs.   

Perhaps surprisingly, true online migration and backup 
are still in their infancy.  But existing logical volume 
managers (e.g., the HP-UX logical volume manager, 
LVM [22], and the Veritas Volume Manager, VxVM 
[27]) have long been able to provide continuing access 
to data while it is being migrated.  This is achieved by 
creating a mirror of the data to be moved, with the new 
replica in the place where the data is to end up.  The 
mirror is then silvered – the replicas made consistent 
by bringing the new copy up to date – after which the 
original copy can be disconnected and discarded.  Aq-
ueduct uses this trick, too.  However, we are not aware 
of any existing solution that bounds the impact of mi-
gration on client applications while this is occurring in 
terms that relate to their performance goals. Although 
VxVM provides a parameter, vol_default_iodelay, that 
is used to throttle I/O operations for silvering, it is ap-
plied regardless of the state of the client application.  
High-end disk arrays (e.g., the HP Surestore Disk Ar-
ray XP512) provide restricted support for online data 
migration [14]: the source and destination devices must 
be identical Logical Units (LUs) within the same array, 
and only global, device-level QoS guarantees such as 
bounds on disk utilization are supported.  Some com-
mercial video servers [16] can re-stripe data online 
when disks fail or are added, and provide guarantees 
for the specific case of highly-sequential, predictable 
multimedia workloads.  Aqueduct does not make any 
assumptions about the nature of the foreground work-
loads, nor about the devices that comprise the storage 
subsystem; it provides device-independent, application-
level QoS guarantees.  

Existing storage management products such as the HP 
OpenView-Performance Manager [13] can detect the 
presence of performance hot spots in the storage sys-
tem when things are going wrong, and notify system 
administrators about them – but it is still up to humans 

to decide how to best solve the problem.  In particular, 
there is no automatic throttling system that might ad-
dress the root cause once it has been identified.  

Although Aqueduct eagerly uses excess system re-
sources in order to minimize the length of the migra-
tion, it is in principle possible to achieve zero impact 
on the foreground load by applying idleness-detection 
techniques [9] to migrate data only when the fore-
ground load has temporarily stopped.  Douceur and 
Bolosky [7] developed a feedback-based mechanism 
called MS Manners that improves the performance of 
important tasks by regulating the progress of low-
importance tasks. MS Manners cannot provide guaran-
tees to important tasks because it only takes as input 
feedback on the performance of the low-importance 
tasks. In contrast, Aqueduct provides performance 
guarantees to applications (i.e., the “important tasks”) 
by directly monitoring and controlling their perform-
ance.  

There has been substantial work on fair scheduling 
techniques since their inception [23].  In principle, it 
would be possible to schedule migration and fore-
ground I/Os at the volume manager level without rely-
ing on an external feedback loop.  However, real-world 
workloads are complicated and have multiple, nontriv-
ial properties such as sequentiality, temporal locality, 
self-similarity, and burstiness.  How to assign relative 
priorities to migration and foreground I/Os under these 
conditions is an open problem.  For example, a simple 
1-out-of-n scheme may work if the foreground load 
consists of random I/Os, but may cause a much higher 
than expected interference if foreground I/Os were 
highly sequential.  Furthermore, any non-adaptive 
scheme is unlikely to succeed: application behaviors 
vary greatly over time, and failures and capacity addi-
tions occur very frequently in real systems.  Fair 
scheduling based on dynamic priorities has worked 
reasonably well for CPU cycles; but priority computa-
tions remain an ad hoc craft, and the mechanical prop-
erties of disks plus the presence of large caches result 
in strong nonlinear behaviors that invalidate all but the 
most sophisticated latency predictions. 

Recently, control theory has been explored in several 
computer system projects. Li and Nahrstedt [18] util-
ized control theory to develop a feedback control loop 
to guarantee the desired network packet rate in a dis-
tributed visual tracking system. Hollot et al. [11] ap-
plied control theory to analyze a congestion control 
algorithm on IP routers. While these works apply con-
trol theory on computing systems, they focus on man-
aging the network bandwidth instead the performance 
of end servers.   

 



Feedback control architectures have also been devel-
oped for web servers [6][19] and e-mail servers [25]. In 
the area of CPU scheduling, Steere et al. [26] devel-
oped a feedback based CPU scheduler that synchronize 
the progress of consumers and supplier processes of 
buffers. In [20], scheduling algorithms based on feed-
back control were developed to provide deadline miss 
ratio guarantees to real-time applications with unpre-
dictable workloads. Although these approaches show 
clear promise, they do not guarantee I/O latencies to 
applications, nor do they address the storage subsys-
tem, which is the focus of Aqueduct. The feedback-
based web cache manager described in [21] achieves 
differentiated cache hit ratio by adaptively allocating 
storage spaces to user classes. However, they also did 
not address I/O latency or data migration in storage 
systems. 

3. Aqueduct 
The overall architecture of Aqueduct, and the way in 
which it interacts with its environment, are shown in 
Figure 1.  It takes in a QoS contract and a migration 
plan, and interacts with the storage system to migrate 
data by using the existing HP-UX LVM’s [22] primi-
tives.  As discussed above, Aqueduct relies upon the 
LVM silvering operation to achieve a move without 
having to disable client application accesses. 

Ideally, Aqueduct would be integrated with the LVM, 
so that it could directly control the rate at which data 
were moved in order to achieve its QoS guarantees.  
Alternatively, if a dynamically-alterable parameter had 
been provided to control LVM’s silvering rate (i.e., 
data movement speed), Aqueduct could have used that 
to effect its control.  Unfortunately, neither was possi-
ble for our experiments, so we resorted to a (somewhat 
crude) approximation to these more tightly-coupled 
approaches.  Fortunately, despite the overheads it im-
posed, it proved adequate to our goal of confirming the 
potential benefits of the control-feedback loop ap-
proach. 

Aqueduct divides each store into small, fixed-size sub-
stores that are migrated one at a time, in steps called 
submoves. This allows relatively fine control over the 
migration speed, as substores are relatively small: we 
chose 32MB as a reasonable compromise between man-
agement overheads and control finesse.  With LVM, 
we were forced to implement each substore as a com-
plete logical volume in its own right; unfortunately, 
this had the undesirable property that store migrations 
were visible at the application level.  (VxVM might 
have let us lift this restriction, but we did not have easy 

access to a running implementation.)  The resulting 
large numbers of logical volumes incur considerable 
LVM-related overheads.  Nonetheless, despite the 
overheads, this implementation allowed us to evaluate 
the key part of the Aqueduct architecture – the feed-
back control loop – which was the primary point of this 
exercise. 

Controller
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{Li(k)}

Rm(k)
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Figure 1 The internal structure of the Aqueduct migra-
tion executor, and its relationship to the external world. 

3.1. Feedback control loop in Aqueduct 
The Aqueduct monitor component is responsible for 
collecting the sampled latency of each store at the end 
of each sampling period, and feeding these results to 
the controller. We were able to extract this data di-
rectly from an output file periodically generated by our 
workload generation tool; but it could also have been 
obtained from other existing performance monitoring 
tools (e.g., the GlancePlus tool of HP OpenView [13]).  

The controller compares the sampled latencies for the 
time window ((k-1)W, kW) with the QoS contract, and 
computes the submove rate Rm(k) (the control input) to 
be used during the next sampling period (kW, (k+1)W). 
Intuitively, Aqueduct should slow down data migration 
when some sampled store latencies are larger than their 
corresponding contracts, and speed up data migration 
when latencies are smaller than the corresponding con-
tracts for all stores.  The controller computes the sub-
move rate based on the sampled store latencies so that 
the sampled store latencies stay close to their corre-
sponding contracts.  Aqueduct incorporates an integral 
controller, a well-studied law in control theory [8]; 
integral controllers are typically robust in the presence 
of a wide range of workload variations.  It operates as 
follows: 

1) For each store i (0 ≤ i < N) in the system, compute 
its error 
 Ei(k) = P∗LCi - Li(k),  

 



where P (0 < P < 1) is a configurable parameter, 
and P∗LCi is called the reference in control theory.  
More negative values of Ei(k) represent larger la-
tency violations. 

2) Find the smallest (i.e., potentially most negative) 
error Emin(k) among all stores: 
  Emin(k) = min{Ei(k)| 0 ≤ i < N};  
thus taking account of the worst contract violation 
observed.  

3) Compute the submove-rate according to the inte-
gral control function (K is another configurable pa-
rameter of the controller): 

  Rm(k) = Rm(k-1) + K∗Emin(k); 

4) Notify the actuator of the new submove rate Rm(k). 

Because the control input Rm(k) is computed from the 
Ei(k) corresponding to the worst violation, it forces the 
system to satisfy its latency goals by arranging for Emin 
to converge to zero.  Thanks to random workload 
variations, store I/O latencies will typically oscillate 
around the reference value, so instead of choosing the 
actual latency target LCi as the reference, the controller 
uses a slightly smaller target: P∗LCi.  The value of P is 
related to the burstiness of the workload: the more 
bursty a workload is, the smaller P should be, to give 
the controller enough leeway to avoid contract viola-
tions. On the other hand, overly small values of P will 
result in an overly conservative controller, and there-
fore slow down migration.  In our experiments, we 
observed that a P between 0.8 and 0.9 was sufficient to 
achieve satisfactory violation fractions for significantly 
different workloads. 

Parameter K needs to be tuned to achieve stability (i.e., 
to prevent the submove rate and sampled latencies 
from oscillating excessively) and short settling time 
(i.e., fast convergence of the output to the reference).  
This can be done using systematic, standard control 
theory techniques.  An example is provided in Section 
5.1.  A similar tuning method was described in detail, 
and applied to a real-time CPU scheduler in [20].  Aq-
ueduct could be extended in a fairly straightforward 
way to set (and adjust) K automatically, using an on-
line estimation of the gain [5] in order to handle differ-
ent categories of workloads without the need for pre-
computed parameter values.  

The last module in Figure 1 is the actuator.  It executes 
a migration plan at the submove rate computed by the 
controller. During the sampling period (kW, (k+1)W), 
the actuator enforces the submove rate Rm(k) by sleep-
ing for (W/Rm(k) - Tj) time units between the end of 
submove j and the start of the next, where Tj is the time 
it took to complete submove j. 

4. Experiment overview 
We evaluated the performance of Aqueduct in our stor-
age area network, using both a synthetic workload and 
an I/O trace from a production e-mail server.   

The hardware used for our tests includes an HP FC-60 
disk array [15] with 512 MB of cache, two redundant 
controllers, and six disk enclosures with 5 disks each, 
for a total unprotected capacity of 1.05TB.  All LUs in 
the array were 6-disk RAID-5s with 16-KB stripe units.  
The FC-60 array was connected to a Brocade Silkworm 
2800 switch via two 1Gb/s Fibre Channel links. Both 
Aqueduct and the load generators ran on the same HP 
9000-N4000 server, which has eight 440 MHz PA-
RISC 8500 processors and 16GB of RAM. The host ran 
the HP-UX 11.0 operating system.  We used our own 
workload-generation tool, Buttress, which is capable of 
generating synthetic workloads and replaying an exist-
ing I/O trace with very high fidelity. 

We compared Aqueduct against two baselines:  

• Whole-store, moves a whole store in each step as 
fast as possible, with no delays between store-
moves; stores are not divided into smaller sub-
stores.  This is designed to reflect what a system 
administrator would do when migrating data by 
hand or by running simple scripts. 

• Sub-store is similar to Whole-store, but divides 
each store into substores and performs each move 
as a sequence of submoves. It is a fairer baseline 
for comparison with Aqueduct because it uses the 
same number of logical volumes (substores) and 
hence incurs similar amounts of LVM overhead.  

In these experiments, all stores were given the same 
latency contract, LC = 10 ms, and we always used a 
sampling period (W), of 60 seconds, and a substore size 
of 32MB. The following table lists the configurable 
parameters we used for the two workloads: 
   

 Synthetic OpenMail  

K 1.09 0.36 
P 0.90 0.80 

Since the OpenMail workload is more sensitive to 
changes in the submove rate than the synthetic work-
load, we tuned K to be smaller for the OpenMail work-
load based on control theory (described in Section 5.1).  
We found that the first value we tried for P (0.9) was 
adequate for the synthetic workload, but not for 
OpenMail—the second trial for OpenMail resulted in 
the final, slightly smaller P = 0.8. This was not unex-
pected, as OpenMail is more bursty than our deliber-
ately well-behaved synthetic workload. 

 



We define the victim latency VL(k) as the highest sam-
pled latency of all stores in the kth sampling period, i.e., 
VL(k) = max{Li(k): 0 ≤ i < N}. In this special case in 
which all stores share a same latency contract LC, all 
stores satisfy their contracts if and only if the victim 
latency stays lower than the contract. Similarly, the 
average victim latency AVL is the average of the values 
of VL(k) over all M sampling periods during the migra-
tion.  AVL reflects the “correctness” of the migration 
speed. Ideally, AVL should be close to the latency con-
tract. If AVL > LC, the migration runs too fast and 
causes excessive contract violations. On the other hand, 
if AVL < LC, the migration could have run faster with-
out violating the latency contract. 

5. Synthetic workload experiments 
Figure 2 illustrates the initial state and the migrations 
that were effected in this test.  The synthetic workload 
is composed of multiple streams with fixed, identical 
parameters, and tests Aqueduct in the presence of de-
liberately steady workloads.  We configured two LVM 
volume groups, aq0 and aq1. All stores are 640 MB in 
size, and are therefore divided into 20 substores each. 
Group aq0 contains six stores.  In the initial assign-
ment, three of them (the migrate-stores M0, M1, M2) 
are mapped onto logical unit LU1 of the disk array; the 
remaining three stores of aq0 (the fixed-stores F0, F1, 
F2) are in another logical unit LU0. 

These experiments emulate the following use scenario: 
assume that we find that LU1 is likely to fail (e.g., by 
using system monitoring tools such as [17]), so we 
want to move the migrate-stores in LU1 to a new logi-
cal unit LU3.  Hence, the migrate- and the fixed-stores 
belong to the same LVM volume group.  We hypothe-
sized that stores contained within the same volume 
group where data is being migrated would suffer some 
performance penalty from LVM overhead, even if they 
were not being migrated.  To test that assumption, we 
created group aq1 on LU2, whose stores (the alone-
stores A0, A1, A2) should not be affected because they 
are totally separate from aq0.   

To generate the workload from the client applications, 
we simulated the file system workload described in [2] 
by issuing two synthetic streams on each store. Each 
stream has a Poisson arrival process, 16KB request 
size, with a run count of 3 (this is the average number 
of consecutive I/O requests performed on consecutive 
addresses), 64% of the requests are reads, and the re-
quest rate is 32/second. 

F0 F1 F2

M0 M1 M2

A0 A1 A2

LU1

LU0

LU3

LU2

Volume group aq0 Volume group aq1

FC-60 disk array

 
Figure 2 Placement of stores on disk array logical 
units for the synthetic workload, and the migration that 
was performed. 

5.1. Tuning K 
We demonstrate here how the parameter K was se-
lected for the synthetic workload using the Root-Locus 
design technique [8].  The controlled system includes 
the storage system, the monitor, and the actuator. The 
output is the victim latency VL(k+1), i.e., the sampled 
latency of the store with the smallest error Emin(k+1) in 
the sampling period (kW, (k+1)W).  The input to the 
controlled system is the submove rate Rm(k) in the 
sampling period (kW, (k+1)W). (Rm(k) instead of 
Rm(k+1) is used to denote the submove rate in (kW, 
(k+1)W) because the controller outputs Rm(k) at time 
kW instead of (k+1)W). In our design, we approximate 
the controlled system with the following linear model:  

))1()(()()1( −−=−+ kRkRGkVLkVL mm
 (1) 

The process gain, G, is the derivative of the output 
VL(k+1) with respect to the input Rm(k). G represents 
the sensitivity of the victim latency with regard to the 
change in submove rate.  We approximate G by 
running a set of system profiling experiments. In each 
run, migration is performed at a fixed submove rate, 
and different submove rates are used in different runs. 
The average victim latencies observed throughout 
migration for different submove rates are plotted in 
Figure 3. Using linear regression, we estimate that G = 
1.12 with an R2 of 99% for the synthetic workload. 

We now transform the controlled system model into 
the z-domain, which is amenable to control analysis. 
The controlled system model in Equation 1 is 
equivalent to the following transfer function from Rm(z) 
to VL(z) in z-domain: H(z) = G∗z-1.  The integral 
controller is transformed to the following transfer 
function from the minimum error Emin(z) to the 
submove rate, Rm(z), in the z-domain:C .  ( ) )1/( −= zKzz

It follows that the whole feedback control system 
composed of the controlled system and the integral 
controller is modeled as the following transfer function 
from the reference to the victim latency:  
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Assume that all the stores share a common contract 
P∗LC, the z-transform of the victim latency is:  
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6

8

10

12

14

16

0 1 2 3 4 5 6 7

Submove Rate

A
ve

ra
ge

 V
ic

tim
 L

at
en

cy
 (m

s)

Openmail Synthetic

Linear (Openmail) Linear (Synthetic)

 

y = 1.12x + 7.55
R2 = 0.99

Figure 3 Victim latency as a function of submove rate 
for the synthetic workload and openmail workload. 

Given the dynamic model of the closed loop system, 
we tune the control parameter K analytically using lin-
ear control theory [8], which states that the perform-
ance of a system depends on the poles of its closed 
loop transfer function. Since the closed loop transfer 
function (Equation 2) of Aqueduct has a single pole p = 
1-KG, we can set p to the desired value by choosing the 
right value of K. The sufficient and necessary condition 
for Aqueduct to guarantee stability is: |p| < 1 ⇔ 0 < K 
< 2/G.  The settling time represents the time it takes to 
converge the victim latency to the reference. A smaller 
settling time leads to a faster response to workload 
variations. The settling time is determined by the 
damping ratio of the closed loop system. A larger G 
(e.g., in a workload whose latency is more sensitive to 
the submove rate) needs a smaller K to get the same 
pole and achieve the same level of stability and settling 
time. Using the root-locus method, we set p = -0.22 by 
choosing K = (1-p)/G = 1.09 to guarantee stability and 
a short settling time.  The OpenMail has a larger gain 
than the synthetic workload, so it benefits from a lower 
value of K. 

5.2. Experimental results 
We now explore the results of applying Aqueduct to 
migrating data that is being accessed by the synthetic 
workload. 

The sampled latencies of store M0 in typical runs of 
Aqueduct and the baselines are illustrated in 0.  (We 
pick M0 because it is the store most affected by migra-
tion, as shown in Figure 6.) Whole-store causes long 
latencies throughout migration; latencies are especially 
severe near the end of the migration when they jump to 
25.17 ms. This is because near the end of the migra-
tion, more application I/Os target at the new logical 
unit, LU3, and contend more severely with Whole-
store which writes into LU3 in parallel. Interestingly, 
in the beginning of migration, more application I/Os 
target at the replaced logical unit LU1 and contend 
with Whole-store which reads data from LU1, but the 
impact of migration on latencies is less severe. This is 
because writes are more expensive than reads on 
RAID5 (especially if they are small, as done by LVM 
when silvering), and therefore migration consumes 
more resources on LU3 than on LU1. Although Whole-
store completes data migration within the shortest time, 
it violates the latency contract (10 ms) throughout the 
data migration period.  
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Figure 4 Data from three typical runs in the synthetic 
workload experiments, showing foreground application 
I/O latency on store M0 during the execution of the Aq-
ueduct, Sub-store, and Whole-store migration algo-
rithms. 

Sub-store migrates data more slowly, and with smaller 
impact on client applications, than Whole-store. How-
ever, the latency contracts are still violated in most 
sampling periods. Since neither Sub-store nor Whole-
store sleeps between subsequent (sub)moves, we at-
tribute the difference between their migration times and 
interference on client applications to the overhead of 
managing large number of logical volumes in Sub-
store—which is slowed down by this effect. 

In comparison, in the case of Aqueduct, the latency of 
M0 stays below the latency contract in most of the 
sampling periods. This result demonstrates that Aque-
duct effectively reduces migration’s impact on client 
applications. Note that the latency of M0 stays close to 

 



the contract latency. This indicates that, although Aq-
ueduct has a longer migration time than the baselines, 
it achieves a submove rate that is close to the maxi-
mum allowed by the QoS contract.   

To demonstrate the quality of control by Aqueduct, we 
plot the traces of sampled latency on M0 and submove 
rate (the control input) during the same sample run. We 
can see that Aqueduct effectively keeps latency close 
to the reference (9 ms) by dynamically adapting the 
submove rate—peaks and valleys are strongly corre-
lated in the two curves. Furthermore, Aqueduct 
achieves satisfactory stability because it does not cause 
excessive oscillation in submove rate or latency 
throughout the run. 
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Figure 5 Foreground application latency on store M0 
during a sample Aqueduct migration, together with a 
plot of the rate at which sub-stores were being moved 
(in moves per minute). 

5.3. QoS guarantees 
We now evaluate how Aqueduct provides QoS guaran-
tees for the synthetic workload. Every data point pre-
sented in this section and Section 5.4 is the mean of 5 
repeated runs. We also report the 90% confidence in-
tervals for every data point.  
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Figure 6 Average application I/O latencies in the syn-
thetic workload experiments. 

The average latencies for Aqueduct and the baselines 
are illustrated in Figure 6.  The latencies of the alone-
stores and the fixed-stores are similar, and therefore the 
impacts of LVM overhead on fixed-stores are negligi-
ble. Migration has negligible impacts on the average 
latencies of the fixed-stores or the alone-stores with all 
migration methods. However, different migration 
methods perform differently on the migrated stores. In 

particular, Whole-store achieves an average latency on 
M0 of 16.4 (±0.5) ms,, which is 80% higher than Aq-
ueduct’s 9.1 (±0.4) ms. Similarly, Sub-store achieves 
an average latency of 12.2 (±0.9) ms, or 34% higher 
than Aqueduct. More importantly, Aqueduct’s average 
latencies of all stores are lower than the latency con-
tract of 10 ms, while the average latencies of Sub-store 
and Whole-store are higher than the contract in two and 
three migrate-stores, respectively.  
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Figure 7 Contract violation fractions in the synthetic 
workload experiments. 

The contract violation fractions for the synthetic work-
load are shown in Figure 7. Whole-store violates the 
latency contract in all sampling periods during migra-
tion. While Sub-store achieves a lower contract viola-
tion fraction due to LVM overheads in data migration, 
it still causes a much higher violation fraction than 
Aqueduct. In particular, Sub-store violates the latency 
contract in 70% (±0%) of all sampling periods during 
migration, while Aqueduct only violates 17% (±5%) of 
all sampling periods. The contract violation fraction is 
important because a lower value means that client ap-
plications suffer violations less frequently and hence 
the storage service has more acceptable performance. 

5.4. Migration efficiency 
As expected, Aqueduct provides QoS guarantee to ap-
plications at the expense of slowing down data migra-
tion. Figure 8a shows that it takes Aqueduct 1219 
(±43) sec on average to complete the migration plan, 
while Sub-store only needs 556 (±3) sec. Sub-store 
migrates data more slowly than Whole-store due to the 
LVM overhead. 
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Figure 8 Migration times in synthetic workload ex-
periments.  

 



In order to determine whether Aqueduct achieves the 
maximum speed allowed by the QoS contracts, we look 
at average victim latencies. The rationale is that, to 
guarantee that no stores violate the latency contract, the 
victim latency must be the same or lower than the la-
tency contract, i.e., the latency contract must be an up-
per bound on the victim latency.  Figure 8b shows that 
Aqueduct achieves an average victim latency of 9.30 
(±0.46) ms, which is only 7% lower than the latency 
contract. Given that the average submove rate is below 
3 submoves/min., even an increase of 1 submove/min. 
in the control input would result in service contract 
violations. This result shows that Aqueduct’s bound is 
tight: Aqueduct is not overly conservative, and it 
achieves a migration speed close to the maximum that 
is possible given the constraint of providing latency 
guarantees. In addition, note that the average victim 
latency is close to the actual reference to the controller 
(P*LC = 9 ms), which shows that the controller cor-
rectly enforces the reference. 

In summary, the synthetic-workload experiments dem-
onstrate that Aqueduct can effectively provide latency 
guarantees to applications having steady, regular access 
patterns, while performing online data migration effi-
ciently. Aqueduct guarantees the average latencies of 
all stores to be lower than the latency contract, and 
achieves a contract violation fraction of no more than 
17%. For the same migration plan, Whole-store and 
Sub-store cause average latencies higher than the la-
tency contract in migrated-stores and contract viola-
tions as high as 100% and 70%, respectively. In term 
of migration efficiency, Aqueduct achieves a migration 
speed close to the maximum allowed by the latency 
contract.  

6. OpenMail experiments 
The OpenMail workload was originally gathered by 
tracing an e-mail server running HP OpenMail [12]. 
The original workload trace was collected on an HP 
9000 K580 server system with an I/O subsystem com-
prised of four EMC Symmetrix 3700 disk arrays.  The 
server was sized to support a maximum of about 4500 
users, although only about 1400 users were actively 
accessing their email during the trace collection period, 
which corresponded to the server’s busiest hour of the 
day.  The majority of accesses in the trace are to the 
640 GB message store, which is striped uniformly 
across all of the arrays.  

In order to create a trace comparable to our syntheti-
cally generated workloads, we replayed the portion of 
the original trace corresponding to a single representa-

tive array on our FC-60 array. Since the LVM on HP-
UX 11.0 has a limitation that each volume group can 
contain at most 255 logical volumes, and each logical 
volume corresponds to one substore (32 MB each) in 
our current Aqueduct prototype, we shrank the sizes of 
the corresponding stores proportionally to a total size 
of 3.8 GB to fit them into one volume group. (This size 
limitation can be fixed by a future Aqueduct 
implementation with modifications on the LVM.)  

This workload has significantly more complex behav-
iors than our synthetic one. The OpenMail system be-
ing traced kept a small amount of metadata (an index 
table) at the beginning of the message store’s address 
space, and filled up the remainder with e-mail mes-
sages. For each email retrieval request from a user, or 
on each incoming email, the server accesses the initial 
index table and then jumps to actually access the mes-
sage, to a random location uniformly distributed across 
the upper portion of the store. Consequently, the small 
amount of metadata becomes a hotspot that gets ac-
cessed much more frequently than the other data. 

LU1

Volume group aq0

FC-60 disk array

LU0

tiny0 big0 tiny1 big1

 
Figure 9 Store migration plan for the OpenMail work-
load. 

We create one volume group, aq0, which includes 4 
stores called tiny0, tiny1, big0, and big1, respectively. 
tiny0 and tiny1 are 96 MB each, and big0 and big1 are 
1854 MB each. In the initial assignment, all the stores 
are located on a single logical unit LU0.  

The OpenMail experiments emulate a LU-addition 
scenario. We model the case of wanting to increase the 
server capacity by adding a new Logical Unit, LU1, to 
the array. To make use of the new LU, we migrate two 
stores, tiny0 and big0, from LU0 to LU1.   

Similarly to the synthetic workload, we approximate 
the process gain, G, for the openmail workload with a 
set of system profiling experiments. In each run, 
migration is performed at a fixed submove rate, and 
different submove rates are used in different runs. The 
average victim latencies observed throughout migration 

 



for different submove rates are plotted in Figure 3. 
Using linear regression, we estimate that G = 1.41 with 
an R2 of 98% for the openmail workload. Compared 
with the synthetoc workload, the process gain of the 
openmail workload larger. This result means that 
openmail is more senstive to the impacts of migration 
and therefor a smaller K is needed. In our experiments 
we set K = 0.36 (corresponding to a pole p = 0.49) to 
guarantee stability and a short settling time for the 
openmail workload.  
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Figure 10 Sampled latency for the OpenMail work-
load during migration. 
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Figure 11 Sampled latency and substore move rate 
(in moves per minute) of Aqueduct for a typical migra-
tion of the OpenMail workload. 

The sampled latencies of store big0 in typical runs of 
Aqueduct and the baselines are illustrated in Figure 10.  
Both Whole-store and Sub-Store cause extremely long 
latencies on big0 and violate the latency contract 
throughout migration. In comparison, with Aqueduct, 
big0’s latencies stay below the latency contract (10 ms) 
in most sampling periods. Figure 11 shows the traces 
of sampled latency on big0 and submove rate during 
the same sample run. Aqueduct effectively keeps la-
tency close to the reference (8 ms) by dynamically 
adapting the submove rate without causing excessive 
oscillation. 

In the following subsections, we present the detailed 
evaluation results of Aqueduct in the OpenMail ex-
periments. Every data point presented in this section is 
the mean of five repeated runs. The 90% confidence 
intervals are also plotted. 
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Figure 12 Average application I/O latencies during 
migrations for the OpenMail workload. 

6.1. QoS guarantees 
The average latencies in the OpenMail experiments are 
shown in Figure 12. The OpenMail application is much 
more sensitive to data migration overheads than the 
synthetic workload.  For example, Sub-store increases 
the average latencies of accesses to the migrated-stores, 
big0 and tiny0, to 18.74 (±0.92) ms and 22.46 (±0.81) 
ms – which are 87% and 125% higher than the latency 
contract (10 ms), respectively. In comparison, Aque-
duct achieves an average latency no higher than 7.70 
(±0.36) ms, or 23% lower than the contract in all 
stores. This result demonstrates the efficacy of Aque-
duct in applications that are very vulnerable to online 
data migrations.  
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Figure 13 Cumulative distribution of I/O times during 
data migration by the three different schemes for the 
OpenMail workload, across the entire workload.  Aque-
duct has the smallest impact on the I/O request laten-
cies.  The “before” and “after” values on this plot are for 
the sub-store case, but the differences with the other 
alternatives are almost too small to show. Note the log 
scale on the x-axis. 

A study of the distribution of I/O request latencies dur-
ing a migration (Figure 13) shows that the effect of 
Aqueduct is to reduce the number of requests that suf-
fer significantly longer I/O times: application I/Os 
queued behind a data migration operation result in 
large delays. 

The contract violation fractions for the different migra-
tion algorithms are shown in Figure 14.  Aqueduct sig-

 



nificantly reduces the contract violation fractions of the 
migrated stores, big0 and tiny0. For example, the con-
tract violation fraction of tiny0 is reduced from 98% 
with Sub-store to only 7% with Aqueduct. Thus, Sub-
store causes applications to suffer contract violations in 
almost every sampling period during data migration, 
while contract violations rarely occur with Aqueduct. 
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Figure 14 Contract violation fractions in OpenMail 
experiments. 

6.2. Migration efficiency 
As shown in Figure 15a, Aqueduct increases the migra-
tion time more significantly in the case of OpenMail 
than in the case of the synthetic workload. Because 
OpenMail is affected more severely by migration, Aq-
ueduct is forced to perform migration more slowly.  

The average victim latency (see Figure 15b) of Aque-
duct is 8.46 (±0.31) ms, or 15% lower than the latency 
contract. Again, the migration speed is close to the 
maximum speed allowed by the latency contract. We 
also note that the average victim latency is within 6% 
of the reference (8 ms), which shows that the Aqueduct 
controller is able to successfully track the control refer-
ence even in the presence of bursty workloads such as 
OpenMail. 

In summary, the OpenMail experiments demonstrate 
that Aqueduct provides latency guarantee to real-world 
applications that are especially sensitive to migration. 
In particular, Aqueduct meets its QoS guarantees, and 
achieves an average victim latency that is only 15% 
below the latency contract. As in the synthetic experi-
ments, Aqueduct performs migration at a speed close to 
the maximum allowed by the latency contract.  

Aqueduct Sub-store Whole-store
0

5

10

15

20

25

30

35

40

A
ve

ra
ge

 V
ic

tim
 L

at
en

cy
 (

m
s)

(b) Average Victim Latency  
Figure 15 Migration time in OpenMail experiments. 

7. Conclusions and future work 
We have developed Aqueduct, an online data migration 
architecture that provides QoS guarantees to client ap-
plications. Aqueduct features a feedback control loop 
that dynamically adapts migration speed to maintain 
performance guarantees in the presence of workload 
and system variations.  

We evaluated a prototype on a real storage system, 
using a high-end host and disk arrays similar to the 
ones used in large enterprise installations.  Our experi-
ments show that Aqueduct successfully provides QoS 
guarantees in term of bounded average latencies, while 
causing only a small percentage of contract violations. 
Aqueduct reduces the average I/O latency experienced 
by client applications by as much as 76% with respect 
to the traditional method: while accesses to a store in 
an e-mail server have an average I/O latency of 32.6 
ms while a non-adaptive migration is in progress, ac-
cesses to the same store have an average latency of 
only 7.7 ms with Aqueduct. Aqueduct also reduces the 
violation fraction from 100% to only 12%. Further-
more, Aqueduct performs data migration very close to 
the maximum speed allowed by the latency contract, as 
evidenced by the small slack of only 15% between the 
average victim latency and the latency contract.  

Potential future work items include a more general 
implementation that interacts with performance moni-
toring tools, developing a low overhead mechanism for 
finer-grain control of the migration speed, making the 
controller self-tuning to handle different categories of 
workloads, and implementing a new control loop that 
can simultaneously bound latencies and violation frac-
tions. 
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