FAB: enterprise storage systems on a shoestring

Svend Frglund, Arif Merchant, Yasushi Saito, Susan Spence and Alistair Veitch
Storage Systems Department, Hewlett-Packard Laboratories, Palo Alto, CA
{frolund,arif,ysaito,suspence,avei{@hpl.hp.com

Abstract—A Federated Array of Bricks (FAB) is a log- very small to very large systems. FAB achieves this by
ical disk system that provides the reliability and perfor- composing together storadwicks where each brick is
mance of enterprise-class disk arrays, at a fraction of tha small rack-mounted storage appliance built from com-
cost and with better scalability. The unit of deployment modity components including disks, a CPU, NVRAM, and
in FAB is abrick, a small rack-mounted storage appli- network cards. FAB systems cost much less than disk ar-
ance built from commodity components including disks, arays to manufacture and develop, due to the economies
CPU, NVRAM, and network cards. Bricks federate them-of scale inherent in volume production, and because FAB
selves in a completely decentralized manner to providean replace entire array product lines (amortizing devel-
users with a set of logical volumes. This paper motivatesopment costs). Because of these factors, we anticipate that
FAB and introduces our data replication algorithm baseda FAB system can be built for far less than the equiva-
on majority-voting. We argue that majority voting is prac- lent high-end system. FAB provides comparable reliabil-
tical for ultra-reliable, high-throughput storage systemsity, achieved through replication: we store the same disk
like FAB, and present several techniques that improve botlblock on multiple bricks, and we create redundant paths

the performance and space overhead of our protocol.  between all components of the system. FAB performance
scales by completely distributing all functionality (no cen-
1 Introduction tralized bottlenecks) across the set of available bricks.

Disk arrays are today’s standard solution for enterprise-l'l FAB: challenges and overview of solutions

class storage systems. The key requirement that separai@g, paye identified the following key challenges to build-
disk arrays from consumer-class storage systems is theﬁr]g a large, completely distributed storage system:
absolute reliability: a disk array must never lose data or

stop serving data, under any circumstances short of com- . ) )

plete disaster. To fulfill this requirement, disk arrays areFailure tolere_mce: FAB 'S_b_u”t from commodity hard-
constructed from customized, very reliable, hot swappable ware, which has empirically been found to ,be less
hardware components. Designing and building the hard- 'eliable than the hardware used for enterprise sys-
ware components is time-consuming and expensive, and €Ms [3L.2]. Every component—disks, bricks, networks
this, coupled with relatively low manufacturing volumes, ~ can and will fail. FAB must seamlessly handle fail-
is a major factor in the high price of storage systems— ures without data loss or delays in response to client
high-end arrays retail for many millions of dollars. requests.

Another cost factor, and problem for customers, is the lackSingle-copy consistencyWe must ensure that a repli-
of scalability of a single system. There is a high up-front cated disk block logically looks like a single, highly
cost for even a minimally configured array, and a single available block to the client, even though there is no
system is limited in both capacity and throughput. Many centralized software that oversees the 1/O activities of
customers exceed these limits, resulting in poor perfor- the entire system.

mance or a requirement to purchase multiple systems, both o )

of which increase management costs. The lack of scalgSynchronous coordination: We cannot rely on disks
bility forces manufacturers to build multiple products, or ~@nd operating systems to always act in a timely
even entire product lines, each targetted at different sys- Manner—e.g., an l/O request to a busy disk is known to
tem scales. For example, Hewlett-Packard sells three dif- SOMetimes take more than 5 seconds to complete (i.e.,
ferent array lines, each of which effectively multiplies the ~ Stuttéring failures). Thus, we must coordinate replicas
engineering effort required — for hardware and firmware ~Without any assumptions about their speed or network
development, for integration and testing, etc, costs which CONnectivity.

are reflected in the price paid for each system. Hardware heterogeneity: As disk and CPU technologies

A Federated Array of Bricks (FAB) is a low-cost alterna-  evolve over time, the design of bricks will also evolve.
tive to disk arrays, and is designed to be scalable from We must let customers deploy different types of bricks



incrementally as their demand grows. FAB must assign
resources to volumes in a way that maximizes overall
performance and reliability.

GigE/isCsI
FAB uses a quorum-based replication scheme, as de-

scribed in Sectiofi]3, to address the first three challenges.
In FAB, a “read” or “write” request completes when a ma-
jority of the replicas are functional. We recover from fail-
ures lazily, repairing the replicas during the next “read” re-

quest without any lock-step synchronization. Our prOtocmFigure 1: A typical FAB structure. Client computers connect

qoes not rely on failure detection—it just Igr'lores.dysfunlc—to the FAB bricks using standard protocols. Clients can issue
tlonal components. IT[ jtole_rates non-Byz_antlne_ failures, In'requests to any brick to access any logical volume. The bricks
cluding neMork partltlonln_g and stuttering failures. F_AB communicate among themselves using our replication protocol.
uses dynamic load balancing and background reconfigura-

tion, as discussed further in Sectjdn 4, to address the fourth

challenge. replicas. However, Thomas’ protocol only guarantees con-
vergence, which is too weak for a distributed logical disk.

1.2 Related work FAB guarantees linearizability[7]. Several state-machine

replication algorithms, such as Paxas [9], use majority vot-

d tralized collect f I ; ~ ing to achieve a total order for requests. Our replication
ecentralized coliection ot Smafler components was plo'protocol exploits the semantics of read and write opera-

neered by DataMesh[13] and Peta[][10]. FAB eXtends{ions to achieve the same thing in fewer rounds, using less

Petal's |dea_s with be.“e“ repllca,tlon, volume Iayqut, f'mdspace. Messaging-based atomic register algorithms [4, 11]
load palancmg algorithms. IE.’M s IceCubid [8] builds in- resemble our algorithm the most; they use majority voting

novative hardware for a FAB._"ke composable storage SYSand exploit read and write operation semantics. These al-
tem, but we do not know their software structure yet. gorithms, however, require more rounds (especially in the

Many high-throughput data systems, including Petal anc&common case) than ours and lack support for process re-
most relational database systems, use some form afovery.

primary-backup replication. They fail to solve the chal-

lenges outlined in the previous section. In these systemsz Structure of FAB

a failure of the primary renders its data unavailable un-
til a new primary is elected. The actual fail-over time in

these systems can be quite substantial. Having too sho

igE/FAB protocol

/
|
|
|
|
|
|
|
|
|
|
|
N

The idea of building a distributed logical disk from a

Figure[] shows the structure of FAB. Client systems con-

. . . - Rect to FAB bricks using standard protocols such as Fibre
a fail-over time increases the chances of electing a nevgy,anne| or iSCSI. Bricks are connected to each other us-
primary before _the old primary has actually failed, Conse'ing standard local-area networks, such as 1 Gbps Ethernet.
guences Of. which range from severe performance degralfAB presents the clients with a number of logical volumes,
dation (as in some group membership protocols) to OUtsach of which may be accessed transparently as if it were

right data corruption (as in a e timeout-based failure a single disk. Since FAB is a decentralized system with-

detection _scheme). Thus, in prgct|ce, the-se Systems mugl; 4 central management node, a client can ask any brick
conservatively choose a large fail-over period, often longeg, e ate resize, or access a logical volume. Bricks use

than 30 seconds, which actually causes the clients to timg . |0 protocol, described in the next section, to coor-

out. dinate among themselves and provide a consistent view of
The goal of[1] is to allow clients of a storage-area networkvolumes. A single FAB system is anticipated to contain up
to directly execute RAID encodings across distributedto 5000 bricks with a logical capacity of 2 petabytes.
storage devices. This algorithm relies on the ability OfFAB internally splits each logical volume into fixed-size

clients to accurately det_ecp the failure of storage dev'cessegmentsEach segment contains a numbebiafcks the
Moreover, the algorithm in[1] can result in data loss when

. Sl ) . . minimum unit of access. The segment size and block size
certain combinations of client and device failures occur. In&

laorith | he simul efault to 8GB and 1KB, respectively. A number of seg-
contrast, our algorithm can tolerate the simultaneous crasf) . i< are gathered intwoups Each group is replicated

of all bricks, and it can make progress Wheneveramajorityover several bricks (three by default: see below), chosen
recover and are able to communicate. randomly out of the set of bricks with available space.
Numerous replication protocols use majority voting. TheThe use of segments and groups enables efficient meta-
protocol by Thomad [12] is similar to ours in that it uses data management; segments are used in layout manage-
timestamps to order “write” requests against a majority ofment and groups for replication and availability.



| Failure-free | Recovery from |
execution a coordinator failure

X
ReplicaSI Yy SN S
z P '

Coord-TC, ~ V24
inators L C, -/ Lk B
ey (@) 3)

(6) @)
Timeline >

Figure 2: In this example, a disk block is replicated on three bricksy, andZ. Two coordinatorsC; andCy, issue requests to the
replicas. The first scenario (steps 1 to 3) shows a failure-free execution. @riekites to the block in two rounds. In thgrewrite

round, the replicas update théigTs to indicate a new ongoing update and promise not to accept any request older than this request.
In thewrite round, the replicas actually write the new value to their disks andstisndicate that the update is complete. In step (3),
nodeC, reads blocks from a majority dfX,Y,Z}, discovers that the block contents are consistent and finishes (in pr&ticsads

the block value from only one replica; see Secfior} 3.1.) The second scenario (steps 4 to 7) showspswriteround is needed.

Here,C; tries to write, but crashes just after sending pewriteto onlyY. Later, while trying to readZ, discovers thats#logTs on

Y; i.e., the replicas are inconsistent because of an incomplete write reQgasins therepair round in step (6) on a majority of the
replicas to discover the newest value, and writes it back to (at least) the majority of the nodes in step (7), so that future requests will
never read older values.

Each brick internally runs three software modules:abe  puted a MTTDL of 1.3 million years and a mean unavail-
ordinator module that receives client requests and coordi-ability of 3 x 10-6% (1 second/year), which is acceptable.
nates disk read or write requests on behalf of clients, thdased on these considerations, we chose 3-way replica-
block-managemenmnodule that actually reads and writes tion as the default policy, but we also allow administrators
disk blocks, and thesonfiguration-managememhodule  to choose other replication factors.

that oversees administrative changes. The next section de:'reating three replicas for each logical block sounds ex-
scribes the interaction between the coordinator and bloc bensive, but is only 33% more capacity intensive than

management modules. . The configuration-manageme AID-10; and FAB systems are build from cheaper com-

modulg uses the Eaxo; dlst_r|buted CONSensus algotithm [ onents than existing high-end disk arrays, which reduces
to. replicate cpnf_lguratlon information—e.g., the set Ofthe cost substantially. In Sectiph 5, we discuss our plan
bricks that exist in the system, and the name and IayoultO use “witness” replicas to reduce the effective storage

of logical \{o_lumes—pn all _b”CkS' We plan to '”Ves“ga‘e consumption, while maintaining an acceptable level of re-
a more efficient configuration management scheme in thﬁability

future.

The choice of a redundancy scheme to provide high re3 The FAB replica-management protocol
liability at an acceptable cost is an important considera-

tion for FAB. We considered erasure coding and replica-This section describes FAB'’s approach to replica consis-
tion. Erasure coding has high space efficiency and highency. We first introduce the basic protocol for maintain-
reliability, but poor performance when bricks fail (reads ing replicated blocks. Later sections describe performance
access multiple bricks and writes require a read befor@ptimizations and extensions to optimize the system'’s per-
writing). Instead, FAB uses replication of data acrossformance and memory consumption.

multiple bricks to overcome brick failures. We compared
the reliability of 2-way and 3-way replication schemes by

computing their mean unavailability and MTTDL — the ery brick can act as a disk array controller). FAB runs

mean tlme,_startmg from a system with no failures, thata variation of a timestamp-based majority-voting proto-
some data is lost. We used component failure rates from

Asami [3] and assumed that data is lost when all bricks;?éc[)%i]r'e-rgi:élr!g edt?;IS[S?f the protocol and a correctness
holding replicas of any segment fail. We considered a FAB '

system of 256 bricks; each brick uses RAID-5 across 1Figure[2 shows an example. The task of the coordinator is
SATA disks holding replicas of 128 data segments. Eactstraightforward in theory: when writing, it generates a new
segment group contains 32 segments. For 2-way replicdimestamp and writes the value and timestamp to the ma-
tion, we estimated a MTTDL of 267 years and a mean unjority of replicas; when reading, it reads from the majority

availability of 0.02% (1.8 hours/year) which is inadequateand returns the value with the newest timestamp.
for critical applications. For 3-way replication, we com- The fajlure of the coordinator itself, however, causes a

In FAB, an I/O request to logical blocks is handled by the
coordinator module of any brick (from a clients view, ev-



Workioad | date | length | YOUME | syrites | #reads | datawritten| dataread| Unique data

size written
Cello 9/2002 lday| 1.47TB| 5,250,126| 6,766,002 67.4GB| 160GB 27.1GB
SAP 1/2002 | 15 min 5TB 150,339 4,835,793 1.75GB| 55.4GB 1.36 GB

OpenMail | 10/1999 lhr 7TB 931,979| 355,962 61.3GB| 2.47GB 1.64 GB

Table 1: Workload characteristicate shows when the trace was collectéthique data writteris the amount of data written once
overlapping writes are removed.

problem, because it may leave a new value on a subtamps from others in the quorum. This technique, in effect,
majority of the replicas. A logical disk system must en- reduces the number of disk accesses to one per “read” re-
surelinearizability [/]—roughly speaking, all clients must quest, as the vast majority of timestamps will be cached in
see a single global ordering of (either successful or failedjnain memory for the reasons described in the next section.

read and write requests f(_)r each Iogigal block, even Whe%econdly, FAB is a naturally disk-/O-bound system; the
these requests are coordinated by different bricks. Thu%PU and network spend most of the time waiting for disk

ater ablcoirdmator”fanure, ;uturlz brlealf rtlaquests”on the 05 to complete. The overhead of extra timestamp pro-
same block must all return the old block value or al retumcessing does not slow the system down.

the value attempted by the failed coordinator (unless the

block is overwritten by a newer “write” request). Previous 3.2 Reducing the overhead of timestamp man-
approaches, such as those using two-phase cominits [6],  agement

cannot ensure a quick fail-over. FAB takes an alternative

approach, performing recovery in a lazy manner when @ne challenge that FAB faces is the timestamp manage-
client tries to read the block for the first time after the fail- ment overhead: for every 1 TB of data, with a 12 byte
ure. timestamp recorded for every 1KB block, 12 GB of space
hcould potentially be required to store timestamps. This
information must be kept persistently, yet this amount of
NVRAM is infeasible. We employ several techniques to
reduce the overhead of timestamp management substan-

To detect the partial writes that result from failures, eac
replica of a logical block keeps two timestamps: thés
the timestamp of the value currently stored, whereas th
logTs is the timestamp of the newest ongoing “write” re- '
quest. As illustrated in Figufg 2, a “write” request runs in ially-

two phases, using the timestamps to ensure linearizabilityEirst, we observe that timestamps are used only to dis-
A*read” request usually runs in one phase, but takes threeambiguate concurrent updates and to “repair” the results
phases when timestamp state indicates the past failure of previous failures. Thus, in the case where all replicas
a (different) coordinator: the value with the highest times-of a logical block are functional, timestamps can be dis-
tamp is stored in a majority with a timestamp greater tharcarded once all the replicas have acknowledged an update.
that of any previous writes, including any partial writes. Replies to the client are made as soon as a majority of
so théhe replicas have acknowledged an update. The coordi-

We assume that clients have multi-path capability, ) . )
nator, in the background, runs a third phase to write pro-

failure of a coordinator does not stop them issuing re- D S X -
quests to FAB. Since FAB requires no change to clientsCesSing in which it lets replicas remove their timestamps
nce all have replied. In the normal case, a brick needs to

the clients’ own software and the standard protocol use . X

between clients and FAB dictate client reaction to coordi-<¢®P t|mestamps only for F"OC"S that.are actively updated;

nator failure. these timestamps can easily be kept in NVRAM. After one
of the replicas fails, other replicas must keep timestamps

for blocks that are updated, until the replica recovers or

a reconfiguration starts. However, as we show below, it

Majority voting has been proposed as a simple yet robusils extremely unlikgly that the number of these timestamps
replication method for quite a whilel[6, 12], but no system exceeds what a brick can store in memory.

has used it in a high-throughput environment. The oftenA second optimization can be made by observing that
cited reason is that it is inefficient, because “read” requesta single “write” request almost always updates multiple

must contact multiple remote replicas [14]. This reasonplocks, and that each of the blocks affected will have the
however, does not apply to FAB for the two reasons. same timestamp. We thus keep timestamp information on
ranges of blocks, rather than per-block.

3.1 Improving the efficiency of majority voting

First, we apply an “optimistic read” technique for the com-
mon case scenario of reading from a (logical) block that isTo investigate the impact these optimizations would have,

already consistent. Here, the coordinator reads the actuahd to determine the actual amount of memory needed, we
block contents from one idle replica and reads only timeshave analyzed several real-world I/O traces, summarized



[ Workload | raw | written | multiple | The FAB replica-management protocol permits actual data

Cello 16.8GB| 26.4 MB | 2.28 MB reads to be made from any replica; the other replicas only
SAP 60GB | 128 MB | 10.3 MB provide timestamp information. By having coordinators
OpenMail| 84 GB | 38.4 MB | 4.00 MB perform the data read from the least loaded replica, load

can be shifted away from a heavily loaded brick to its
neighbors (bricks holding replicas of the segments on the
. A heavily loaded one), which can further shift read load to
tenis the amount required if timestamps are only kept for blocks . ' . .

I untrequirecit i P yKep their neighbors, and so on, until the entire FAB shares

written during the tracemultiple is the amount if a timestamp . . . .
. the load. This mechanism makes it possible to accom-
covers multiple blocks. For sparse structures, we assume a dou- . .
. ) ; modate bricks with heterogeneous performance. It also
bling over the raw timestamp size to allow for the data struc- kes FAB hiahl ilient to load imbal due to brick
ture overhead. All numbers except faaw (which does not Makes Ighly resiiient to load imbalance due o bric

vary over time) have been nammalized to be per-hour, i.e., thé‘anures, since the read load from failed bricks is automat-

amount of memory required for every hour of operation while aICaIIy spread over the gntlre '.:AB' More intelligent load
replica is unavailable. This normalization results in pessimisticbaIanCIng may be considered in future work.
estimates—as significant spatial locality is shown over time, the

rate of timestamp generation decreases when longer time per'5 Current status and future work

ods are observed. For a longer, 3 day “Cello” trace, the rate of

timestamp generation is half of that shown by the 3rd day.

Table 2: Timestamp memory requirementawis the amount
of memory required with a timestamp for every 1KB blowalkit-

We have implemented a prototype and are studying its
behavior under various situations, including failures and
in Table[]. overloads.

) We identify two major areas of future work. One is dy-
Cello: A file system managed by an 8 processor HP900G,amjc volume reconfiguration after failures or to improve
N4000 for 2030 researchers, with 16 GB of RAM, and performance. The requirement remains the same: lineariz-

an HP XP512 disk array. ability, asynchronous coordination, and no service stop-
SAP: A SAP ISUCCS 4.5B and Oracle supporting 3000 page during reconfiguration. We plan to adapt the tech-

users and several background batch jobs running on anique described ir [11], by superimposing a new quorum
HP V2500 with an HP XP512 disk array. configuration using Paxos, transferring contents to new

OpenMail: An HP9000 K580 server with 6 CPUs, 3.75 pricks, and garbage collecting old quorum configurations

GB of RAM, and an EMC 3700 Symmetrix disk array. in the background.

Approximately 2000 users access their email during theThe other is reducing the storage overhead of quorum-

course of the trace. based replication usingitnessesandwitness promotion

We adapt the timestamp-discarding scheme introduced in

Table[2 shows the amount of memory required for times-Section[ 3.2 to create “witness” replicas that only keep
tamp information under various circumstances. These relimestamps, but no actual block values (at least in the long
sults show that even if a system is down for several daysterm). By replicating a logical segment on orfly- 1 nor-
even a relatively modest amount of memory will be suffi- mal replicas and' additional witnesses, the segment can
cient to store all the timestamps needed. tolerate f failures with little space overhead. A witness
participates in the block-1/O protocol exactly like other
replicas—it actually stores block contents in a scratch disk
area. When it receives a “discard timestamps” request for

As discussed in Sectid] 2, FAB chooses the set of repli-a block, however, it recycles the disk area. In the common
cas for each segment ran,domly The randomized Iayou"fase where all replicas are functional, a witness only con-

has many advantages over a deterministic mapping sucpmes disk blocks for ongoing updates. When a witness

as chained declustering [10]: the load is uniformly dis- accumulates too many disk blocks for outstanding updates

tributed over the bricks; when bricks leave FAB, reassign-f"‘ﬁer a failure of another replica, it eventually promotes

ing the segment replicas on these bricks to other bricks igself "_“O a f_uII-erdg(_ad replica using the aforementioned
straightforward; similarly, when new bricks join FAB, re- reconfiguration algorithm.

assigning segment replicas from heavily loaded bricks tdn the longer term, we also need to evaluate the full cost
the new bricks is easy to do; and non-homogeneous bricksf ownership of a FAB system, including maintenance in
with different capacities and performance characteristicshe face of the higher expected rate of component failures,
can be handled. Moreover, by using reasonably large seggower and cooling expenses, and to address the potential
ments (say, 8GB) the size of the layout table can be kepéngineering problems of a FAB system at the scale of 5000
small. bricks.

4 Data layout and load balancing



6 Acknowledgements

We would like to thank other members of the HP Labs
Storage Systems Department for feedback, particularly
John Wilkes. Our shepherd, Jeff Chase, provided valuable
comments that improved the paper.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]
9]

(10]

(11]

(12]

(13]

(14]

Khalil Amiri, Garth A. Gibson, and Richard Golding.
Highly concurrent shared storage.Rroceedings of the In-
ternational Conference on Distributed Computing Systems
(ICDCS 2000) Taipei, Taiwan, April 2000.

D. Anderson, J. Dykes, and E. Riedel. More than an
interface—SCSI vs. ATA. TJSENIX Conf. on File and
Storage Technologies (FA$T3an Francisco, CA, March
2003.

S. Asami.|Reducing the cost of system administration|of a
disk storage system built from commodity componéti®
thesis, University of California, Berkeley, May 2000. Tech.
Report. no. UCB-CSD-00-1100.

H. Attiya, A. Bar-Noy, and D. Dolev. Sharing memory ro-
bustly in message-passing systendaurnal of the ACM
42(1):124-142, 1995.

Svend Frolund, Arif Merchant, Yasushi Saito, Su-
san Spence, and Alistair Veitch. Building stor-
age registers from crash-recovery processes, May
2003. Tech report HPL-SSP-2003-14, available at
http://www.hpl.hp.com/research/ssp/papersl/.

D. Gifford. Weighted voting for replicated data. Pro-
ceedings of the 7th. Symposium on Operating Systems Prin-
ciples 1979.

Maurice P. Herlihy and Jeanette M. Wing. Linearizability:

a correctness condition for concurrent obje&€M Trans.

on Prog. Lang. and Sys. (TOPLA3P:463-492, 1990.

IBM. IceCube: storage server for the Internet age.
http://www.almaden.ibm.com/cs/storagesystems/lceCube/.

Leslie Lamport. Paxos made simpl@CM SIGACT News
32(4):18-25, December 2001. http://research.microsoft.-
com/users/lamport/pubs/pubs.html.

E. K. Lee and C. A. Thekkath. Petal: Distributed virtual
disks. InProceedings of the 7th Int. Conf. on Architec-
tural Support for Prog. Lang. and Op. Systerpages 84—
92, Cambridge, MA, 1996.

N. A. Lynch and A. A. Shvartsman. Rambo: A reconfig-
urable atomic memory service for dynamic networks. In
16th Int. Conf. on Dist. Computing (DISG)ages 173-190,
Toulouse, France, October 2002.

Robert H. Thomas. A majority consensus approach to con-
currency control for multiple copy databas&sCM Trans.
on Database Sys. (TODS)(2):180—-209, June 1979.

John Wilkes. Datamesh research project, phase Brdo.
USENIX Workshop on File Systerpsiges 63—-69, Ann Ar-
bor, MI, May 1992.

Avishai Wool. |Quorum systems in replicated databases:
science or fiction? Bull. IEEE Technical Committee on
Data Engineering21(4), December 1998.


http://www.usenix.org/publications/library/proceedings/fast03
http://www.usenix.org/publications/library/proceedings/fast03
http://citeseer.nj.nec.com/asami00reducing.html
http://citeseer.nj.nec.com/asami00reducing.html
http://www.research.microsoft.com/research/db/debull/98dec/issue.htm
http://www.research.microsoft.com/research/db/debull/98dec/issue.htm

	Introduction
	FAB: challenges and overview of solutions
	Related work

	Structure of FAB
	The FAB replica-management protocol
	Improving the efficiency of majority voting
	Reducing the overhead of timestamp management

	Data layout and load balancing
	Current status and future work
	Acknowledgements

