
A Decentralized Algorithm for Erasure-Coded Virtual Disks

Svend Frølund, Arif Merchant, Yasushi Saito, Susan Spence, and Alistair Veitch
Storage Systems Department

HP Labs, Palo Alto, CA 94304

Abstract

A Federated Array of Bricks is a scalable distributed
storage system composed from inexpensive storage bricks.
It achieves high reliability with low cost by usingerasure
coding across the bricks to maintain data reliability in
the face of brick failures. Erasure coding generates n en-
coded blocks from m data blocks(n > m) and permits the
data blocks to be reconstructed from any m of these en-
coded blocks. We present a new fully decentralized erasure-
coding algorithm for an asynchronous distributed system.
Our algorithm provides fully linearizable read-write access
to erasure-coded data and supports concurrent I/O con-
trollers that may crash and recover. Our algorithm relies
on a novel quorum construction where any two quorums in-
tersect in m processes.

1. Introduction

Distributed disk systems are becoming a popular al-
ternative for building large-scale enterprise stores. They
offer two advantages to traditional disk arrays or main-
frames. First, they are cheaper because they need not rely on
highly customized hardware that cannot take advantage of
economies of scale. Second, they can grow smoothly from
small to large-scale installations because they are not lim-
ited by the capacity of an array or mainframe chassis. On
the other hand, these systems face the challenge of offering
high reliability and competitive performance without cen-
tralized control.

This paper presents a new decentralized coordination al-
gorithm for distributed disk systems using deterministic era-
sure codes. A deterministic erasure code, such as Reed-
Solomon [12] or parity code, is characterized by two param-
eters,m andn.1 It divides a logical volume into fixed-size
stripes, each withm stripe units and computesn−m par-
ity units for each stripe (stripe units and parity units have

1 Reed-Solomon code allows for any combination ofm andn, whereas
parity code only allows form= n−1 (RAID-5) orm= n−2 (RAID-
6).

��� �� � �� ��

��� �� �	
� � � � �

���
)LOH�'%
VHUYHUV

)$%

Figure 1: A typical FAB structure. Client computers con-
nect to the FAB bricks using standard protocols. Clients can
issue requests to any brick to access any logical volume.
The bricks communicate among themselves using the spe-
cialized protocol discussed in this paper.

the same size). It can then reconstruct the originalm stripe
units from anym out of then stripe and parity units. By
choosing appropriate values ofm, n, and the unit size, users
can tune the capacity efficiency (cost), availability, and per-
formance according to their requirements. The flexibility of
erasure codes has attracted a high level of attention in both
the industrial and research communities [15, 2, 13, 11].

The algorithm introduced in this paper improves the state
of the art on many fronts. Existing erasure-coding algo-
rithms either require a central coordinator (as in traditional
disk arrays), rely on the ability to detect failures accurately
and quickly (a problem in real-world systems), or assume
that failures are permanent (any distributed system must be
able to handle temporary failures and recovery of it’s com-
ponents).

In contrast, our algorithm is completely decentralized,
yet maintains strict linearizability [8, 1] and data consis-
tency for all patterns of crash failures and subsequent re-
coveries without requiring quick or accurate failure detec-
tion. Moreover, it is efficient in the common case and de-
grades gracefully under failure. We achieve these properties

by running voting over a quorum system which enforces
a large-enough intersection between any two quorums to
guarantee consistent data decoding and recovery.

In the next two sections, we provide background infor-
mation on theFAB system we have built and quantify the
reliability and cost benefits of erasure coding. Section 1.3
articulates the challenge of the coordination of erasure cod-
ing in a totally distributed environment and overviews our
algorithm. We define the distributed-systems model that our
algorithm assumes in Section 2 and outline the guarantees
of our algorithm in Section 3. We present our algorithm in
Section 4, analyze it in Section 5, and survey related work
in Section 6.

1.1. Federated array of bricks

We describe our algorithm in the context of aFederated
Array of Bricks (FAB), a distributed storage system com-
posed from inexpensivebricks [6]. Bricks are small stor-
age appliances built from commodity components including
disks, a CPU, NVRAM, and network cards. Figure 1 shows
the structure of a typical FAB system. Bricks are connected
together by a standard local-area network, such as Gigabit
Ethernet. FAB presents the client with a number of logi-
cal volumes, each of which can be accessed as if it were a
disk. In order to eliminate central points of failure as well
as performance bottlenecks, FAB distributes not only data,
but also the coordination of I/O requests. Clients can access
logical volumes using a standard disk-access protocol (e.g.,
iSCSI [14]) via acoordinator module running onany brick.
This decentralized architecture creates the challenge of en-
suring single-copy consistency for reads and writes with-
out a central controller. It is this problem that our algorithm
solves.

1.2. Why erasure codes?

While any data storage system using large numbers of
failure-prone components must use some form of redun-
dancy to provide an adequate degree of reliability, there are
several alternatives besides the use of erasure codes. The
simplest method for availability is to stripe (distribute) data
over conventional, high-reliability array bricks. No redun-
dancy is provided across bricks, but each brick could use
an internal redundancy mechanism such as RAID-1 (mir-
roring) or RAID-5 (parity coding). The second common al-
ternative is to mirror (i.e., replicate) data across multiple
bricks, each of which internally uses either RAID-0 (non-
redundant striping) or RAID-5. This section compares era-
sure coding to these methods and show that erasure coding
can provide a higher reliability at a lower cost.

Figure 2 shows expected reliability of these schemes.
We measure the reliability by the mean time to data loss

1E+02

1E+05

1E+08

1E+11

1E+14

1 10 100 1000

Logical Capacity (TB)

M
T

T
D

L
(y

e
a
rs

)

4-way replication/R5 bricks

E.C.(5,8)/R5 bricks

4-way replication/R0 bricks

E.C.(5,8)/R0 bricks

Striping/reliable R5 bricks

Figure 2: Mean time to first data loss (MTTDL) in stor-
age systems using (1) striping, (2) replication and (3) era-
sure coding. (1) Data is striped over conventional, high-
end, high-reliability arrays, using internal RAID-5 encod-
ing in each array/brick. Reliability is good for small sys-
tems, but does not scale well. (2) Data is striped and repli-
cated 4 times over inexpensive, low reliability array bricks.
Reliability is highest among the three choices, and scales
well. Using internal RAID-5 encoding in each brick im-
proves the MTTDL further over RAID-0 bricks. (3) Data
is distributed using 5-of-8 erasure codes over inexpensive
bricks. The system scales well, and reliability is almost as
high as the 4-way replicated system, using similar bricks.

(MTTDL), which is the expected number of years before
data is lost for the first time. For example, in a stripe-based
system, data is lost when any one brick breaks terminally.
On the other hand, in a system usingm out of n erasure
coding, a piece of data is lost when more thann−m of n
bricks that store the data terminally break at the same time.
Thus, the system-wide MTTDL is roughly proportional to
the number of combinations of brick failures that can lead
to a data loss. We used the component-wise reliability num-
bers reported in [3] to extrapolate the reliability of bricks
and networks, and calculated the MTTDL assuming random
data striping across bricks. This graph shows that the reli-
ability of striping is adequate only for small systems. Put
another way, to offer acceptable MTTDL in such systems,
one needs to use hardware components far more reliable
and expensive than the ones commonly offered in the mar-
ket. On the other hand, 4-way replication and 5-of-8 erasure
coding both offer very high reliability, but the latter with a
far lower storage overhead. This is because reliability de-
pends primarily on the number of brick failures the system
can withstand without data loss. Since both 4-way replica-
tion and 5-of-8 erasure coding can withstand at least 3 brick
failures, they have similar reliability.

0

1

2

3

4

5

6

7

1E-02 1E+01 1E+04 1E+07 1E+10 1E+13

MTTDL (years)

S
to

ra
g

e
 O

v
e
rh

e
a
d

Replication/R0 bricks

Replication/R5 bricks

E.C.(5,n)/R0 bricks

E.C.(5,n)/R5 bricks

Figure 3: Storage overheads (raw capacity/logical capac-
ity) of systems using replication and erasure coding. The
storage overhead of replication-based systems rises much
more steeply with increasing reliability requirements than
for systems based on erasure-coding. Using RAID-5 bricks
reduces the overhead slightly. The MTTDL of a storage sys-
tem that stripes data over RAID-5 bricks is fixed, and hence
this is omitted from this plot; the storage overhead of such
a system is 1.25.

Figure 3 compares the storage overhead (the ratio of raw
storage capacity to logical capacity provided) for sample
256TB FAB systems using replication and erasure coding,
and with the underlying bricks internally using RAID-5 or
RAID-0 (non-redundant). In order to achieve a one million
year MTTDL, comparable to that provided by high end con-
ventional disk arrays, the storage overhead for a replication-
based system is 4 using RAID-0 bricks and approximately
3.2 using RAID-5 bricks. By contrast, an erasure code based
system withm= 5 can meet the same MTTDL requirement
with a storage overhead of 1.6 with RAID-0 bricks, and yet
lower with RAID-5 bricks.

The storage efficiency of erasure-coded systems comes
at some cost in performance. As in the case of RAID-5 ar-
rays, small writes (writes to a subregion of the stripe) re-
quire a read of the old data and each of the correspond-
ing parity blocks, followed by a write to each. Thus, for
an m-of-n erasure coded system, a small write engenders
2(n−m+ 1) disk I/Os, which is expensive. Nonetheless,
for read-intensive workloads (such as Web server work-
loads), systems with large capacity requirements, and sys-
tems where cost is a primary consideration, a FAB system
based on erasure codes is a good, highly reliable choice.

1.3. Challenges of distributed erasure coding

Implementing erasure-coding in a distributed system,
such as FAB, presents new challenges. Erasure-coding in
traditional disk arrays rely on a centralized I/O controller
that can accurately detect the failure of any component disk
that holds erasure-coded data. This assumption reflects the
tight coupling between controllers and storage devices—
they reside within the same chassis and communicate via
an internal bus.

It is not appropriate to assume accurate failure detec-
tion or to require centralized control in FAB. Storage bricks
serve as both erasure-coding coordinators (controllers) and
storage devices. Controllers and devices communicate via a
standard shared, and potentially unreliable, network. Thus,
a controller often cannot distinguish between a slow and
failed device: the communication latency in such networks
is unpredictable, and network partitions may make it tem-
porarily impossible for a brick to communicate with other
bricks.

Our algorithm relies on the notion of a quorum system,
which allows us to handle both asynchrony and recovery.
In our algorithm, correct execution of read and write oper-
ations only requires participation by a subset of the bricks
in a stripe. A required subset is called a quorum, and for
an m-out-of-n erasure-coding scheme the underlying quo-
rum system must only ensure that any two quorums inter-
sect in at leastm bricks. In other words, a brick that acts
as erasure-coding controller does not need to know which
bricks are up or down, it only needs to ensure that a quo-
rum executes the read or write operation in question. Fur-
thermore, consecutive quorums formed by the same con-
troller do not need to contain the same bricks, which allows
bricks to seamlessly recover and rejoin the system.

Compared to existing quorum-based replication algo-
rithms [4, 9, 10], our algorithm faces new challenges that
are partly due to the fact that we use erasure-coding instead
of replication, and partly due to the fact that we apply the
algorithm to storage systems. Using erasure-coding instead
of replication means that any two quorums must intersect
in m instead of 1 bricks. We define a new type of quorum
system, called anm-quorum system, that provides this in-
tersection property. Using erasure-coding also means that it
is more difficult to handle partial writes where the erasure-
coding controller crashes after updating some, but not all,
members of a quorum. Existing quorum-based replication
algorithms rely on the ability to write-back the latest copy
during a subsequent read operation, essentially having read
operations complete the work of a partial write. However,
with erasure coding, a partial write may update fewer than
mstripe units, rendering subsequent read operations unable
to reconstruct the stripe. We use a notion ofversioning in
our algorithm so that a read operation can access a previ-

ous version of the stripe if the latest version is incomplete.
In existing quorum-based algorithms, a read operational-
ways tries to complete a partial write that it detects. This
means that a partially written value may appear at any point
after the failed write operation, whenever a read operation
happens to detect it. Having partial write operations take ef-
fect at an arbitrary point in the future is not appropriate for
storage systems. Our algorithm implements a stronger se-
mantics for partial writes: a partial write appears to either
take effect before the crash or not at all. Implementing these
stronger semantics is challenging because a read operation
must now decide whether to complete or roll-back a par-
tial write that it detects.

2. Model

We use the abstract notion of aprocess to represent
a brick, and we consider a setU of n processes,U =
{p1, . . . , pn}. Processes are fully connected by a network
and communicate by message passing. The system is asyn-
chronous: there is no bound on the time for message trans-
mission or for a process to execute a step. Processes fail by
crashing—they never behave maliciously—but they may re-
cover later. Acorrect process is one that either never crashes
or eventually stops crashing. Afaulty process is a process
that is not correct.

Network channels may reorder or drop messages, but
they do not (undetectably) corrupt messages. Moreover, net-
work channels have a fair-loss property: a message sent an
infinite number of times to a correct process will reach the
destination an infinite number of times.

2.1. Erasure-coding primitives

We use the termblock to refer to the unit of data storage.
Processes store data using anm-out-of-n erasure-coding
scheme. A stripe consists ofm data blocks, and we gen-
eraten−m parity blocks from thesem data blocks. Thus,
each stripe results in the storage ofn blocks; each process
stores one of thesen blocks.

The primitive operations for erasure coding are listed in
Figure 4:

• encode takes m data blocks and returnsn blocks,
among which the firstm are the original blocks
and the remainingn−m are parity blocks. We de-
fine encode to return the original data blocks as a
matter of notational convenience.

• decode takes anym out of n blocks generated from an
invocation ofencode and returns the originalm data
blocks.

• modifyi, j(bi ,b′i ,c j) re-computes the value of thej ’th
parity block after thei’th data block is updated. Here,

b1

b2

b3

b1

b2

b3

c1

c2

b'3
c'1

encode

modify
3,1

decode
b1

b2

b'3

Figure 4: Use of the primitives for a 3-out-of-5 erasure cod-
ing scheme. Data blocksb1 to b3 form a stripe. Theencode
function generates two parity blocksc1 andc2. Whenb3 is
updated to becomeb′3, we callmodify3,1(b3,b′3,c1) to up-
datec1 to becomec′1. Finally, we usedecode to reconstruct
the stripe fromb1, b2, andc′1.

bi andb′i are the old and new values for data blocki,
andc j is the old value for parity blockj.

2.2. m-quorum systems

To ensure data availability, we use a quorum system:
each read and write operation requires participation from
only a subset ofU , which is called a quorum. Withm-out-
of-n erasure coding, it is necessary that a read and a write
quorum intersect in at leastm processes. Otherwise, a read
operation may not be able to construct the data written by a
previous write operation. Anm-quorum system is a quorum
system where any two quorums intersect inmelements; we
refer to a quorum in anm-quorum system as anm-quorum.

Let f be the maximum number of faulty processes inU .
An m-quorum system is then defined as follows:

Definition 1 An m-quorum systemQ ⊆ 2U is a set satisfy-
ing the following properties.

∀Q1,Q2 ∈ Q : |Q1∩Q2| ≥m.

∀S∈ 2U s.t. |S|= f ,∃Q∈ Q : Q∩S= /0.

The second property ensures the existence of anm-quorum
for any combination off faulty processes. It can be shown
that f = b(n−m)/2c is a necessary and sufficient condi-
tion for the existence of anm-quorum system (we prove this
claim in [7]). Thus, we assume that at mostf = b(n−m)/2c
processes are faulty.

We use a non-blocking primitive calledquorum() to cap-
ture request-reply style communication with anm-quorum
of processes. Thequorum(msg) primitive ensures that at
least anm-quorum receivesmsg, and it returns the list of
replies. From the properties of anm-quorum system defined
above, we can implementquorum() in a non-blocking man-
ner on top of fair-lossy channels by simply retransmitting
messages periodically.

2.3. Timestamps

Each process provides a non-blocking operation called
newTS that returns a totally ordered timestamp. There are
two special timestamps,LowTS and HighTS, such that
for any timestampt generated bynewTS, LowTS < t <
HighTS. We assume the following minimum properties
from newTS.

UNIQUENESS: Any two invocations ofnewTS (possibly
by different processes) return different timestamps.

MONOTONICITY: Successive invocations ofnewTS by a
process produce monotonically increasing timestamps.

PROGRESS: Assume thatnewTS() on some process re-
turns t. If another process invokesnewTS an infinite
number of times, then it will eventually receive a time-
stamp larger thant.

A logical or real-time clock, combined with the issuer’s
process ID to break ties, satisfies these properties.

3. Correctness

For each stripe of data, the processes inU collectively
emulate the functionality of a read-write register, which
we call astorage register. As we describe below, a stor-
age register is a special type of atomic read-write register
that matches the properties and requirements of storage sys-
tems.

A storage register is a strictly linearizable [1] atomic
read-write register. Like traditional linearizability [8], strict
linearizability ensures that read and write operations exe-
cute in a total order, and that each operation logically takes
effect instantaneously at some point between its invocation
and return. Strict linearizability and traditional linearizabil-
ity differ in their treatment of partial operations. A partial
operation occurs when a process invokes a register, and then
crashes before the operation is complete. Traditional lin-
earizability allows a partial operation to take effect at any
time after the crash. That is, if a storage brick crashes while
executing a write operation, the write operation may update
the system at an arbitrary point in the future, possibly after
the brick has recovered or has been replaced. Such delayed
updates are clearly undesirable in practice—it is very com-
plicated, if not impossible, for the application-level logic
that recovers from partial writes to take future updates into
account.

Strict linearizability ensures that a partial operation ap-
pears to either take effect before the crash or not at all. The
guarantee of strict linearizability is given relative to external
observers of the system (i.e., applications that issue reads
and writes). The only way for an application to determine if
a partial write actually took effect is to issue a subsequent

read. In our algorithm, the fate of a partial write is in fact de-
cided by the next read operation on the same data: the read
rolls the write forward if there are enough blocks left over
from the write, otherwise the read rolls back the write.

We allow operations on a storage register toabort if they
are invoked concurrently. It is extremely rare that applica-
tions issue concurrent write-write or read-write operations
to the same block of data: concurrency is usually resolved
at the application level, for example by means of locking.
In fact, in analyzing several real-world I/O traces, we have
found no concurrent write-write or read-write accesses to
the same block of data [6]. An aborted operation returns
a special value (e.g.,⊥) so that the caller can distinguish
between aborted and non-aborted operations. The outcome
of an aborted operation is non-deterministic: the operation
may have taken effect as if it were a normal, non-aborted
operation, or the operation may have no effect at all, as if it
had never been invoked. Strict linearizability incorporates a
general notion of aborted operations.

In practice, it is important to limit the number of aborted
operations. Our algorithm only aborts operations if they ac-
tually conflict on the same stripe of data (i.e., write-write or
read-write operations), and only if the operations overlap in
time or generate timestamps that do not constitute a logical
clock. Both situations are rare in practice. First, as we have
already observed, it is extremely rare for applications to
concurrently issue conflicting operations to the same block
of data. Moreover, we can make stripe-level conflicts un-
likely by laying out data so that consecutive blocks in a log-
ical volume are mapped to different stripes. Second, mod-
ern clock-synchronization algorithms can keep clock skew
extremely small [5]. Finally, it is important to notice that
the absence of concurrency and the presence of clock syn-
chronization only affect the abort rate, not the consistency
of data.

4. Algorithm

Our algorithm implements a single storage register; we
can then independently run an instance of this algorithm
for each stripe of data in the system. The instances have
no shared state and can run in parallel.

In Section 4.1, we give describe the basic principles be-
hind the algorithm and the key challenges that the algo-
rithm solves. Section 4.2 describes the data structures used
by the algorithm. Section 4.3 gives the pseudo-code for
reading and writing stripes of data, and Section 4.4 gives
the pseudo-code for reading and writing individual blocks
within a stripe. In [7], we prove the algorithm correct.

4.1. Overview

Our algorithm supports four types of operations:read-
stripe and write-stripe to read and write the entire stripe,
andread-block andwrite-block to read and write individual
blocks within the stripe.2 A read operation returns a stripe
or block value if it executes successfully; a write operation
returnsOK if it executes successfully. Both read and write
operations may abort, in which case they return the special
value⊥.

A process that invokes a register operation becomes the
coordinator for that operation. Any process can be the coor-
dinator of any operation. The designation of coordinator is
relative to a single operation: consecutive operations on the
same data can be coordinated by different processes.

Each process stores a single block for each storage reg-
ister. To simplify the presentation, we assume that process
j always stores blockj. That is, processesp1 . . . pm store
the data blocks, andpm+1 . . . pn store the parity blocks. It
is straightforward to adapt the algorithm to more sophis-
ticated data-layout schemes. In the following, we refer to
pm+1 . . . pn as theparity processes.

To implement a total order for operations, each process
stores a timestamp along with each block of data. The time-
stamp denotes the time when the block was last updated.
The basic principle of our algorithm is then for a write co-
ordinator to send a message to anm-quorum of processes to
store new block values with a new timestamp. A read coor-
dinator reads the blocks and timestamps from anm-quorum
and reconstructs the most recent register value.

A key complexity of the algorithm stems from the han-
dling of a partial write operation, which stores a value in
fewer than anm-quorum of replicas, either because the co-
ordinator crashes or proposes too small a timestamp. Such a
partial write causes two potential problems: inability to re-
cover the previous value, and violation of strict linearizabil-
ity.

4.1.1. Recovering from partial writes The challenge
with erasure coding is that, during a write operation, a pro-
cess cannot just overwrite its data block with the new
data value. For example, consider an erasure-coded regis-
ter withm= 5,n= 7 (them-quorum size is 6). If a write co-
ordinator crashes after storing the new value on only 4 pro-
cesses, we have 4 blocks from the new stripe and 3 blocks
from the old, which means that it is impossible to con-
struct either the old or the new stripe value.

To handle such situations, each process keeps a log of
〈block-value, timestamp〉 pairs of past write requests. A
write request simply appends the new value to the log; a
read coordinator collects enough of the most recent blocks

2 The single-block methods can easily be extended to access multiple
blocks, but we omit this extension to simplify the presentation.

a

b
c

〈v,t〉

〈v,t〉

〈v,t〉

〈v',t'〉

〈v',t'〉

write1(v') read2() read3()v v'

Figure 5: To ensure strict linearizability, read operations
cannot simply pick, and possibly write-back, the value with
the highest timestamp. In the example, the processesa, b
andc implement a storage register; for simplicity, we use
an erasure-coding scheme with a stripe size of 1 and where
parity blocks are copies of the stripe block (i.e., replication
as a special case of erasure coding). The label〈v, t〉 indi-
cates that a process stores a valuev with timestampt. The
first request write1(v′) crashes after storingv′ on only a;
the second read2 request contacts processesb andc and re-
turns valuev. Thena recovers, and the subsequent read3 re-
turnsv′, even though write1 seems to have happened before
read2 in the eye of an observer.

from the logs to recover the last register value. We discuss
log trimming in Section 5.1.

4.1.2. Linearizing partial operations After a par-
tial write, a read operation cannot simply pick the value
with the highest timestamp, since this may violate strict lin-
earizability. For example, consider the execution in Fig-
ure 5. To satisfy strict linearizability, a storage-register
implementation must ensure the following total order:
write1 → read2 → read3. In other words, read3 must re-
turn v even though it finds the valuev′ with a higher
timestamp. That is, we need to detect partial write oper-
ations and abort them to handle such a situation. We ac-
complish this by executing a write operation in two
phases. In the first phase, a write operation informs an
m-quorum about the intention to write a value; in the sec-
ond phase, a write operation actually writes the value to
an m-quorum. A read operation can then detect a par-
tial write as an unfulfilled intention to write a value.

Our approach of explicit partial-write detection has a
pleasant side effect: an efficient single-round read operation
in the common case. A read operation first checks if anm-
quorum of processes has no partial write; if so, it simply re-
turns the current register value: the value received from the
process containing the requested data, or the stripe value de-
rived from anym processes in the case of a full stripe read.
Failing the optimistic phase, the read operation reconstructs
the most recent register value and writes it back to anm-
quorum. The write-back aborts any previous partial write
operation.

4.2. Persistent data structures

Each process has persistent storage that survives crashes.
In general, thestore(var) primitive atomically writes the
value of variablevar to the persistent storage. When a pro-
cess recovers, it automatically recovers the most recently
stored value for each variable.

The persistent state of each process consists of a time-
stamp,ord-ts, and a set of timestamp-block pairs, called the
log. The initial values forord-ts and log are LowTS and
{[LowTS,nil]}, respectively. (Remember that, for any time-
stampt generated bynewTS, LowTS < t < HighTS.) The
log captures the history of updates to the register as seen by
an individual process. To update the timestamp information
in the log without actually storing a new value, we some-
times store a pair[ts,⊥] in the log. We define three func-
tions on the log:

• The “max-ts(log)” function returns the highest time-
stamp inlog.

• The “max-block(log)” function returns the non-⊥
value inlog with the highest timestamp.

• The “max-below(log, ts)” function returns the non-⊥
value inlog with the highest timestamp smaller thants.

Variableord-ts shows the logical time at which the most
recent write operation was started, establishing its place in
the ordering of operations. As such, max-ts(log) < ord-ts
indicates the presence of a partial operation.

4.3. Reading and writing the whole stripe

Algorithm 1 describes the methods for reading and writ-
ing a stripe. Algorithm 2 describes the handlers invoked
upon receipt of messages from a coordinator.

The write-stripe method triggers a two-phase interac-
tion. In the first phase, the coordinator sends “[Order,ts]”
messages to replicas with a newly generated timestamp. A
replica updates itsord-ts and respondsOK if it has not al-
ready seen a request with a higher timestamp. This estab-
lishes a place for the operation in the ordering of opera-
tions in the system, and prevents a concurrent write oper-
ation with an older timestamp from storing a new value
between the first and second phases. In the second round,
the coordinator sends “[Write,..]” messages and stores the
value.

The read-stripe method first optimistically assumes that
anm-quorum of processes stores blocks with the same value
and timestamp, and that there are no partial writes. If these
assumptions are true, the method returns after one round-
trip without modifying the persistent state of any process
(line 9). Otherwise, the two-phase recovery method is in-
voked, which works like the write-stripe method except that

1: procedure read-stripe()
2: val ←fast-read-stripe()
3: if val = ⊥ then val ←recover()
4: return val

5: procedure fast-read-stripe()
6: targets ←Pickm random processes
7: replies ←quorum([Read,targets])
8: if status in all replies istrue

and val-ts in all replies is the same
and all processes intargets repliedthen

9: return decode(blocks in replies fromtargets)
10: else
11: return ⊥

12: procedurewrite-stripe(stripe)
13: ts ←newTS()
14: replies ←quorum([Order,ts])
15: if status in any reply isfalse then return ⊥
16: else returnstore-stripe(stripe, ts)

17: procedure recover()
18: ts ←newTS()
19: s ←read-prev-stripe(ts)
20: if s 6= ⊥ and store-stripe(s, ts) = OK then
21: return s
22: else
23: return ⊥

24: procedure read-prev-stripe(ts)
25: max ←HighTS
26: repeat
27: replies ←quorum([Order&Read,ALL , max, ts])
28: if status in any reply isfalse then
29: return ⊥
30: max ←the highest timestamp inreplies
31: blocks ←the blocks inreplies with

timestampmax
32: until | blocks | ≥m
33: return decode(blocks)

34: procedurestore-stripe(stripe, ts)
35: replies ←quorum([Write, encode(stripe), ts])
36: if status in all replies istrue then return OK

37: else return⊥

Algorithm 1: Methods for accessing the entire stripe.

it dynamically discovers the value to write using the read-
prev-stripe method. This method finds the most recent ver-
sion with at leastm blocks. Its loop ends when it finds the
timestamp of the most recent complete write. The recov-
ery method ensures that the completed read operation ap-
pears to happen after the partial write operation and that fu-
ture read operations will return values consistent with this
history.

38: when receive [Read,targets] from coord
39: val-ts ←max-ts(log)
40: status ←val-ts ≥ ord-ts
41: b ←⊥
42: if status and i ∈ targets then
43: b ←max-block(log)
44: reply [Read-R,status, val-ts, b] to coord

45: when receive [Order,ts] from coord
46: status ←(ts > max-ts(log) and ts ≥ ord-ts)
47: if status then ord-ts ←ts; store(ord-ts)
48: reply [Order-R,status] to coord

49: when receive [Order&Read,j, max, ts] from coord
50: status ←(ts > max-ts(log) and ts ≥ ord-ts)
51: lts ← LowTS; b ←⊥
52: if status then
53: ord-ts ←ts; store(ord-ts)
54: if j = i or j = ALL then
55: [lts,b]←max-below(log, max)
56: reply [Order&Read-R,status, lts, b] to coord

57: when receive [Write,[b1, . . . ,bn], ts] from coord
58: status ←(ts > max-ts(log) and ts ≥ ord-ts)
59: if status then log ←log ∪{[ts,bi]}; store(log)
60: reply [Write-R, status] to coord

Algorithm 2: Register handlers for processpi

4.4. Reading and writing a single block

Algorithm 3 defines the methods and message handlers
for reading and writing an individual block.

The read-block method, which reads a given block num-
ber (j), is almost identical to the read-stripe method ex-
cept that, in the common case, onlyp j performs a read.
The write-block method updates the parity blocks as well
as the data block at processp j . This is necessary when an
I/O request has written to a single block of the stripe, in or-
der to maintain consistency of the whole stripe. In the com-
mon case without any partial write, this method reads from,
and writes to, processp j and the parity processes (fast-
write-block). Otherwise, it essentially performs a recovery
(Line 17), except that it replaces thejth block with the new
value upon write-back.

5. Discussion

5.1. Garbage collection of old data

Our algorithm relies on each process keeping its entire
history of updates in a persistent log, which is not practi-
cal. For the correctness of the algorithm, it is sufficient that
each process remember the most recent timestamp-data pair
that was part of a complete write. Thus, when a coordinator
has successfully updated a full quorum with a timestampts,
it can safely send a garbage-collection message to all pro-

61: procedure read-block(j)
62: replies ←quorum([Read,{ j}])
63: if status is alltrue and p j replied

and val-ts in all replies is the samethen
64: return the block inp j ’s reply
65: s ← recover()
66: if s 6= ⊥ then
67: return s[j]
68: else
69: return ⊥

70: procedurewrite-block(j, b)
71: ts ←newTS()
72: if fast-write-block(j, b, ts) = OK then return OK

73: else returnslow-write-block(j, b, ts)

74: procedure fast-write-block(j, b, ts)
75: replies ←quorum([Order&Read,j, HighTS, ts])
76: if status containsfalse or p j did not replythen
77: return ⊥
78: b j ←the block inp j ’s reply
79: tsj ←the timestamp inp j ’s reply
80: replies ←quorum([Modify, j, b j , b, ts j , ts])
81: if status is alltrue then return OK

82: else return⊥

83: procedureslow-write-block(j, b, ts)
84: data ←read-prev-stripe(ts)
85: if data = ⊥ then return ⊥
86: data[j] ←b
87: return store-stripe(data, ts)

88: when receive [Modify, j, b j , b, ts j , ts] from coord
89: status ←(ts j = max-ts(log) and ts ≥ ord-ts)
90: if status then
91: if i = j then
92: bi ←b
93: else if i > m then
94: bi ←modify j,i(b j , b, max-block(log))
95: else
96: bi ←⊥
97: log ←log ∪{[ts,bi]}; store(log)
98: reply [Modify-R, status] to coord

Algorithm 3: Block methods and handlers forpi

cesses to garbage collect data with timestamps older thants.
Notice that the coordinator can send this garbage-collection
message asynchronously after it returnsOK.

5.2. Algorithm complexity

Table 1 compares the performance of our algorithm and
state-of-the-art atomic-register constructions [9, 10]. We
improve on previous work in two ways: efficient reading
in the absence of failures or concurrent accesses, and sup-
port of erasure coding.

In describing our algorithm, we have striven for sim-
plicity rather than efficiency. In particular, there are sev-

Our algorithm lynch-shvartsman1997
Stripe access Block access

read/F write read/S read/F write/F read/S write/S read write
latency 2δ 4δ 6δ 2δ 4δ 6δ 8δ 4δ 4δ
messages 2n 4n 6n 2n 4n 6n 8n 4n 4n
disk reads m 0 n+m 1 k+1 n+1 k+n+1 n 0
disk writes 0 n n 0 k+1 n k+n+1 n n
Network b/w mB nB (2n+m)B B (2n+1)B (2n+1)B (4n+1)B 2nB nB

Table 1: Performance comparison between our algorithm and the one by Lynch and Shvartsman [9]. The suffix “/F” denotes
the operations that finishes without recovery. The suffix “/S” indicates the operations that execute recovery. We assume that
recovery only requires a single iteration of the repeat loop. Parametern is the number of processes, andk = n−m (i.e.,k is
the number of parity blocks). We pessimistically assume that all replicas are involved in the execution of an operation.δ is
the maximum one-way messaging delay.B is the size of a block. When calculating the number of disk I/Os, we assume that
reading a block fromlog involves a single disk read, writing a block tolog involves a single disk write, and that timestamps
are stored in NVRAM.

eral straight-forward ways to reduce the network bandwidth
consumed by the algorithm for block-level writes: (a) if we
are writing block j, it is only necessary to communicate
blocks to p j and the parity processes, and (b) rather than
sending both the old and new block values to the parity pro-
cesses, we can send a single coded block value to each par-
ity process instead.

6. Related work

As we discussed in Section 1.3, our erasure-coding algo-
rithm is based on fundamentally different assumptions than
traditional erasure-coding algorithms in disk arrays.

The algorithm in [15] also provides erasure-coded stor-
age in a decentralized manner using a combination of a quo-
rum system and log-based store. The algorithm in [15] han-
dles Byzantine as well as crash failures, but does not ex-
plicitly handle process recovery (i.e., failures are perma-
nent). In contrast, our algorithm only copes with crash fail-
ures, but incorporates an explicit notion of process recov-
ery. Another difference is that the algorithm in [15] imple-
ments (traditional) linearizability where partial operations
may take effect at an arbitrary point in the future, whereas
our algorithm implements strict linearizability where par-
tial operations are not allowed to remain pending. Finally,
the algorithm in [15] only implements full-stripe reads and
writes, whereas our algorithm implements block-level reads
and writes as well.

The goal of [2] is to allow clients of a storage-area
network to directly execute an erasure-coding algorithm
when they access storage devices. The resulting distributed
erasure-coding scheme relies on the ability for clients to ac-
curately detect the failure of storage devices. Moreover, the
algorithm in [2] can result in data loss when certain com-
binations of client and device failures occur. For example,

consider a 2 out of 3 erasure-coding scheme with 3 stor-
age devices: if a client crashes after updating only a sin-
gle data device, and if the second data device fails, we can-
not reconstruct data. In contrast, our algorithm can tolerate
the simultaneous crash of all processes, and makes progress
whenever anm-quorum of processes come back up and are
able to communicate.

Several algorithms implement atomic read-write regis-
ters in an asynchronous distributed system based on mes-
sage passing [4, 9, 10]. They all assume a crash-stop failure
model, and none of them support erasure-coding of the reg-
ister values.

References

[1] M. K. Aguilera and S. Frolund. Strict linearizability and
the power of aborting. Technical Report HPL-2003-241, HP
Labs, December 2003.

[2] K. Amiri, G. A. Gibson, and R. Golding. Highly concur-
rent shared storage. In20th Int. Conf. on Dist. Comp. Sys.
(ICDCS), Taipei, Taiwan, April 2000.

[3] S. Asami. Reducing the cost of system administration of a
disk storage system built from commodity components. PhD
thesis, University of California, Berkeley, May 2000. Tech.
Report. no. UCB-CSD-00-1100.

[4] H. Attiya, A. Bar-Noy, and D. Dolev. Sharing memory ro-
bustly in message-passing systems.Journal of the ACM
(JACM), 42(1):124–142, 1995.

[5] J. Elson, L. Girod, and D. Estrin. Fine-grained network time
synchronization using reference broadcasts. In5th Symp. on
Op. Sys. Design and Impl. (OSDI), pages 147–163, Boston,
MA, USA, December 2002.

[6] S. Frolund, A. Merchant, Y. Saito, S. Spence, and A. Veitch.
FAB: Enterprise Storage Systems on a Shoestring. In8th
Workshop on Hot Topics in Operating Systems (HOTOS-
VIII) , Kauai, HI, USA, May 2003.

http://www.hpl.hp.com/techreports/2003/HPL-2003-241.html
http://www.hpl.hp.com/techreports/2003/HPL-2003-241.html
http://portal.acm.org/toc.cfm?id=200836&coll=portal
http://portal.acm.org/toc.cfm?id=200836&coll=portal
http://www.usenix.org/publications/library/proceedings/osdi02
http://www.usenix.org/publications/library/proceedings/osdi02
http://www.hpl.hp.com/research/ssp/papers/FAB-HOTOS03.pdf

[7] S. Frolund, A. Merchant, Y. Saito, S. Spence, and A. Veitch.
A Decentralized Algorithm for Erasure-Coded Virtual Disks.
Technical Report HPL-2004-46, HP Labs, April 2004.

[8] M. Herlihy and J. Wing. Linearizability: a correctness condi-
tion for concurrent objects.ACM Trans. on Prog. Lang. and
Sys. (TOPLAS), 12(3):463–492, July 1990.

[9] N. A. Lynch and A. A. Shvartsman. Robust emulation
of shared memory using dynamic quorum-acknowledged
broadcasts. In27th Int. Symp. on Fault-Tolerant Comput-
ing (FTCS), pages 272–281, Seattle, WA, USA, June 1997.

[10] N. A. Lynch and A. A. Shvartsman. RAMBO: A recon-
figurable atomic memory service for dynamic networks. In
16th Int. Conf. on Dist. Computing (DISC), pages 173–190,
Toulouse, France, October 2002.

[11] D. A. Patterson, G. Gibson, and R. H. Katz. A case for re-
dundant arrays of inexpensive disks (RAID). InInt. Conf. on
Management of Data (SIGMOD), pages 109–16, Chicago,
IL, USA, June 1988.

[12] J. S. Plank. A tutorial on Reed-Solomon coding for fault-
tolerance in RAID-like systems.Software—Practice and Ex-
perience, 27(9), 1997.

[13] S. Reah, P. Eaton, D. Geels, H. Weatherspoon, B. Zhao, and
J. Kubiatowics. Pond: the OceanStore prototype. InUSENIX
Conf. on File and Storage Technologies (FAST), San Fran-
cisco, CA, March 2003.

[14] J. Satran, K. Meth, et al. RFC3720: Internet small com-
puter systems interface (iSCSI). http://www.faqs.org/rfcs-
/rfc3720.html, 2004.

[15] J. J. Wylie, G. R. Goodson, G. R. Ganger, and M. K. Re-
iter. Efficient byzantine-tolerant erasure-coded storage. In
Int. Conf. on Dependable Systems and Networks (DSN),
Frorence, Italy, June 2004.

http://www.hpl.hp.com/techreports/2003/HPL-2004-46.html
http://www.usenix.org/publications/library/proceedings/fast03
http://www.usenix.org/publications/library/proceedings/fast03
http://www.faqs.org/rfcs/rfc3720.html
http://www.faqs.org/rfcs/rfc3720.html
http://2004.dsn.org

	Introduction
	Federated array of bricks
	Why erasure codes?
	Challenges of distributed erasure coding

	Model
	Erasure-coding primitives
	m-quorum systems
	Timestamps

	Correctness
	Algorithm
	Overview
	Recovering from partial writes
	Linearizing partial operations

	Persistent data structures
	Reading and writing the whole stripe
	Reading and writing a single block

	Discussion
	Garbage collection of old data
	Algorithm complexity

	Related work

