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Abstract e -

A Federated Array of Bricks is a scalable distributed
storage system composed from inexpensive storage bricks.
It achieves high reliability with low cost by usingasure
coding across the bricks to maintain data reliability in
the face of brick failures. Erasure coding generates n en-
coded blocks from m data blocks > m) and permits the
data blocks to be reconstructed from any m of these en-
coded blocks. We present a new fully decentralized erasure-
coding algorithm for an asynchronous distributed system.
Our algorithm provides fully linearizable read-write access
to erasure-coded data and supports concurrent 1/O con-
trollers that may crash and recover. Our algorithm relies
on a novel quorum construction where any two quorums in- Figyre 1: A typical FAB structure. Client computers con-
tersectin m processes. nect to the FAB bricks using standard protocols. Clients can

issue requests to any brick to access any logical volume.
The bricks communicate among themselves using the spe-
1. Introduction cialized protocol discussed in this paper.
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Distributed disk systems are becoming a popular al-
ternative for building large-scale enterprise stores. They
offer two advantages to traditional disk arrays or main- . ) N
frames. First, they are cheaper because they need not rely Oﬁhoosmg appropriate valuesmf n, and the unit size, users

highly customized hardware that cannot take advantage ofcan tune the capacity efficiency (cost), availability, and per-
economies of scale. Second, they can grow smoothly fromformance according to their requ_irements. The fle?dbil_ity of
small to large-scale installations because they are not lim-€rasure codes has attracted a high level of attention in both

; . et
ited by the capacity of an array or mainframe chassis. Onthe |rr]1duTtr|a.I ;md. reszarchdgomhmun|tles _ll"' 2113, hll]'
the other hand, these systems face the challenge of offering . | e algorithm introduced in this paper improves the state

high reliability and competitive performance without cen- O_f the art on many fronts. Existing erasure—c.:odmg.glgo-
tralized control. rithms either require a central coordinator (as in traditional

This paper presents a new decentralized coordination al_disk arrays), rely on the ability to detect failures accurately

gorithm for distributed disk systems using deterministic era- @"d quickly (a problem in real-world systems), or assume
sure codes. A deterministic erasure code, such as Reedt_hat failures are permanent (any distributed system must be

Solomon[[12] or parity code, is characterized by two param- able to handle temporary failures and recovery of it's com-

eters,m andn[f] It divides a logical volume into fixed-size ponents). o ,
stripes each withm stripe units and computes — m par- In contrast, our algorithm is completely decentralized,

ity units for each stripe (stripe units and parity units have yet maintains strict Iinearizability" [8,]1] and data consis-
tency for all patterns of crash failures and subsequent re-

1 Reed-Solomon code allows for any combinatiomodndn, whereas qoveries WithouF r_e-quir_in_g qu_iCk or accurate failure detec-
parity code only allows fom= n— 1 (RAID-5) orm=n—2 (RAID- tion. Moreover, it is efficient in the common case and de-
6). grades gracefully under failure. We achieve these properties

the same size). It can then reconstruct the originatripe
units from anym out of then stripe and parity units. By




by running voting over a quorum system which enforces
a large-enough intersection between any two quorums to  1e+14
guarantee consistent data decoding and recovery. )

In the next two sections, we provide background infor-
mation on theFAB system we have built and quantify the
reliability and cost benefits of erasure coding. Sedfioh 1.3
articulates the challenge of the coordination of erasure cod-
ing in a totally distributed environment and overviews our
algorithm. We define the distributed-systems model that our
algorithm assumes in Sectiph 2 and outline the guarantees
of our algorithm in Sectiofi|3. We present our algorithm in
Sectior{ 4, analyze it in Secti¢f 5, and survey related work  ,¢,,, ‘ ‘
in Sectior{ 6. 1 10 100 1000
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1.1. Federated array of bricks
Figure 2: Mean time to first data loss (MTTDL) in stor-

We describe our algorithm in the context oFederated age systems using (1) striping, (2) replication and (3) era-
Array of Bricks (FAB), a distributed storage system com- sure coding. (1) Data is striped over conventional, high-
posed from inexpensivericks [6]. Bricks are small stor-  end, high-reliability arrays, using internal RAID-5 encod-
age appliances built from commodity components including ing in each array/brick. Reliability is good for small sys-
disks, a CPU, NVRAM, and network cards. Fig[ite 1 shows tems, but does not scale well. (2) Data is striped and repli-
the structure of a typical FAB system. Bricks are connected cated 4 times over inexpensive, low reliability array bricks.
together by a standard local-area network, such as GigabiReliability is highest among the three choices, and scales
Ethernet. FAB presents the client with a number of logi- well. Using internal RAID-5 encoding in each brick im-
cal volumes, each of which can be accessed as if it were goroves the MTTDL further over RAID-0 bricks. (3) Data
disk. In order to eliminate central points of failure as well is distributed using 5-of-8 erasure codes over inexpensive
as performance bottlenecks, FAB distributes not only data, bricks. The system scales well, and reliability is almost as
but also the coordination of I/O requests. Clients can accesshigh as the 4-way replicated system, using similar bricks.
logical volumes using a standard disk-access protocol (e.g.;
iISCSI [14]) via acoordinator module running ofany brick.

This decentralized architecture creates the challenge of en{MTTDL), which is the expected number of years before
suring single-copy consistency for reads and writes with- data is lost for the first time. For example, in a stripe-based
out a central controller. It is this problem that our algorithm system, data is lost when any one brick breaks terminally.

solves. On the other hand, in a system usingout of n erasure
coding, a piece of data is lost when more thea m of n
1.2. Why erasure codes? bricks that store the data terminally break at the same time.

Thus, the system-wide MTTDL is roughly proportional to

While any data storage system using large numbers ofthe number of combinations of brick failures that can lead
failure-prone components must use some form of redun-to a data loss. We used the component-wise reliability num-
dancy to provide an adequate degree of reliability, there arebers reported in_|3] to extrapolate the reliability of bricks
several alternatives besides the use of erasure codes. Thand networks, and calculated the MTTDL assuming random
simplest method for availability is to stripe (distribute) data data striping across bricks. This graph shows that the reli-
over conventional, high-reliability array bricks. No redun- ability of striping is adequate only for small systems. Put
dancy is provided across bricks, but each brick could useanother way, to offer acceptable MTTDL in such systems,
an internal redundancy mechanism such as RAID-1 (mir- one needs to use hardware components far more reliable
roring) or RAID-5 (parity coding). The second common al- and expensive than the ones commonly offered in the mar-
ternative is to mirror (i.e., replicate) data across multiple ket. On the other hand, 4-way replication and 5-of-8 erasure
bricks, each of which internally uses either RAID-0 (non- coding both offer very high reliability, but the latter with a
redundant striping) or RAID-5. This section compares era- far lower storage overhead. This is because reliability de-
sure coding to these methods and show that erasure codingends primarily on the number of brick failures the system
can provide a higher reliability at a lower cost. can withstand without data loss. Since both 4-way replica-

Figure[2 shows expected reliability of these schemes.tion and 5-0f-8 erasure coding can withstand at least 3 brick
We measure the reliability by the mean time to data loss failures, they have similar reliability.



1.3. Challenges of distributed erasure coding

—+—Replication/R0 bricks el Implementing erasure-coding in a distributed system,
—+— Replication/R5 bricks / such as FAB, presents new challenges. Erasure-coding in
— Egg:;ﬁﬁg oroee traditional disk arrays rely on a centralized 1/O controller
that can accurately detect the failure of any component disk

that holds erasure-coded data. This assumption reflects the
tight coupling between controllers and storage devices—
they reside within the same chassis and communicate via
an internal bus.

It is not appropriate to assume accurate failure detec-
0 ‘ ‘ ‘ ‘ ‘ tion or to require centralized control in FAB. Storage bricks
1E-02 1E+01 1E+04 1E+07 1E+10 1E+13 serve as both erasure-coding coordinators (controllers) and
storage devices. Controllers and devices communicate via a
standard shared, and potentially unreliable, network. Thus,
a controller often cannot distinguish between a slow and
Figure 3: Storage overheads (raw capacity/logical capac-failed device: the communication latency in such networks
ity) of systems using replication and erasure coding. Theis unpredictable, and network partitions may make it tem-
storage overhead of replication-based systems rises muchorarily impossible for a brick to communicate with other
more steeply with increasing reliability requirements than pricks.
for systems based on erasure-coding. Using RAID-5 bricks  oyr algorithm relies on the notion of a quorum system,
reduces the overhead slightly. The MTTDL of a storage sys-hich allows us to handle both asynchrony and recovery.
tem that stripes data over RAID-5 bricks is fixed, and hence | our algorithm, correct execution of read and write oper-
this is omitted from this plot; the storage overhead of such gtions only requires participation by a subset of the bricks
asystemis 1.25. in a stripe. A required subset is called a quorum, and for
an m-out-ofn erasure-coding scheme the underlying quo-
rum system must only ensure that any two quorums inter-
sect in at leasim bricks. In other words, a brick that acts
as erasure-coding controller does not need to know which

Figurel3 compares the storage overhead (the ratio of rawPricks are up or down, it only needs to ensure that a quo-
Storage Capacity to |Ogica| Capacity provided) for Sampie rum executes the read or write Operatlon N quest|0n. Fur-
256TB FAB systems using replication and erasure coding, thermore, consecutive quorums formed by the same con-
and with the underlying bricks internally using RAID-5 or troller do not need to contain the same bricks, which allows
RAID-0 (non-redundant). In order to achieve a one million Pricks to seamlessly recover and rejoin the system.
year MTTDL, comparable to that provided by highend con-  Compared to existing quorum-based replication algo-
ventional disk arrays, the storage overhead for a replication-rithms [4,[9,/10], our algorithm faces new challenges that
based system is 4 using RAID-0 bricks and approximately are partly due to the fact that we use erasure-coding instead
3.2 using RAID-5 bricks. By contrast, an erasure code basedof replication, and partly due to the fact that we apply the
system withm= 5 can meet the same MTTDL requirement algorithm to storage systems. Using erasure-coding instead
with a storage overhead ofdlwith RAID-0 bricks, and yet  of replication means that any two quorums must intersect
lower with RAID-5 bricks. in minstead of 1 bricks. We define a new type of quorum

system, called am-quorum systepthat provides this in-

The storage efficiency of erasure-coded systems comedersection property. Using erasure-coding also means that it
at some cost in performance. As in the case of RAID-5 ar- is more difficult to handle partial writes where the erasure-
rays, small writes (writes to a subregion of the stripe) re- coding controller crashes after updating some, but not all,
quire a read of the old data and each of the correspond-members of a quorum. Existing quorum-based replication
ing parity blocks, followed by a write to each. Thus, for algorithms rely on the ability to write-back the latest copy
an m-of-n erasure coded system, a small write engendersduring a subsequent read operation, essentially having read
2(n—m+ 1) disk 1/Os, which is expensive. Nonetheless, operations complete the work of a partial write. However,
for read-intensive workloads (such as Web server work- with erasure coding, a partial write may update fewer than
loads), systems with large capacity requirements, and sysim stripe units, rendering subsequent read operations unable
tems where cost is a primary consideration, a FAB systemto reconstruct the stripe. We use a notionvefsioning in
based on erasure codes is a good, highly reliable choice. our algorithm so that a read operation can access a previ-
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MTTDL (years)




ous version of the stripe if the latest version is incomplete.
In existing quorum-based algorithms, a read operation
ways tries to complete a partial write that it detects. This
means that a partially written value may appear at any point
after the failed write operation, whenever a read operation
happens to detect it. Having partial write operations take ef-
fect at an arbitrary point in the future is not appropriate for
storage systems. Our algorithm implements a stronger se
mantics for partial writes: a partial write appears to either

encod e

Figure 4: Use of the primitives for a 3-out-of-5 erasure cod-

take effect before the crash or not at all. Implementing theseing scheme. Data blochs to bs form a stripe. Thencode

stronger semantics is challenging because a read operatio
must now decide whether to complete or roll-back a par-
tial write that it detects.

2. Model

We use the abstract notion of @ocess to represent
a brick, and we consider a skt of n processesl =
{p1,-..,pn}. Processes are fully connected by a network

function generates two parity blocks andc,. Whenbs is
updated to becomi;, we call modifys 4 (b3, b3, ¢1) to up-
datec; to become]. Finally, we uselecode to reconstruct
the stripe fromby, by, andc;.

bi andbf are the old and new values for data black
andc; is the old value for parity block.

and communicate by message passing. The system is asyry o m-quorum systems

chronous: there is no bound on the time for message trans

mission or for a process to execute a step. Processes fail by 14 ensure data availability

crashing—they never behave maliciously—but they may re-
cover later. Acorrect process is one that either never crashes
or eventually stops crashing. Aulty process is a process
that is not correct.

Network channels may reorder or drop messages, but,

they do not (undetectably) corrupt messages. Moreover, net
work channels have a fair-
infinite number of times to a correct process will reach the
destination an infinite number of times.

2.1. Erasure-coding primitives

We use the termhlock to refer to the unit of data storage.
Processes store data using m¥out-of-n erasure-coding
scheme. A stripe consists af data blocks, and we gen-
eraten — m parity blocks from thesen data blocks. Thus,
each stripe results in the storagerolocks; each process
stores one of theseblocks.

The primitive operations for erasure coding are listed in

Figure[4:

e encode takesm data blocks and returne blocks,
among which the firstm are the original blocks
and the remainingh — m are parity blocks. We de-
fine encode to return the original data blocks as a
matter of notational convenience.

decode takes anym out of n blocks generated from an
invocation ofencode and returns the originah data
blocks.

modify; j(bi,bi,cj) re-computes the value of thgth
parity block after the'th data block is updated. Here,

we use a quorum system:
each read and write operation requires participation from
only a subset o), which is called a quorum. Withm-out-

of-n erasure coding, it is necessary that a read and a write
guorum intersect in at least processes. Otherwise, a read
peration may not be able to construct the data written by a
previous write operation. Am-quorum system is a quorum

loss property: & message sent aldy siem where any two quorums interseatielements; we

refer to a quorum in am-quorum system as an-quorum.
Let f be the maximum number of faulty processeblin
An m-quorum system is then defined as follows:

Definition 1 An m-quorum system® C 2V is a set satisfy-
ing the following properties.

VQ1, Q€ Q:[Q1NQ2f >m.
vSe2V st.|§=f,3Qc Q:QNS=0.

The second property ensures the existence aof-guiorum
for any combination off faulty processes. It can be shown
that f = |(n—m)/2] is a necessary and sufficient condi-
tion for the existence of am-quorum system (we prove this
claimin [7]). Thus, we assume that at mdst | (n—m)/2|
processes are faulty.

We use a non-blocking primitive callegiorum() to cap-
ture request-reply style communication with mguorum
of processes. Thquorum(msg) primitive ensures that at
least anm-quorum receivesnsg, and it returns the list of
replies. From the properties of amquorum system defined
above, we can implemegtiorum() in a non-blocking man-
ner on top of fair-lossy channels by simply retransmitting
messages periodically.



2.3. Timestamps read. In our algorithm, the fate of a partial write is in fact de-
cided by the next read operation on the same data: the read

Each process provides a non-blocking operation calledrolls the write forward if there are enough blocks left over

newTS that returns a totally ordered timestamp. There are from the write, otherwise the read rolls back the write.

two special timestampd,owTS and HighTS, such that

for any timestamp generated byewTS, LowTS <t <

HighTS. We assume the following minimum properties

from newTS.

We allow operations on a storage registeutiort if they
are invoked concurrently. It is extremely rare that applica-
tions issue concurrent write-write or read-write operations
to the same block of data: concurrency is usually resolved

UNIQUENESS Any two invocations ofnewTS (possibly at the application level, for example by means of locking.

by different processes) return different timestamps. In fact, in analyzing several real-world 1/O traces, we have
found no concurrent write-write or read-write accesses to

the same block of datal[6]. An aborted operation returns
a special value (e.g.l) so that the caller can distinguish
PROGRESS Assume thatewTS() on some process re- between aborted and non-aborted operations. The outcome
turnst. If another process invokeswTS an infinite of an aborted operation is non-deterministic: the operation
number of times, then it will eventually receive a time- may have taken effect as if it were a normal, non-aborted
stamp larger that operation, or the operation may have no effect at all, as if it
had never been invoked. Strict linearizability incorporates a
general notion of aborted operations.

MONOTONICITY: Successive invocations eew TS by a
process produce monotonically increasing timestamps.

A logical or real-time clock, combined with the issuer’s

process ID to break ties, satisfies these properties.
In practice, it is important to limit the number of aborted

operations. Our algorithm only aborts operations if they ac-

3. Correctness tually conflict on the same stripe of data (i.e., write-write or
read-write operations), and only if the operations overlap in
time or generate timestamps that do not constitute a logical
) X clock. Both situations are rare in practice. First, as we have
we call astorage registerAs we describe below, a Stor- 4044y observed, it is extremely rare for applications to
age register is a special type of atomic read-write register .o, rently issue conflicting operations to the same block
that matches the properties and requirements of storage SYS5f data. Moreover, we can make stripe-level conflicts un-
tems. ) ] ) ] ) _likely by laying out data so that consecutive blocks in a log-
A storage register is a strictly linearizable [1] atomic -5 volume are mapped to different stripes. Second, mod-

read-write register. Like traditional linearizability/ [8], strict o1, clock-synchronization algorithms can keep clock skew
linearizability ensures that read and write operations eXe-extremely small[[5]. Finally, it is important to notice that

cute in a total order, and that each operation logically takesine absence of concurrency and the presence of clock syn-

effect instantaneously at some point between its invocationgronization only affect the abort rate, not the consistency
and return. Strict linearizability and traditional linearizabil- ¢ y5ta.

ity differ in their treatment of partial operations. A partial
operation occurs when a process invokes a register, and then
crashes before the operation is complete. Traditional lin-
earizability allows a partial operation to take effect at any
time after the crash. That s, if a storage brick crashes while4. Algorithm
executing a write operation, the write operation may update
the system at an arbitrary point in the future, possibly after
the brick has recovered or has been replaced. Such delaye
updates are clearly undesirable in practice—it is very com-
plicated, if not impossible, for the application-level logic
that recovers from partial writes to take future updates into
account. In Sectior{ 4.]L, we give describe the basic principles be-
Strict linearizability ensures that a partial operation ap- hind the algorithm and the key challenges that the algo-
pears to either take effect before the crash or not at all. Therithm solves. Sectioh 4.2 describes the data structures used
guarantee of strict linearizability is given relative to external by the algorithm. Sectiop 4.3 gives the pseudo-code for
observers of the system (i.e., applications that issue readseading and writing stripes of data, and Secfior] 4.4 gives
and writes). The only way for an application to determine if the pseudo-code for reading and writing individual blocks
a partial write actually took effect is to issue a subsequentwithin a stripe. In[[7], we prove the algorithm correct.

For each stripe of data, the processedicollectively
emulate the functionality of a read-write register, which

g Our algorithm implements a single storage register; we
can then independently run an instance of this algorithm
for each stripe of data in the system. The instances have
no shared state and can run in parallel.



4.1. Overview

Our algorithm supports four types of operationsid-
stripe and write-stripe to read and write the entire stripe, a Al
andread-block andwrite-block to read and write individual X)) Wit i i f
blocks within the stripA read operation returns a stripe b A : —

e ) . ! 1) vhth
or block value if it executes successfully; a write operation
returnsok if it executes successfully. Both read and write w1
operations may abort, in which case they return the special

value L. Figure 5: To ensure strict linearizability, read operations
A process that invokes a register operation becomes the 9 ) Y, P

coordinator for that operation. Any process can be the coor- cannot simply pick, and possibly write-back, the value with

) : . . : . the highest timestamp. In the example, the proceasées
dinator of any operation. The designation of coordinator is . N L
. : . . . andc implement a storage register; for simplicity, we use
relative to a single operation: consecutive operations on the

same data can be coordinated by different processes. an erasure-coding scheme with a stripe size of 1 and where

. parity blocks are copies of the stripe block (i.e., replication
Each process stores a single block for each storage reg: . : -
. A . as a special case of erasure coding). The |&@a¢) indi-
ister. To simplify the presentation, we assume that process

i always stores bloch. That is, processe Store cates that a process stores a valweith timestampt. The

J Y ' ' P PL: - Pm first request writg(V') crashes after storing on only a;
the data blocks, an@n,.1... pn store the parity blocks. It i

. : . . the second readequest contacts procesdeandc and re

is straightforward to adapt the algorithm to more sophis- turns valuev. Thena recovers, and the subsequent |
ticated data-layout schemes. In the following, we refer to turnsy’ eveﬁ though Writgse,ems to have happened before
Pmr1-- . Pn as theparity processes '

To implement a total order for operations, each processreaciz inthe eye of an observer.
stores a timestamp along with each block of data. The time-
stamp denotes the time when the block was last updatedfrom the logs to recover the last register value. We discuss
The basic principle of our algorithm is then for a write co- log trimming in Sectiofi 5]1.
ordinator to send a message toraiguorum of processes to ) o ] )
store new block values with a new timestamp. A read coor- 4-1-2. Linearizing partial operations After a par-
dinator reads the blocks and timestamps fronmeguiorum tial write, a read operation cannot simply pick the value
and reconstructs the most recent register value. with the highest timestamp, since this may violate strict lin-
A key complexity of the algorithm stems from the han- earizability. qu example{ con_side_r_the execution in _Fig-
diing of a partial write operation, which stores a value in Ureé[3- To satisfy strict linearizability, a storage-register
fewer than anm-quorum of replicas, either because the co- |mplementat|on must ensure the following total order:
ordinator crashes or proposes too small a timestamp. Such 4/fité1 — read — read. In other words, reagmust re-

partial write causes two potential problems: inability to re- tUrn v even though it finds the value with a higher
cover the previous value, and violation of strict linearizabil- timestamp. That is, we need to detect partial write oper-
ity. ations and abort them to handle such a situation. We ac-

complish this by executing a write operation in two

4.1.1. Recovering from partial writes The challenge phases. In the first phase, a write operation informs an
with erasure coding is that, during a write operation, a pro- m-quorum about the intention to write a value; in the sec-
cess cannot just overwrite its data block with the new ond phase, a write operation actually writes the value to
data value. For example, consider an erasure-coded regisan m-quorum. A read operation can then detect a par-
ter withm=5,n=7 (them-quorum size is 6). If a write co-  tjal write as an unfulfilled intention to write a value.
ordinator crashes after storing the new value on only 4 pro-  Our approach of explicit partial-write detection has a
cesses, we have 4 blocks from the new stripe and 3 blockspleasant side effect: an efficient single-round read operation
from the old, which means that it is impossible to con- in the common case. A read operation first checks ifran
struct either the old or the new stripe value. quorum of processes has no partial write; if so, it simply re-

To handle such situations, each process keeps a log ofurns the current register value: the value received from the
(block-value, timestamp) pairs of past write requests. A process containing the requested data, or the stripe value de-
write request simply appends the new value to the log; arived from anym processes in the case of a full stripe read.
read coordinator collects enough of the most recent blocksrailing the optimistic phase, the read operation reconstructs
the most recent register value and writes it back taran

2 The single-block methods can easily be extended to access multiplequorum. The write-back aborts any previous partial write
blocks, but we omit this extension to simplify the presentation. operation

1
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4.2. Persistent data structures

value of variablevar to the persistent storage. When a pro- 5

stamp,ord-ts, and a set of timestamp-block pairs, called the
log. The initial values forord-ts and log are LowTS and

{[LowTS, nil]}, respectively. (Remember that, for any time- 9
stampt generated byiewTS, LowTS <t < HighTS.) The 10:
log captures the history of updates to the register as seen by1-
. procedure write-stripetripe)
in the log without actually storing a new value, we some- 13:
times store a paifts, L] in the log. We define three func- 14

an individual process. To update the timestamp information 12

tions on the log: 15:
16:

e The “max-ts{og)” function returns the highest time- 17
stamp inlog. 18:

e The “max-block{og)” function returns the non: 19:
value inlog with the highest timestamp. 20:

21:

e The “max-belowjog, ts)” function returns the nonk 29

value inlog with the highest timestamp smaller than 23:

Variableord-ts shows the logical time at which the most 24

recent write operation was started, establishing its place in 2%

the ordering of operations. As such, maxkg) < ord-ts 23
indicates the presence of a partial operation. 28j
29:
4.3. Reading and writing the whole stripe 30:
31:

Algorithm[J] describes the methods for reading and writ-
ing a stripe. Algorithn| P describes the handlers invoked 3
upon receipt of messages from a coordinator. 3

The write-stripe method triggers a two-phase interac- 34

tion. In the first phase, the coordinator sends “[Orasf, 35:

messages to replicas with a newly generated timestamp. Ags

replica updates iterd-ts and respondek if it has not al-
ready seen a request with a higher timestamp. This estab-
lishes a place for the operation in the ordering of opera-

2:
3:

1: procedure read-stripe()
2:

Each process has persistent storage that survives crashesg.
In general, thestore(var) primitive atomically writes the 4

val «—fast-read-stripe()
if val = 1 then val «—recover()
return val

) " : procedure fast-read-stripe
cess recovers, it automatically recovers the most recently 6: P pe()

stored value for each variable. 7:
The persistent state of each process consists of a time- g.

targets —Pickmrandom processes
replies «—quorum([Read,targets])
if status in all replies irue
and val-ts in all replies is the same
and all processes imrgets repliedthen
return decode(blocks in replies fromargets)
else
return L

ts «<—newTS()

replies «—quorum([Order, ts])

if status in any reply ifalse then return L
else return store-stripe{tripe, ts)

. procedure recover()

ts «—newTS()

s «read-prev-stripag)

if s £ 1 and store-stripe{, ts) = OK then
return s

else
return L

. procedure read-prev-stripeg)

max «—HighTS
repeat
replies <—quorum([Order&ReadALL , max, ts])
if status in any reply ifalse then
return L
max —the highest timestamp ireplies
blocks «the blocks inreplies with
timestampmax
until | blocks | > m
return decode(blocks)

. procedure store-stripeftripe, ts)

replies «—quorum([Write, encode(stripe), ts])
if status in all replies irue then return ok
else return L

Algorithm 1: Methods for accessing the entire stripe.

tions in the system, and prevents a concurrent write oper-
ation with an older timestamp from storing a new value
between the first and second phases. In the second round,
the coordinator sends “[Write,..]” messages and stores the
value.

it dynamically discovers the value to write using the read-

The read-stripe method first optimistically assumes that prev-stripe method. This method finds the most recent ver-
anm-quorum of processes stores blocks with the same valuesion with at least blocks. Its loop ends when it finds the

and timestamp, and that there are no partial writes. If thesetimestamp of the most recent complete write. The recov-
assumptions are true, the method returns after one roundery method ensures that the completed read operation ap-
trip without modifying the persistent state of any process pears to happen after the partial write operation and that fu-
(line[9). Otherwise, the two-phase recovery method is in- ture read operations will return values consistent with this
voked, which works like the write-stripe method except that history.



38: whenreceive [Readtargets] from coord 61: procedure read-block()

39:  val-ts —max-ts{og) 62:  replies <—quorum([Read,{j}])
40:  status «val-ts > ord-ts 63: if status is altrue and p; replied
41: b1 and val-ts in all replies is the samien
42:  if status andi € targets then 64: return the block inpj’s reply
43: b —max-block(og) 65: s < recover()
44:  reply [Read-R status, val-ts, b] to coord 66: if s # 1 then
45: whenreceive [Orderts] from coord 67: return (]
46:  status «—(ts > max-tsog) and ts > ord-ts) 68:  else
69: return L

47:.  if status then ord-ts «ts; store(ord-ts)
48:  reply [Order-R,status] to coord 70: procedure write-block(j, b)

71 ts <newTS()

72:  if fast-write-block(, b, ts) = ok then return ok
73:  else return slow-write-block(, b, ts)

49: whenreceive [Order&Readj, max, ts] from coord
50:  status «(ts > max-ts{og) and ts > ord-ts)
51: Its < LowTS; b «— L

52: if status then 74: procedure fast-write-block(, b, ts)

53: ord-ts «ts; store(ord-ts) 75:  replies «—quorum([Order&Read,j, HighTS, ts])
54: if j=1i or j=ALL then 76:  if status containfalse or p; did not replythen
55: [Its,b] <—max-below(og, max) 77 return L

56: reply [Order&Read-Rstatus, Its, b] to coord 78:  bj «the block inpj’s reply

79:  tsj «the timestamp ipj’s reply

80:  replies «—quorum([Modify, j, bj, b, tsj, ts])
81: if status is altrue then return ok

82: elsereturn L

57. whenreceive [Write,[by, ..., by], ts] from coord
58:  status «—(ts > max-tsog) and ts > ord-ts)
59: if status then log «—Ilog U{[ts,bj]}; store(log)
60:  reply [Write-R, status] to coord

83: procedure slow-write-block(, b, ts)

Algorithm 2: Register handlers for procegs 84:  data —read-prev-stripeg)
] — ] 85: if data= L thenreturn L
4.4. Reading and writing a single block 86: data[j] b

87:  return store-stripedata, ts)

Algorithm[3 defines the methods and message handlersgs: when receive [Modify, j, by, b, ts;, ts] from coord

for reading and writing an individual block. 89: status —(tsj = max-tsfog) and ts > ord-ts)
The read-block method, which reads a given block num- gg:  if status then
ber (j), is almost identical to the read-stripe method ex- oaz: if i = j then
cept that, in the common case, ony performs a read.  92: bi b
The write-block method updates the parity blocks as well 93: else ifi > mthen
as the data block at proceps. This is necessary when an ~ 94: bi <modify; j(bj, b, max-block(og))
I/0 request has written to a single block of the stripe, in or- 95 else
der to maintain consistency of the whole stripe. In the com- 96: by —L
97: log «—log U{[ts, bi]}; store(log)

mon case without any partial write, this method reads from,

and writes to, procesp; and the parity processes (fast- 98 reply [Modify-R, status] to coord

write-block). Otherwise, it essentially performs a recovery Algorithm 3: Block methods and handlers for

(Line[TI7), except that it replaces tjith block with the new

value upon write-back. cesses to garbage collect data with timestamps olderthan
Notice that the coordinator can send this garbage-collection

5. Discussion message asynchronously after it retuoms

5.1. Garbage collection of old data 5.2. Algorithm complexity

Our algorithm relies on each process keeping its entire  Table[] compares the performance of our algorithm and
history of updates in a persistent log, which is not practi- state-of-the-art atomic-register constructions [[9, 10]. We
cal. For the correctness of the algorithm, it is sufficient that improve on previous work in two ways: efficient reading
each process remember the most recent timestamp-data pain the absence of failures or concurrent accesses, and sup-
that was part of a complete write. Thus, when a coordinator port of erasure coding.
has successfully updated a full quorum with a timestasmp In describing our algorithm, we have striven for sim-
it can safely send a garbage-collection message to all proplicity rather than efficiency. In particular, there are sev-



Our algorithm lynch-shvartsman199j
Stripe access Block access
read/F| write read/S | read/F| write/F read/S write/S | read write
latency 2% 45 60 2% 45 60 8% 45 45
# messages 2n 4n 6n 2n 4n 6n 8n 4n 4n
# disk reads m 0 n+m 1 k+1 n+1 k+n+1 n 0
# disk writes 0 n n 0 k+1 n k+n+1 n n
Network b/w | mB nB | (2n+m)B B (2n+1)B | (2n+1)B | (4n+1)B | 2nB nB

Table 1: Performance comparison between our algorithm and the one by Lynch and Shvartsman [9]. The suffix “/F” denotes
the operations that finishes without recovery. The suffix “/S” indicates the operations that execute recovery. We assume that
recovery only requires a single iteration of the repeat loop. Paramédhe number of processes, aneg n—m¢(i.e.,kis

the number of parity blocks). We pessimistically assume that all replicas are involved in the execution of an ojddgation.

the maximum one-way messaging delBys the size of a block. When calculating the number of disk 1/0s, we assume that
reading a block frormog involves a single disk read, writing a block ke involves a single disk write, and that timestamps

are stored in NVRAM.

eral straight-forward ways to reduce the network bandwidth consider a 2 out of 3 erasure-coding scheme with 3 stor-
consumed by the algorithm for block-level writes: (a) if we age devices: if a client crashes after updating only a sin-
are writing blockj, it is only necessary to communicate gle data device, and if the second data device fails, we can-
blocks top; and the parity processes, and (b) rather than not reconstruct data. In contrast, our algorithm can tolerate
sending both the old and new block values to the parity pro- the simultaneous crash of all processes, and makes progress
cesses, we can send a single coded block value to each pawhenever am-quorum of processes come back up and are
ity process instead. able to communicate.

Several algorithms implement atomic read-write regis-
ters in an asynchronous distributed system based on mes-
sage passin@ [4] 9, 10]. They all assume a crash-stop failure
model, and none of them support erasure-coding of the reg-
ister values.

6. Related work

As we discussed in Sectipn 1.3, our erasure-coding algo-
rithm is based on fundamentally different assumptions than
traditional erasure-coding algorithms in disk arrays.

The algorithm in[[15] also provides erasure-coded stor- References
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