K

DataMesh™ — scope and objectives:

a commentary

This paper is a commentary on DataMesh — scope and
objectives [Wilkes89], explaining the reasoning and con-
clusions of that document in greater detail.

A DataMesh is a large, fast, highly functional storage server
built in a particular way: every storage device will be
paired with a high performance VLSI microprocessor,
each of which will be linked to its peers by a high per-
formance, extensible interconnect.

A DataMesh can be viewed equally well as a storage
server with a lot of local processing power, or as a high-
ly-parallel computer with embedded storage. A physi-
cal manifestation might be as a wall-sized array of
storage/processor nodes (discs, optical drives, page-
addressable RAM, etc) linked together by a web-like in-
terconnect. Such a thing would live in the basement,
and serve the storage needs of an enterprise of tens to
hundreds of people. A DataMesh will:

= scale to large amounts of secondary storage;

= use processor and storage parallelism to deliver high
performance;

= use processor parallelism to provide higher func-
tionality than traditional storage servers.

1 Obijectives

The DataMesh project is researching the best way to con-
struct large, fast, highly functional storage servers.
Along the way, it will investigate the optimum algo-
rithms to use inside them and the right services for
them to provide.

The DataMesh architecture is designed for use in a Co-
operative Computing Environment (CCE) where users
collaborate to access, manipulate, and update the infor-
mation resources of an enterprise. Computing resourc-
es are physically distributed through the physical plant
of the enterprise, although the computing infrastruc-
ture appears almost seamless to its users: they will rare-
ly need to be concerned with the physical location of
information or computing resources.

Access to the CCE will be via a local computer with a
display and moderate-to-large amounts of processing
power. Such machines might span the range from high-

John Wilkes

19 July 1989
HPL-DSD-89-44

end workstations, with fast, highly-functional graphics
coprocessors and considerable local processing power,
to the computer equivalent of a telephone (what | call a
PeopleStation): there’ll be one on every desk, but there
will also be “public” ones that anybody can use to ac-
cess the system if they happen not to be in their office.
In either case there will be enough processing power to
do the commonly-performed tasks, but individual ma-
chines will increasingly be dependent on resources else-
where in the network, such as databases, computation
servers, network gateways, and so on.

The DataMesh will provide the shared, common stor-
age repository for a CCE. It will hold files (both UNIX-
like byte streams and record-oriented formats), struc-
tured and versioned data (e.g. as used in software engi-
neering environments), objects of varying complexity,
traditional databases, and multimedia elements such as
images and voice—in short, all the storage needs of a
collaborative working environment of the mid to late
1990s.

One DataMesh can be expected to serve between a few
tens and a few hundreds of users. Once an enterprise
grows beyond this size multiple DataMesh servers will
be connected together in a loose federation, much like
file servers are today. Some organizations (e.g. the Li-
brary of Congress) will use a DataMesh to provide ser-
vices to clients across the global internetwork.

1.1 Large

The DataMesh size goals (0.1-10 Terabytes of online da-
ta) correspond to roughly 1 to 100 Gigabytes per client
system. Most of this would be stored on the cheap,
high-capacity devices that will become prevalent be-
tween now and 1995 (such as optical jukeboxes). These
will enable cheap online storage of tens of Gigabytes of
data—albeit with multi-second access times.

To obtain acceptable performance, perhaps 10% of the
online storage will be in the form of higher-speed devic-
es like discs—probably a smaller proportion at the larg-

UNIXO is a registered trademark of AT&T Bell Labo-
ratories in the US and other countries.

HEWLETT
PACKARD

er DataMesh sizes. If we assume that discs will be about
1 Gbyte in size and that 100 Gbyte bulk-storage devices
will be available, a DataMesh would consist of between
10 and 200 storage devices.

For calibration, IBM believes that its “median commer-
cial account” will have 300 MIPS of processing power
and 1.2 Terabytes of online storage by 1990—five years
before the DataMesh target timeframe [Gelb89]. Techni-
cal environments are currently less storage intensive
than commercial ones, but it seems reasonable to sup-
pose that the explosion in storage requirements that we
are currently witnessing will continue—especially as
more of the “large system” functions like database tech-
nology are adopted in the technical environment.

The size of the smallest “introductory” DataMesh will
be determined by the relative costs of regular discs and
DataMesh storage nodes: the only advantage of a sin-
gle-node DataMesh is its data management functions,
and it will doubtless cost more than a simple disc since
it has more hardware. The functions available from a
large DataMesh (with an array of storage devices) are
the ones that will really make it worthwhile. This might
happen for as few as four nodes, perhaps eight, al-
though the exact number is not all that important—it
will certainly be greater than one.

At the high end, the maximum size for a DataMesh will
be determined by when it stops being cost-effective to
add more nodes. As a DataMesh gets very large (a few
hundred nodes), it will exhibit scalability failure: the ben-
efit from adding each additional node will get smaller
as the costs of managing the nodes and maintaining
consistency between the data items outweigh the bene-
fits of adding more resources. Some of this decline will
be due to limitations in the internal interconnect (e.g.
bandwidth constraints); some will be due to the re-
source management algorithms being optimized for the
more common case of a few tens of nodes.

1.2 Fast

Processing power (cpu speed) is increasing faster than
physical storage device transfer rates and access speeds.
This disparity in speeds is widening, rather than nar-
rowing—and the ratio of primary to secondary memory
speeds is already in the region of ten thousand to one.
A key requirement for storage systems of the future is
to minimize the effects of this gap.

The performance metric cited in the DataMesh — scope
and objectives document [Wilkes89] was that the Data-
Mesh provide a storage service that was at least as fast
as that available locally, so that clients would want to
migrate their data into the DataMesh, even if it provid-
ed no additional functions beyond simple data storage.
This requires that the DataMesh use its parallelism and
local processing power to provide higher performance
than individual clients can.

DataMesh: a commentary

Two trends will make this particularly challenging: im-
provements in the semantics of distributed storage sys-
tems so that they better approximate the behaviour of a
uniprocessor—the single system image model—and the
continually increasing performance of client nodes.

1.2.1 Shared-storage semantics

Prior work in studying file servers has found that server
CPU load is the dominant parameter in their perfor-
mance [Lazowska86, Howard88]. Techniques such as
“stateless” servers (NFS [Sager85, Sandberg85]), or
whole-file copying (Andrew [Howard88]) require less
overhead in the server, but they achieve this at the ex-
pense of degrading the semantics of the file system in-
terface from the single-machine case. As a result, they
can only support a limited class of applications: those
that don’t update shared data, and, in Andrew’s case,
those that only access files small enough to fit in a client
machine’s local disc cache.

But this will not be viable in storage servers for the 1995
CCE market: much software relies on (or would much
prefer to rely on) single-system image semantics when
sharing data with other processes. Besides, recent re-
search work has shown that it is possible to achieve per-
formance as good as the simpler schemes by careful use
of cooperative caching between the storage server and
its clients. Examples include HP’s Distributed UNIX
product (HP-DUX) [Bartlett88a, Gutierrez88] and UC
Berkeley’s Sprite [Nelson88]. Even simple modifica-
tions to the stateless NFS protocol can produce signifi-
cant improvements in performance at little cost
[Srinivasan89].

1.2.2 Client capacity trends

Performance needs for storage servers are also being
driven by changes in the client computers. Today’s

10 MIPS workstations will be replaced by 100 MIPS ma-
chines in the 1990s, and today’s 2 MIPS personal com-
puters and X display-servers will have evolved into

20 MIPS PeopleStations. At the same time, main memo-
ry sizes will have grown: perhaps 1 Gbyte of RAM will
be common for high-end machines, 64 Mbytes for low-
end ones. These changes will have two effects: first, la-
tency requirements will become even more stringent,
because 170 latencies represent increasingly large
amounts of wasted resources as processors become fast-
er. Second, larger main memories will cause caching to
be used more aggressively, reducing some of the traffic
to and from a central server. Counterbalancing this will
be an increase in the amount of shared data, higher de-
grees of concurrent access, and greater use of high-vol-
ume data such as images and voice.

HPL-DSD-89-44

DataMesh: a commentary

1.3 Highly functional

A DataMesh will need to be more than a simple reposi-
tory for blocks of data. It will be operating in an envi-
ronment where availability of shared data will be vital
to the effective operation of an enterprise, where ease of
use will be essential because the majority of users will
not be trained computer specialists, where incremental
growth will be required to allow storage capacity to ex-
pand gracefully in size and throughput, and where new
device types and storage subsystem functions will con-
tinue to be introduced.

1.3.1 High availability

Any centralized service has to be available, accessible, ro-
bust and secure in direct proportion to people’s depen-
dence upon it. Because a DataMesh will serve as the
repository of all the shared data needed to support an
enterprise, it’s crucial that it be excellent at all four. (In
the commercial environment, it is commonplace for a
factory to have to close for the rest of a shift if the com-
puter system breaks down for more than a couple of
hours. The associated losses are usually larger than the
cost of the computer system.)

Available data is accessible to its clients even in the face
of partial faults (such as a disc head crash, or a power
outage). Availability is typically measured in terms of
Mean Time Between Failure (MTBF) and Mean Time To
Repair (MTTR). To be highly available, the DataMesh
will have to be fault tolerant: it must mask the effects of
faults, presenting the illusion of a functioning system to
its users.

Successfully meeting MTBF and MTTR goals requires
careful use of techniques such as:
= redundancy—maintaining multiple copies of a re-
source such as a data item, communications link, or
processing element;

= fault detection—noticing that a fault has occurred be-
fore its effects can propagate (e.g. detecting a
corrupted storage management algorithm before it
has overwritten valuable data);

= fault isolation—containing the effects of a fault so that
other parts of the DataMesh can continue operation;

= rollback—undoing partial actions that cannot be
completed because of the fault (e.g. if one of the files
being updated by a multi-file update is made un-
available because a device loses power, the other
files should be put back to their state before the up-
date began rather than allow a partial update);

= recovery—redoing actions that had been (uninten-
tionally) undone by the rollback;

= rebalancing—returning to the steady state, and reap-
portioning the workload between the remaining
resources.

HPL-DSD-89-44

High availability needs to be selectively applied: not ev-
erything needs to be protected with equal care. Some
items (such as temporary work files) can be trivially rec-
reated; for others, a half-day recovery period might be
acceptable if it obviates the need to keep two copies on-
line. Since very high availability is potentially expen-
sive, the precise degree should be under user control.
But it must be there if it is needed.

Accessible data must be reachable from anywhere in the
CCE: whether a user is at their “home” workstation, or
accessing the network from a public PeopleStation;
whether they are working on an HP-UX workstation or
a non-UNIX timesharing machine; whether they are on
the same local area network as the DataMesh, or on the
other side of the continent; whether the DataMesh is in
its normal state or is being repaired or backed up.

Robust means that external failures (e.g. in client ma-
chines, or client-supplied software) are not allowed to
compromise the integrity or availability of data stored
on the DataMesh.

Secure data is protected against inadvertent or mali-
cious access by unauthorized people or programs. The
DataMesh, as a repository shared by many users, will
need to ensure that the security and integrity of the data
it holds is not compromised.

1.3.2 Structured data

The trend to complement today’s simple flat-file sys-
tems with support for more structured data is well un-
der way. Various forms of structured data (from
application-level record-structuring techniques,
though system-supported access methods, up to full
traditional databases) have been used in the software
engineering and commercial data-processing commu-
nities for several years. They are becoming increasingly
popular in the technical environment (e.g. in CAD/
CAM) as understanding of their benefits grows and
their performance properties are adapted for the new
applications.

The reasons are many-fold: the structure of data is itself
information that would otherwise be hard to represent;
structured data allows more sophisticated support tools
and techniques to be used (such as inter-element consis-
tency constraints); and typesafe data protects against
inadvertent misapplication of a tool or update to the
wrong object.

Since not every structured data type can be foreseen,
the DataMesh will need to have mechanisms to allow
new data types to be added in the future. A sufficiently
general scheme would include provision for user-spec-
ified, polymorphic, typesafe, dynamically loadable
data type support, such as described in [Wilkes88].

Supporting structured data in the DataMesh will allow
it to take advantage of knowledge about the structure of

the data to improve performance, parallelism, and
availability (e.g. splitting a large relational table at tuple
boundaries when doing disc striping).

1.3.3 Scalability via incremental growth

A DataMesh must be able to grow with its user’s capac-
ity and performance needs. There are two sub-goals: a
wide range of sizes to support many different user com-
munities; and a low-cost upgrade path that approxi-
mates a cost proportional to capacity, without large
hiccups in the cost curve.

It should be possible to purchase a new storage ele-
ment, hook it up, and have the DataMesh start to take
advantage of it immediately: if the workload needed re-
balancing, that would occur automatically; if data
should migrate to take advantage of the new resource,
that would occur as needed,; if the storage hierarchy
could be rebalanced to good effect, that would take
place too.

1.3.4 Storage hierarchy

The goal of a memory, or storage, hierarchy is to present
the illusion of an array of fast, high-volume storage de-
vices using only large slow devices and small fast ones.
Such techniques are already widespread in the proces-
sor world, where the hierarchy consists of a few very
fast main registers (order of 10 ns access time), a few
hundred kilobytes of fast cache (50-100 ns), several
megabytes of main memory (500 ns), and many hun-
dreds of megabytes of discs (10-20 ms). A DataMesh
will extend this support into more levels of the storage
hierarchy. For example:
= page-addressable bulk RAM (about 1/3 the cost of
normal RAM, but only accessible in page-sized
chunks);
= high-cost, high-performance discs (e.g. multiple
arms, restricted seek distance, magnetic drums,
fixed per-track heads);
= magneto-optical discs (ten times the track density of
magnetic discs, but half the linear density, larger
seek-settling and write times);
= optical WORM devices (very high capacity, but only
write-once, and large access times);
= CD-ROMs (read-only, slow);
= optical jukeboxes (very large aggregate capacity, but
multi-second access times if the disc needs
changing);
= new tape media, such as Digital Audio Tape.

A DataMesh does not stand alone: there will be consid-
erable collaboration between the storage hierarchy
management algorithms in the DataMesh and those
used by the storage subsystem components of its cli-

DataMesh: a commentary

ents. The two storage hierarchies overlap at the level of
their respective main memories.

Client memory

Storage
subsystem

DataMesh storage

1.3.5 Multiple device types

A large DataMesh will represent a substantial financial
investment. To preserve this investment, the DataMesh
must be capable of evolving incrementally to accommo-
date the latest storage technologies as they become
available, and never have to be replaced en masse. Ex-
tensible support for multiple device types will make
this possible—ideally, even easy.

The capacity to evolve gradually through incremental
replacement will also allow a DataMesh to take advan-
tage of new processor and RAM technologies. By using
standard parts, rather than a special-purpose processor
design, it will be able to keep pace with the state of the
artin VLSI commodity processors, and not accidentally
find itself relegated to a technology backwater. (This is
a conscious difference from some work that has advo-
cated specialized processing engines and coprocessors
for storage servers such as database engines
[Glavitsch89].)

1.3.6 Offloading data-intensive work from clients

There are five main ways to take advantage of the pro-
cessing power available in the DataMesh:

1. speeding up “traditional” data access operations through
techniques such as disc striping, storage hierarchy
management, and data replication;

2. providing additional storage management functionality,
such as increased availability (through stable stor-
age, mirroring, transactional techniques, and parity
discs);

3. preprocessing raw data into a more information-rich
form by filtering it before it is dispatched to the cli-
ent;

4. taking advantage of processor-intensive algorithms to im-
prove 1/O performance (e.g. using data compression in
the higher levels of the storage hierarchy, thereby in-
creasing their effective size);

using “spare” computation cycles in the DataMesh to
offload computations such as database queries from
a client machine.

o

HPL-DSD-89-44

DataMesh: a commentary

To do any of these, the DataMesh will need to know
about the structure and content of the information it is
manipulating. For example, with knowledge of logical
record boundaries a DataMesh could log logical up-
dates rather than physical pages on transactional data,
thereby greatly reducing traffic to the log (an important
bottleneck in high transaction-rate systems
[Stonebraker84]).

The third technique, that of filtering data near its
source, is an obvious one to apply at each storage ele-
ment. Tandem has used this technique to great effect in
their disc drivers, which perform a first-pass filtering of
relational tables as they are read in, thereby substantial-
ly increasing the performance of their database
[Borr88]. ICL disc controllers support a content-address-
able file store, allowing a disc to be searched associative-
ly. For these kinds of data filtering, the filtering
algorithms will reside in the DataMesh, while their
search parameters will be supplied by clients in their re-
quests.

Once a simple filtering mechanism is in place, it isn’t
hard to generalize. For example, a DataMesh could sup-
port arbitrarily-interconnected graphs of filtering com-
putations—much as a relational database query
processor does. Note that this offloading of function
into the DataMesh is a small extension to the function-
ality that will be present anyway to handle structured
data.

A more aggressive variant is to allow clients to down-
load their own filtering algorithms into the DataMesh.
This raises several difficult questions, such as how to
maintain the integrity and availability of the DataMesh
while retaining the low overheads that resulted from it
containing only trusted software.

If the protection issues could be addressed successfully,
it might be thought worthwhile to execute arbitrary
computations in the DataMesh to offload its clients. But
this would be a mistake. It would weaken the DataMesh
emphasis on being a data server, dedicated to providing
optimal data access performance to its clients. It would
complicate the resource management and optimization
algorithms. It might even require backwards compati-
bility with client execution environments such as UNIX.

The processing power in the DataMesh is there so that
data access can be speeded up, but it is so cheap that if
no other sensible use can be made of it, that’s no great
loss. To use an analogy first expounded by Robbert van
Renesse, simply because a modern kitchen is well pop-
ulated with Z80s doesn’t mean that we feel the need to
apply load-balancing algorithms to them! If a CCE in-
stallation needs more general-purpose computing pow-
er, it should invest in more computation engines or a
dedicated processor bank.

HPL-DSD-89-44

1.3.7 Client-specified data properties

A key feature of IBM’s announced data management
support for the 1990s is the concept of System Managed
Storage [Gelb89]: rather than requiring users to specify
where the system should put their data, how many cop-
ies of it there should be, and so on, the system itself
takes care of these details by deducing them from a set
of user-supplied data behaviours.

In a DataMesh, the following benefits would result:

1. It will be easier to achieve particular levels of perfor-
mance and availability. Users don’t have to under-
stand detailed device specifications and global
resource management tradeoffs to get the effects
they desire.

2. The DataMesh will make better fine-tune placement
and storage hierarchy decisions than a human ad-
ministrator, thereby increasing the effective storage
capacity for a given performance level. An external
administrator has to take a conservative approach
when faced with a complicated set of potentially-
conflicting needs, whereas the DataMesh can use its
better internal knowledge.

3. If there are unused resources in the higher levels of
the storage hierarchy, the DataMesh will take better
advantage of them to provide more-than-minimum
performance. An external allocator has to assume
the worst case.

Data behaviour properties occur in two forms: absolute
requirements that the DataMesh must meet; and hints
that the DataMesh can use to optimize its behaviour.

For example, a user might require that a set of KSAM
files be available with 99.999% probability, with no
more than a 10 second recovery time, an 100 ms (or bet-
ter) access time under no-fault conditions, and a 20:1 ra-
tio of reads to writes. The DataMesh might choose to
implement this by mirroring the data on a pair of disc
drives on DataMesh elements that did not share a com-
mon power source, but caching the index in page-ad-
dressable RAM. (Log-based recovery techniques would
probably be ruled out by the recovery time consider-
ations; the page-addressable RAM would be needed to
provide a fast-enough access time; and mirroring
would be necessary to achieve the required level of
availability.)

Another user (or a program like a compiler) might indi-
cate that a set of files was transient—and could as easily
be recreated as replicated. Such files might never be al-
located disc space, and would participate only in a lim-
ited fashion in transactional updates (cf. non-
recoverable storage in Quicksilver [Haskin88]).

A third user might suggest that some data would al-
most never need to be accessed again a month after its
creation date, but that it should be kept for auditing

purposes “just in case”. At the end of the month, the
DataMesh might choose to migrate this data to a lower-
cost tertiary storage device such as an optical jukebox.

Finally, the DataMesh itself might notice certain access
patterns (e.g. a particular set of files always accessed in
sequence), and remember performance hints for future
use. These would enable it to optimize subsequent ac-

cesses—e.g. by prestaging the remaining data in the set
whenever one of the files is accessed.

1.3.8 Automatic internal workload balancing

A key premise of the DataMesh design is that it should
be continuously optimizing its internal resource alloca-
tions to accommodate external requests. The resource
balancing has to be dynamic to handle:

= slowly-changing workloads (e.g. the interactive use
that predominates during daylight hours has a dif-
ferent kind of access pattern than the daemons that
run in the small hours of the morning);

= rapidly-changing loads (e.g. when a client system is
restarting, it will change the overall traffic patterns
and the data being accessed until it gets past the boot
phase and has filled its caches);

< newly-introduced resources (such as a storage
element);

= failures of processing elements, storage device and
interconnect links (internal or external).

1.4 Storage server

Future CCE systems will have much greater support for
cooperative work, where information from multiple
sources is simultaneously interwoven into multiple cal-
culations, analyses and data presentations, while itself
being updated. Shared storage is the enabling technolo-
gy for this, and the CCE thrust towards server-based ar-
chitectures means that storage servers will be the
preferred way to support it.

2 Basic premises

This section outlines the technology trends behind the
DataMesh proposal.

2.1 Chip performance

2.1.1 Dynamic RAM

The semiconductor industry continues to emit projec-
tions for a factor of four increase in storage capacity ev-
ery three years [Motorola89]: by 1995, production will
be ramping up on the 16 Mbit dynamic RAM parts that
will have been introduced in 1991-2; production of their
predecessors (4 Mbit DRAMS) will have reached a peak
in 1994,

DataMesh: a commentary

2.1.2 Client machines

The performance of high-end workstation processors is
currently increasing at a compound annual growth rate
of about 70% [Rosenbladt89]. The top of the line work-
stations will push performance upwards by the use of
multi-chip processors, very fast backplanes, large cach-
es, and so on.

Commaodity workstations—those that every engineer
can expect to have on their desk—will advance some-
what more slowly because of the difficulty of scaling
memory bandwidth in the face of a constant number of
memory chips (memory just gets larger, it doesn’t get
much faster). Even assuming a fairly conservative rate
of performance improvement (a compound annual
growth rate of 40-50%), such machines will deliver at
least 40-60 MIPS by 1995, starting from today’s 5 MIPS
machines. Of course, not every engineer will have the
latest product sitting on their desk: depreciation sched-
ules of 2-3 years will ensure that maybe half of the ma-
chines will be of the latest generation, while the rest are
from the previous one, with 50-75% of the performance.
The “typical” machine might thus have about 40 MIPS.

2.1.3 Commodity processors

Low-end microprocessors will continue to perform a
multitude of controller-like functions. Like today’s
“workhorse” chips (e.g. the 680x0 family), they will be
built using high-yield semiconductor processes for low
cost, and their processing power will be determined by
how much can economically be put onto a single VLSI
chip. With current trends, by 1995 a 15-20 MIPS proces-
sor in a single-chip package will be as readily available
(and as cost-effective) as a 68000 is today. (For calibra-
tion, a recently-announced 12.5 MIPS 32-bit Transputer
currently costs $269 [Inmos89].)

2.2 Storage device performance

The accompanying graphs show that magnetic disc dy-
namic performance will soon reach physically-imposed
limits [Shula89]. For example, disc seek times have bot-
tomed out at about 16-17 ms for 5.25" discs, plus 8 ms
of rotational latency. (3.5" discs will probably eventual-
Iy reach 7 ms seek time and 5 ms rotational latency.)
Transfer rates will peak at about 4.5Mbytes/s with cur-
rently-foreseeable head and data channel technologies.

The improvements being made to discs are concentrat-
ing on making them physically smaller, increasing their
linear and track recording densities, and increasing
their reliability. Production costs are being driven
down by manufacturing techniques aimed at meeting
the volume needs of the personal computer market-
place, and specialized disc technology will be restricted
to use with supercomputers and commercial data pro-
cessing mainframes.

HPL-DSD-89-44

DataMesh: a commentary

By 1995, a typical device will be a 3.5" Winchester drive
with 1 Gbyte on a single spindle and an MTBF of
120,000 hours or more. Seek and rotational latencies
will together be about 16 ms, and the data transfer rate
will be 4 Mbytes/s. A single track will hold 32 Kbytes of
data, and sectors will have grown to about 2 Kbytes in
size from their current 0.5-1 Kbytes.

2.3 Storage subsystem I/O demands

Suppose we take the 40 MIPS commodity workstation
as the typical DataMesh client. Applying the “1 MIPS
needs 1 Mbyte memory and 1 Mbit/s 1/0 bandwidth”
rule of thumb, such machines will be demanding an av-
erage I/0 bandwidth of 5 Mbytes/s while active, and a
peak bandwidth of 15 Mbytes/s (1/0 traffic is typically
quite bursty). Fifty such machines would require about
250 Mbytes/s aggregate 1/0 bandwidth, and perhaps
50 Mbytes/s more to handle peak 1/0 rates if these af-
fect up to 10% of the clients at a time. (Of course, not all
the 50 machines would be simultaneously active, so, de-
pending on the work patterns of their users, 50 active
clients might correspond to between 70 and 200 users.)

If I/Os are done in 32 Kbyte chunks (i.e. the track size)
the average throughput will drop from the maximum
4 Mbytes/s to around 1.3 Mbyte/s (16 ms seek+rota-
tional latency, 8 ms data transfer time). Supporting an
170 throughput of 300 Mbytes/s in a DataMesh would
require 230 such spindles, or about 4.6 Gbytes per client
machine.

There are conflicting pressures on the transfer size: the
heavy preponderance of small files [Satyanarayanan81]
tends to encourage smaller disc transfers; the desire to
increase throughput encourages larger ones (but these
incur between-track seek times of perhaps 5 ms). The
table below summarizes these effects.

Transfer Throughput Spindles Capacity
(Kbytes) (Mbytes/s) (Gbytes/client)
8 0.4 675 13.5
16 0.8 375 7.5
32 1.3 225 4.5
64 1.7 174 35

If discs that can read or write simultaneously to all the
heads in a cylinder become available, the seek and rota-
tional latencies will remain unchanged but the data
transfer time for each 16 Kbytes will drop to 0.5 ms
(eight heads transferring 2Kbyte sectors in parallel).
This table shows the result.

Transfer Throughput Spindles Capacity
(Kbytes) (Mbytes/s) (Gbytes/client)
8 0.5 610 12.2
16 1.0 310 6.2

HPL-DSD-89-44

50

Access time
Seek, settle Iand rotatic;nal latenc!

40

.

@
S

N

5.25" drives

Milliseconds
n
o

~
N

3.5" drives

10

0
1965

1970

1975 1980 1985 1990 1995
Year of introduction

100000

I
1
1

1 1 1
Data transfer rate

10000

Likely trend line ,(

1000

Kbytes per second

100
1965

1970

1975 1980 1985 1990 1995
Year of introduction

10000

T T
I I

1 1

]
7

1 1
Disk capacity /

o

1000

V4 v 4
v 4

V4

)'/ ;/)
i
1[

A /

Mbytes per box

=
S,
S

A .

~

V4

:?14

2 ol
q

1

3.5

10
1965

1970

1975 1980 1985 1990 1995

Year of introduction

32 1.9 160 3.2
64 3.6 85 1.7

2.4 LAN hardware performance

The next generation of networks (like FDDI) only offer
a factor of ten improvement in throughput over today’s
LANSs (e.g. IEEE 802.3). Nevertheless, by 1995, such net-
works will be widespread, and the first of the next gen-
eration LANSs (with between 1 and 10 Gbit/s links) will
be starting to be installed. This is just as well: the hypo-
thetical 300 Mbytes/s 1/0 rate for a 50-client DataMesh
needs about 40 FDDI rings to service it assuming 60%
LAN utilization, but could be easily accommodated by
asingle 10 Gbit/s LAN, or five 1 Gbit/s LANs.

DataMesh

A/

Gigabit backbone LAN

FDDI loops

Client workstations

Even so, since the 1/0 capacity of each DataMesh node
will be limited, the DataMesh will probably need on the
order of 10-30 taps onto the 10 Gbit LAN, and FDDI
may still be used to hook onto a backbone LAN using
the multi-Gigabit hardware, partly for cost reasons,
partly because FDDI networks will already be installed.
In any case, availability considerations will also encour-
age the use of multiple LANSs even if a single one could
handle the traffic.

2.5 Parallelism, caching and data synthesis

Since the performance gap between individual proces-
sors and storage devices is widening, new techniques
must be pressed into service to improve the effective
performance of a storage hierarchy. All of these rely on
some form of parallelism, caching, or data synthesis:

1. Access multiple devices simultaneously, rather than a
single device serially. The overall latency will be that
of the slowest single operation, rather than the sum
of the individual costs, and the data transfer rates
will increase to the sum of the individual rates. Tech-
niques such as disc striping (disc interleaving) do
this [Patterson88].

2. Replicate data, and try to retrieve each copy simulta-
neously: the copy with the shortest access time will

DataMesh: a commentary

determine the overall latency. Data can be replicated
across a single disc, and/or across multiple devices
[Kure8a8].

3. Insert intermediate levels in the storage hierarchy, such
as page-addressable RAM, to reduce the size of the
performance gap between processors and storage
devices.

4. Avoid accessing secondary storage: reduce the need to
retrieve or store data by caching: putting copies of
frequently-accessed data in higher-performance lev-
els in the storage hierarchy, such as RAM. Caching is
aspecialized kind of data replication that is effective
because of a common property of data accesses: spa-
tial and temporal locality (“nearby” data items are fre-
guently referenced together over a short period of
time). Caches typically become more effective as
they get larger, although there is usually an upper
bound beyond which they provide little benefit be-
cause of this locality [Ousterhout85].

5. Data reduction: use data compression techniques to
reduce the number of times a secondary storage de-
vice needs to be accessed to retrieve a given quantity
of data. (Examples: Lempel-Ziv data compression;
index compression by elision of leading common
substrings.)

6. Data synthesis: more radically, synthesize or com-
pute data when needed from a small set of parame-
ters, rather than store it in its entirety. (Example:
rule-based information systems.)

The DataMesh will perform all these functions. Its ar-
chitecture makes the data reduction and data synthesis
schemes possible because their computations can be
carried out in parallel.

2.6 The DataMesh premise

Processing power and RAM will be cheap, because it
will be available in mass-produced, single-chip packag-
es. Storage will remain relatively slow. Adding a pro-
cessing element to each storage device will be cheap.
Linking them together into a DataMesh will provide a
highly-parallel storage server platform. With suitable
software, the result will be much greater performance
and functionality at little incremental cost.

2.7 Storage server clients

Most applications will not communicate directly with
the DataMesh, but rather interface to it via an access
method interface running on their client node. As used
here, the term access method includes system-level
functions such as UNIX-like file systems, record-orient-
ed file types (e.g. as used by IBM’s MVS, HP’s MPE, or
DEC’s VMS), and databases. A few specialized applica-
tions might make direct use of the DataMesh interface
(e.g. image-manipulation services and parallel grep).

HPL-DSD-89-44

DataMesh: a commentary

Caching by the access methods will be an important
technique. For optimal performance, the DataMesh and
access methods will collaborate, and may even be de-
signed jointly. The DataMesh system design has to in-
clude parts of the DataMesh’s clients as well as the
DataMesh itself.

Clients

Applications

Access methods

DataMesh
system
design

domain

DataMesh

The first releases from both OSF and Unix International
will have well-defined internal interfaces to make it
easy to add new file system types [Hurwitz89]. The
widespread propagation of these implementations will
encourage the development of new file system variants
(such as “stateful” versions of NFS, or the Andrew file
system [Howard88], or Sprite [Nelson88]). By 1995, this
will be well-established practice.

The DataMesh will need to support standard client im-
plementations such as the new UNIX file system vari-
ants, but it may be able to offer better service to client
file systems that understand they are talking to a Data-
Mesh rather than a normal file server. It may even be
advantageous for the DataMesh project to try steering
the standardization efforts for file servers in desirable
directions as our experience evolves.

2.8 Standards-dominated interfaces

The server-dominated nature of CCE architectures, and
the need to allow multi-vendor CCE implementations,

will increasingly dictate the standardization of interfac-
es between services.

Such standards will come to dominate all inter-server
communication at both hardware and software proto-
col levels. Consistent with current trends, these stan-
dards will be designed to meet the needs of local-area
networks (LANS), but they will be based on protocols
that allow communication across wide-area internets
(e.g. the OSI reference model and its protocols).

The very nature of the standards and the huge invest-

ment that their pervasive installation will represent will
constrain changes to occur very slowly. The form and

properties of the connections between a DataMesh and
its clients will thus be determined largely by the then-

current standards, not the available state-of-the art.

HPL-DSD-89-44

2.9 The internal DataMesh interconnect

There will be two kinds of internal DataMesh intercon-
nect: that linking the DataMesh nodes themselves, and
that between the processors and the storage devices. In
both cases, there will be opportunities to exploit non-
standard, higher-performance links.

The pressures for picking a standard microprocessor
are induced by the enormous investment required to
make such devices with comparable performance and
cost as the commodity microprocessor vendors. The
pressures for picking standard server—client connec-
tions result from multivendor operability needs over a
period of several years to allow the large investments
made in network installations to bear fruit. In contrast,
the internal DataMesh interconnects will be much sim-
pler to develop than a microprocessor, and they don’t
have to conform to (or achieve the status of) external
standards because their use inside the DataMesh pre-
vents external dependencies on their details from being
built up. The result is that some DataMesh-specific op-
timizations are possible, and the interconnect can more
easily track the state of the art, rather than be beholden
to the state of the standards.

2.9.1 Specialized interconnect techniques

The small physical size of a DataMesh (perhaps 3 min
diameter) means that its internal interconnect can use
techniques that work well inside a machine room, but
that don’t necessarily scale well to the larger distances
typical of a LAN (1 km or so across). Such techniques
frequently offer performance advantages from lower la-
tencies, less heavyweight link protocols, and lower er-
ror rates. The net result should be an interconnect that
is very much faster than a general-purpose LAN.

As currently envisaged, a DataMesh is a homogeneous
collection of processors tied to a heterogeneous collec-
tion of storage elements. This homogeneity will make it
easier to use techniques like remote memory access,
which provides low latency communication (10—

20 microseconds compared to the 1 ms or so of mes-
sage-based techniques like remote procedure call). The
DataMesh will benefit from remote memory access in
two ways:

1. algorithms that require access to all the distributed
information about an object (e.g. finding the most up
to date copy of an item in the DataMesh) will run
faster, because they can gather the data they need
much more quickly;

2. algorithms that make a decision whose quality de-
pends on the number of samples they can take will
be able to do a better job in a fixed amount of time
(e.g. an algorithm trying to choose the best place to
position a data block could poll an entire 100-node
DataMesh using remote memory access in the time

10

it would take to query two nodes with message-
passing).

It is even possible that two different internal networks
may prove optimal: one for control traffic, the other for
bulk data transfer. In any case, the DataMesh intercon-
nect will not be handicapped by the need to conform to
the external (and only slowly advancing) protocol stan-
dards that will constrain general-purpose LANSs. One
suggestion (due to Bob Rau) is to pick the emerging
IEEE Scalable Coherent Interface (SCI [Kristiansen89])
as the DataMesh interconnect, although it is not yet
clear what the cost implications of this will be.

2.9.2 Secondary storage device connection

Typical secondary storage devices contain a mechanism
component that has two data channels: a digital data
stream, and a servo control interface.

S —
Mechanism

The servo controller itself is integrated into the mecha-
nism. Current HP disc drives contain a three-chip SCSI
controller and interfacing set, a power supply (not
shown), and a SCSI cable connector. Soon, several kilo-
bytes of RAM for track buffers and read caches will be-
come commonplace.

Since a DataMesh node needs to be cost-comparable
with traditional storage devices, it is probably best
thought of as a “storage device with smarts”, rather
than as a processor with a storage device attached. In
such a device, the disc’s SCSI controller and connector
would be replaced by a VLSI processor; the track buffer
RAM would become the DataMesh node memory (a
few megabytes instead of a few tens of kilobytes); and
the SCSI protocol chips would turn into the DataMesh
interconnect.

SCSl disc

DataMesh
storage @ —————
LAN
module @rocessoD Y

2.10 Alternate node structures

The DataMesh architecture calls for a processor at-
tached to every storage device. Two alternate structures
come to mind:

DataMesh: a commentary

= build a multicomputer solely out of processors and
an interconnect, and then attach one or more storage
devices (e.g. via SCSI daisy-chains) to each node;

= specialize some DataMesh nodes by building multi-
ple devices into them (e.g. a “mirrored volume”
node, or a “disc striping” node).

Manufacturing economies of scale will favour the regu-
larity of the DataMesh “processor with every node” ar-
chitecture. The interconnect represents a significant
fraction of the cost of a SCSI device, so there would be
little or no cost advantage to building a DataMesh by at-
taching a chain of /0 devices to each processor—espe-
cially if they were in separate boxes.

The second alternate is also unattractive because it
would: force a very early binding of resources to partic-
ular uses (e.g. replicated data could only go on mirrored
volumes); increase the probability of non-independent
device failure (e.g. both discs would become unavail-
able if a mirrored-volume processor node failed); and
limit the freedom to do resource load balancing
throughout the DataMesh. The main advantage would
be simpler software—but even that would be true only
if the global resource management features that make
the DataMesh so effective were not supported.

It may still be the case that the DataMesh could be ex-
tended to support non-storage nodes: for example, one
solution to the protection difficulties of allowing arbi-
trary client code to execute in the DataMesh might be to
introduce special “client processing” nodes. These
would be tied tightly into the DataMesh interconnect,
and so gain many of its performance advantages, but
they would run special software, with many more inter-
nal firewalls.

2.11 Distributed versus centralized storage

One obvious alternative to the whole DataMesh idea is
to distribute the storage capacity amongst the client
nodes. Such a scheme might seem to offer many of the
benefits of a DataMesh, such as high availability, incre-
mental growth, and increased parallelism, but a Data-
Mesh is still a better solution:

= Single-purpose service. A DataMesh is dedicated sole-
ly to serving its clients. Individual client machines
have their own users, and their own computations to
run. This autonomy manifests itself in limits on how
much of a node’s resources can be used to serve oth-
er users—a local optimization that favours the
“owner” of a client node at the expense of lower
overall performance. (For example, when Apollo
provided their users with a distributed load-balanc-
ing facility, their users demanded limits on the
resources a machine would make available to other
nodes.)

= Increased parallelism. A centralized DataMesh archi-
tecture would concentrate more storage

HPL-DSD-89-44

DataMesh: a commentary

11

mechanisms at one site than would be the case if
they were spread evenly over many client nodes. A
DataMesh will thus be better able to exploit higher
degrees of parallelism in techniques such as disc
striping.

Less wasted storage. Handling the peak 1/0 needs
(10-15 Mbytes/s) of a 25-30 MIPS client locally
would require 6-10 discs, or 6-10 Gbytes per client
(assuming 32 Kbyte 1/0 transfers). This is about
three times as much storage as a DataMesh would
need to deliver the same performance.

Faster internal interconnect. The DataMesh internal
interconnect will perform better than the general
purpose LAN linking its clients together.

Tighter hardware/software coupling. The DataMesh
hardware and software architectures will be devel-
oped simultaneously, each optimized around the
needs and capacities of the other. A more general-
purpose software storage subsystem, optimized for
portability to multiple client architectures, would
not be able to take full advantage of the underlying
hardware. (For example, DataMesh could use the
very large HP-PA virtual address space to good ef-
fect, whereas almost all portable implementations
limited themselves to 32-bit addresses.)

A better balanced storage hierarchy. Since remote data
access is slower in the distributed case, more local
caching is needed to achieve a given performance
level. The system will behave more as a set of inde-
pendently-managed caches than as the single global
cache the DataMesh can provide. As a result, more
cache memory will be needed to achieve the same
performance level, so a given storage capacity will
cost more.

Ample processing power near each of the storage elements.
Whereas a workstation node will be under pressure
to use “reasonably efficient” storage management
and placement algorithms, the cost/benefit
tradeoffs in the DataMesh can be slanted more
heavily towards the performance benefits by using
algorithms that require more processing, such as
compression, to achieve higher overall performance.
Similarly, techniques that trade main memory ca-
pacity for performance (such as faster space-
allocation techniques) can be used to full advantage
in the DataMesh, whereas they might be considered
too profligate for client machines.

Fewer implementation overheads. Because it runs spe-
cialized, trusted software, a DataMesh can minimize
its “overhead” costs like accounting for processor
cycles, heavyweight inter-process protection, and
security provisions that can withstand arbitrary at-
tacks—thereby achieving lower latency and higher
throughput.

HPL-DSD-89-44

= Lightweight runtime system. Because a DataMesh is

designed for a specific task it can be built on a spe-
cialized software platform instead of a general-
purpose operating system kernel. This platform will
be a small, lean, fast runtime system, using tech-
niques like really lightweight threads,
synchronization and communication mechanisms
(e.g. [Anderson88, Bershad89]), only resorting to
heavier-weight mechanisms where necessary. Be-
cause general-purpose operating system kernels are
designed to execute in less constrained environ-
ments, they must assume the worst case by default
and suffer associated additional costs.

Simpler algorithm implementations. The algorithms
and protocols used for high-performance locking,
availability, and data placement are quite complicat-
ed. Moving them inside the DataMesh means that
they can execute in a simpler environment than
would be the case in a client machine, and so more
of the development effort required to implement
them can be invested in the algorithms and protocols
themselves, and less on the “hassle factors” such as
inter-system portability.

Extensive support for parallel, distributed algorithms.
The designers of DataMesh algorithms will be able
to draw on support that will be in place in the Data-
Mesh for controlling and isolating failures,
providing access to performance measurements,
and other parallel and distributed algorithms opti-
mized for the DataMesh environment. Such libraries
are harder to construct for arbitrary distributed com-
puting environments because fewer assumptions
can be made about the properties of such
environments.

No “lowest common denominator”. Standards-domi-
nated networks are prone to operating at the “lowest
common denominator” functionality level. For ex-
ample, if any machine is unwilling to participate in a
fancy cache consistency protocol to improve perfor-
mance, the entire computing environment may have
to use a simpler, less efficient protocol. A DataMesh
can act as an agent of the less capable clients in trans-
actions with other nodes, so the nodes capable of
using the higher-performance protocol do so (and go
faster) while the others can still participate as full
members in the shared storage subsystem.

Simpler power distribution and noise containment. A
Terabyte of storage (even using the new storage de-
vices being developed) will consume moderate
amounts of power and cooling, and generate suffi-
cient noise that it will not be an ideal installation for
an office-like environment. Centralizing it, and put-
ting it into a computer room (or a basement) will
minimize the impact of these problems.

= Simplified system administration. It is much easier to

administer, repair, maintain, and backup a central-

12

ized storage repository than a physically distributed
one.

= More resources; better utilization. A 100-node Data-
Mesh will provide roughly 1000-1500 MIPS and
1.6 Gbytes of RAM, essentially “for free” with the
storage capacity. Although these resources will not
be available for arbitrary computations, they will
probably be better utilized by being a shared re-
source than if they were dispersed amongst the
client nodes. They represent a significant additional
capacity to offload storage-related processing that
would otherwise have had to be run on the clients.

= Customer capture effect. From a marketing standpoint,
once a few DataMesh nodes had been purchased, the
customer would have a high incentive to acquire
more of the same over stand-alone discs, which
could not partake of the DataMesh performance and
functionality benefits.

« Single-system software. Offering comparable func-
tions in a multi-vendor environment requires that
the software to provide them has to be ported onto
many different vendor platforms, and in multiple re-
leases of many different operating systems. Putting
it into a DataMesh means that it can be written once,
for maximum performance rather than portability.

3 Key investigation topics

This section describes the focus that the DataMesh
project will apply to narrow its field of interest. The goal
is to select a small enough problem domain to be able
make a substantial contribution with the resources
available.

3.1 Possible research areas

There are many areas where we do not currently have
the knowledge required to put together a DataMesh. To
help illustrate some of these, consider a simple read re-
guest for some data held in the DataMesh.

request

page-addressable RAM

disc

optical jukebox

DataMesh: a commentary

Suppose that some of the data needed to satisfy the re-
guest is in a high-level cache, some is duplicated across
a pair of discs, and some still resides in an optical juke-
box. The first problem is in finding all this data, since
the read request might come in at any of the LAN con-
nections in the DataMesh—not necessarily one of the
nodes holding a block of the file.

Stage one will be to convert the file handle passed in
into a filelD, or unique file identifier: a bit string known
to be unique across the whole DataMesh. How this is
done will depend on the format of the file handle—
some clients might use the filelD directly; others might
pass in a file name that has to be looked up via a direc-
tory mechanism of some sort. Authentication and secu-
rity checks will be needed to prevent unauthorized
access, and various checks will be needed to make sure
that an intruder is not replaying an earlier conversation
between a client and the DataMesh. Once that has been
done, the node where the request came in can proceed
to locate the data.

Simply broadcasting a request to each node to see
whether it has some of the data is impractical: once the
DataMesh scales beyond a few nodes, the costs of han-
dling the interruptions would prevent each node mak-
ing forward progress. Similarly, telling the whole
DataMesh any time a block of data moves to a new lo-
cation is impractical. Research is needed to determine
the best scheme: perhaps the jukebox node is charged
with knowing where its data has been copied to, and
the request-processing node can try there the first time
it accesses this file (or perhaps the highest-level node in
the storage hierarchy should fill this role). Once this has
been done, perhaps the request-handling node should
register interest in the particular file (or a subrange of
it), so that it can be informed of future movements of the
file’s data. It’s not at all clear yet what the best scheme is.

Once the data has been located, the optimum way of ac-
cessing it can be computed, taking into account the rel-
ative speeds of the different levels in the storage
hierarchy, and the load and head positions on each of
the two discs where the data is replicated.

Perhaps the DataMesh has observed a particular locali-
ty-of-references pattern for previous accesses to this
file, so it might be a good idea to start a read-ahead from
the optical jukebox of the next segment that is likely to
be requested. In fact, it might even be decided to copy
the data needed to satisfy this request up into one of the
two discs (or maybe a third!). Once these determina-
tions have been made, the access can be executed, cor-
rectly sequenced to make sure that the data can be sent
back to the client in the order it was requested. The re-
guest may need to be logged so that its properties can
contribute to future access predictions. Finally, the re-
sources acquired to execute this request can be released,
ready for the next request.

HPL-DSD-89-44

DataMesh: a commentary

13

Of course, this read might be part of a larger transac-
tion, and account may have to be taken of locks held by
other transactions. Perhaps the data held in the page-
addressable RAM is stored in compressed form, to max-
imize the caching capacity. And so on. A research
project into building a DataMesh will have plenty of in-
teresting areas worthy of investigation!

3.2 Primary research areas

The hardest balancing act will be between maximizing
the performance of a DataMesh and ensuring that suffi-
cientattention is paid to the advanced functionality that
will be required of a future storage server.

The research topics below are listed in decreasing order
of importance: our primary focus will be on the first
one, and we will spend decreasing amounts of effort on
the ones further down the list.

1. High performance through parallelism is the primary re-
search emphasis for the DataMesh project. This in-
cludes algorithms for parallel data access and
processing, and parallel/distributed caching and
storage hierarchy management.

2. Increasing the availability of data has been selected as
the most important functionality. Researching it in
parallel with the performance-oriented work is im-
portant because many performance-improvement
techniques (e.g. replication) are intimately connect-
ed with availability-enhancing ones (e.g. data re-
dundancy).

3. Client-specified data properties are going to be crucial
for any future storage server if the complexity of sys-
tem administration is not to become a barrier to the
effective installation and use of cooperative comput-
ing. In addition, the importance of performance and
availability properties fits in tidily with our two pri-
mary research topics.

4. Support for an extensible set of data models (beyond flat
files and databases) is essential if a DataMesh is go-
ing to be able to evolve over its lifetime to adapt to
new needs. Such support will also have significant
impact on the overall DataMesh software architec-
ture.

3.3 Secondary research areas

There are many secondary areas of interest that will
guide the thinking and approach taken by a project as
complex as DataMesh. Some of the items listed in this
section are techniques, features, or needs that we will
ponder as we go about our research, perhaps with the
idea that they might be supportable in future versions,
and certainly with the expectation that their consider-
ation might cause us to alter the way we go about
achieving our primary goals. The list also enumerates a

HPL-DSD-89-44

number of things that we are not going to pursue with

the same energy as the primary research areas.

1. Designing an optimal storage hierarchy. This would in-
volve knowledge about the detailed characteristics
of different storage devices (example: the relative
performances of serial and random-access reads); re-
search into techniques that develop—and predict—
optimal allocation policies; and high-performance
mechanisms for migrating data up and down the hi-
erarchy in the face of data accesses, archiving re-
guirements, and availability needs. All are
interesting and important, but they will not be a pri-
mary focus for our work in the first stage of Data-
Mesh, although there will necessarily be some
overlap with the work on client-specified data prop-
erties.

2. Use of non-volatile memory. Certain types of non-vola-
tile memories have dynamic performance properties
akin to semiconductor RAM, but permanence simi-
lar to discs. Since a write into such a non-volatile
memory is as good as a write to a disc from the point
of view of recoverability, some operations (such as
recording commit records, or intensions lists) can be
greatly sped up. We would very much like to take
advantage of such technology, but doing so would
probably require us to invest considerable resources
to develop an implementation of the needed hard-
ware. We will, however, try to make note of perfor-
mance opportunities for non-volatile memory as
they arise, and may simulate some of them with or-
dinary RAM to investigate their benefits.

3. Extensive performance and evaluation support. Our
work is predicated on improving performance. To
understand what our algorithms, implementations,
and system prototypes are doing, we will need to
build in performance-gathering mechanisms, and
develop suitable analysis and evaluation techniques.
Again, these will be necessary, but they won’t be
topics of research in their own right.

4. File systems for write-once optical devices. Some of the
highest-capacity storage devices today use optical
write-once read-many (WORM) technology. Their
write-once properties require specialized storage al-
location policies. Although they can perform admi-
rably in an environment where retention of prior
versions, or high-capacity logging, are required, we
do not plan to invest much effort into developing the
specialized allocation and update techniques need-
ed to utilize them fully.

5. Commercial data processing and supercomputers. The
emphasis in the DataMesh activity will be on techni-
cal CCE application domains, rather than on com-
mercial data processing or the support of single
large mainframes or supercomputers.

14

6. Interconnected hierarchies or nets of DataMesh servers.
We will concentrate on the functions required of a
single DataMesh, rather than the interconnections
that might be put into place between multiple Data-
Mesh servers.

7. Extensive scalability. It is desirable for a DataMesh to
cover a wide range of sizes, but maximizing this
range is not an explicit goal.

8. Supporting arbitrary client computations. The difficul-
ties inherent in allowing a client to download any
computation into the DataMeshare considerable,
and they will serve to distract and defocus effort
without there being a clear benefit, so we will not
pursue this avenue for some time (if at all).

4 Project plan

It is too early in the DataMesh project to specify exactly
how we will proceed: the current phase is one of explo-
ration and investigation.

We do have some ideas about our general approach,
however. We will conduct a sequence of focussed ex-
periments to investigate and understand the behav-
iours of storage servers and their clients, and to develop
and evaluate new techniques. At the same time, we will
conduct exploratory forays to extend our knowledge of
how best to structure DataMesh implementations.

After a year or so, we will start to put together the re-
sults from these investigations into a series of prototype
DataMesh designs. The first prototype will use conven-
tional LAN technology, and will be used as a testbed for
the correctness of some of the algorithms. The second
and subsequent prototypes will hopefully be based on
the specialized DataMesh interconnect, and begin to
evaluate system integration (how well our ideas work
together), scalability, and performance.

DataMesh: a commentary

References

[Anderson88] T. E. Anderson, E. D. Lazowska, and H.
M. Levy. The performance implications of thread
management alternatives for shared-memory multi-
processors. Technical report 88-09-04 (Sept. 1988).
Department of Computer Science, University of
Washington.

[Bartlett88] D. S. Bartlett and J. D. Tesler. A discless HP-
UX file system. Hewlett-Packard Journal, 39(5):10-14
(October 1988).

[Bershad89] B. N. Bershad, T. E. Anderson, E. D.
Lazowska, and H. M. Levy. Lightweight remote pro-
cedure call. Technical report 89-04-02 (April 1989).
Department of Computer Science, University of
Washington.

[Borr88] A. J. Borr and F. Putzolu. High performance
SQL through low-level system integration. Proceed-
ings of the 1988 SIGMOD International Conference on
Management of Data (Chicago, Illinois), pages 342-9,
H. Boral and P.-A. Larson, editors (June 1988).

[Gelb89] J. P. Gelb. System managed storage. IBM Sys-
tems Journal, 28(1):77-103 (1989).

[Glavitsch89] U. Glavitsch. What other people do on Data-
Mesh. Hewlett-Packard Laboratories technical re-
port HPL-DSD-89-40 (June 1988).

[Gutierrez88] D. O. Gutierrez and C.-S. Lin. The design
of network functions for discless clusters. Hewlett-
Packard Journal, 39(5):20-6 (October 1988).

[Haskin88] R. Haskin, Y. Malachi, W. Sawdon, and G.
Chan. Recovery management in QuickSilver. ACM
Transactions on Computer Systems, 6(1):82-108 (Feb-
ruary 1988).

[Howard88]J. H. Howard, M. L. Kazar, S. G. Menees, D.
A. Nichols, M. Satyanarayanan, R. N. Sidebotham,
and M. J. West. Scale and performance in a distribut-
ed file system. ACM Transactions on Computer Sys-
tems, 6(1):51-81 (February 1988).

[Hurwitz89] J. S. Hurwitz. A tale of two operating sys-
tems; System V.4 and OSF 1. UNIX in the Office,
4(2):1-11 (February 1989). Patricia Seybold’s Office
Computing Group, 148 State St., Suite 612, Boston,
Ma 02109.

[Inmos89] Inmos T425 product announcement. IEEE
Computer, 22(7):106 (July 1989).

[Kristiansen89] E. H. Kristiansen, K. Alnas, B. O. Bakka,
and M. Jenssen. Scalable Coherent Interface. Proceed-
ings Eurobus (London) (September 1989).

[Kure88] Divind Kure. Optimization of File Migration in
Distributed Systems. Ph.D. thesis, published as Re-
port No UCB/CSD 88/413 (April 1988). Computer

HPL-DSD-89-44

DataMesh: a commentary

15

Science Division, Department of Electrical Engineer-
ing and Computer Science, University of California
at Berkeley.

[Lazowska86] E. D. Lazowska, J. Zahorjan, D. R. Cheri-
ton, and W. Zwaenepoel. File access performance of
distributed workstations. ACM Transactions on Com-
puter Systems, 4(3):238-68 (August 1986).

[Motorola89] Motorola Inc. Motorola takes the wraps
off commodity-memory thrust. Electronics, pages
31+ (May 1989).

[Nelson88] M. N. Nelson, B. B. Welch, and J. K. Ouster-
hout. Caching in the Sprite network file system.
ACM Transactions on Computer Systems, 6(1):134-54
(February 1988).

[Ousterhout85] J. K. Ousterhout, H. Da Costa, D. Harri-
son, J. A. Kunze, M. Kupfer, and J. G. Thompson. A
trace-driven analysis of the UNIX 4.2 BSD file sys-
tem. Proceedings of the 10th Symposium on Operating
System Principles (Orcas Island, Washington). Pub-
lished as Operating Systems Review, 19(5):15-24 (De-
cember 1985).

[Patterson88] D. A. Patterson, G. Gibson, and R. H.
Katz. A case for redundant arrays of inexpensive
disks (RAID). SIGMOD (Chicago, Illinois, June 1-3,
1988) (1988). ACM.

[Rosenbladt89] Peter Rosenbladt. Presentation to HP-
UX kernel lab in Cupertino, Ca. (31 March 1989).

[Sager85] G. Sager and B. Lyon. Distributed file system
strategies: the options and their implications. UNIX
Review, 3(5):28-31 33+ (May 1985).

[Satyanarayanan81] M. Satyanarayanan. A study of file
sizes and functional lifetimes. Proceedings of the 8th
Symposium on Operating System Principles (Asilomar,
Ca). Published as Operating Systems Review 15(5):96—
108 (December 1981).

[Sandberg85] R. Sandberg, D. Goldberg, S. Kleiman, D.
Walsh, and B. Lyon. Design and implementation of
the Sun Network Filesystem. USENIX Association
Summer Conference Proceedings 1985 (11-14 June 1985,
Portland, OR), pages 119-30 (1985). USENIX Associ-
ation, El Cerrito, CA.

[Shula89] Barbara Shula. Personal communications. (15
June and 14 July 1989).

[Srinivasan89] V. Srinivasan and J. C. Mogul. Spritely
NFS: implementation and performance of cache-
consistency protocols. Research Report 89/5 (March
1989). Digital Equipment Corporation Western Re-
search Laboratory, Palo Alto, Ca.

[Stonebraker84] M. Stonebraker. Virtual memory trans-
action management. Operating Systems Review,
18(2):8-16 (April 1984).

HPL-DSD-89-44

[Wilkes88] Encapsulating type in storage systems.
Hewlett-Packard Laboratories technical report
HPL-DSD-88-1 (May 1988).

[Wilkes89] DataMesh — scope and objectives. Hewlett-
Packard Laboratories technical report HPL-DSD-
89-37 (Revision 1, July 1989).

16

DataMesh: a commentary

HPL-DSD-89-44

