

Characterizing I/O-intensive Workload Sequentiality on Modern Disk Arrays

Kimberly Keeton, Guillermo Alvarez, Erik Riedel, and Mustafa Uysal

Hewlett-Packard Labs Storage Systems Program {kkeeton,galvarez,riedel,uysal}@hpl.hp.com

4th Workshop on Computer Architecture Evaluation using Commercial Workloads

January 21, 2001

CAECW-01, 0 Keeton/Alvarez/Riedel/Uysal

Motivation

- ▼ SSP goal: develop analytic models of storage devices to predict workload performance
 - Finding: even moderately sophisticated models give insufficient accuracy. Why?

▼ Why?

- New features for mid-range and high-end disk arrays have significant impact on performance
- Real-world workloads exhibit complex behavior

▼ Issues:

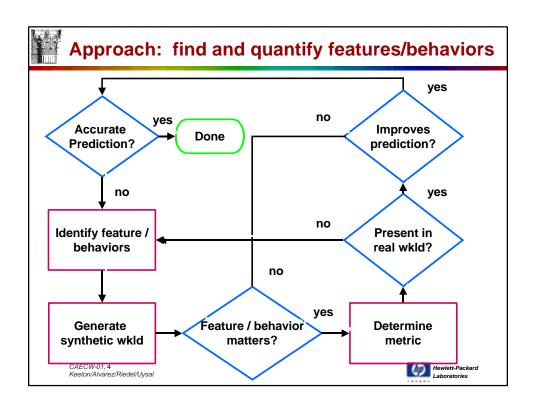
- We don't sufficiently understand how array features perform for complex workloads
- Our workload characterizations don't have attributes to capture effectiveness of features

CAECW-01, 1 Keeton/Alvarez/Riedel/Uysal

Key high-level question

- **▼** Goal: accurate performance prediction
- **▼ Need:**
 - Model of important disk array features
 - Model of important workload behaviors
- **▼** Approaches:
 - Identify and quantify new array features/workload behaviors (this talk)
 - Quantify relevance of workload metrics by using them to synthetically generate workloads (Kurmas, et al.)

CAECW-01, 2 Keeton/Alvarez/Riedel/Uysal



Outline

- **▼** Motivation
- **▼** Description of our approach
- **▼** Experimental infrastructure
- **▼** Prefetching results
 - Synthetic workloads
 - Real workloads
- **▼** Conclusions and ongoing/future work

CAECW-01, 3 Keeton/Alvarez/Riedel/Uysal

Experimental infrastructure: HP FC-60 disk array

Characteristic	Our configuration	Max configuration	
Cache size	256 MB x 2	512 MB x 2	
Disk enclosures	6	6	
Disks per enclosure	5	10	
Capacity per disk	18 GB	73 GB	
Total capacity	0.5 TB (unprotected)	4.4 TB (unprotected)	

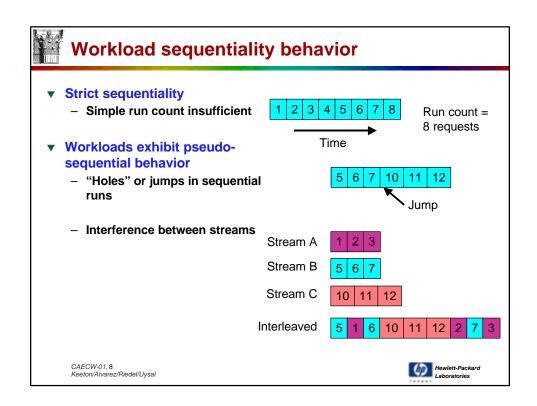
▼ Two controllers

- One fibre channel port/controller
- Each connected to all enclosures
- ▼ Six ultra-wide SCSI interfaces to controllers (40 MB/s each)
- **▼** Cache: split between controllers
- Write-back policy, with writes mirrored across controllers
 CAECW-01, 5
 Keeton/Alivarez/Riedel/Uysal
 Laboratories

FC-60 performance

- **▼** Environment:
 - Single 4-disk R5 LUN
 - 16KB stripe unit size
 - Synthetic workload generation
- **▼** Random performance:
 - 2KB random reads: 381.76 IOPs256KB random reads: 17.6 MB/s
- **▼** Sequential performance:
 - 2KB sequential reads: 3656.4 IOPs256KB sequential reads: 40.3 MB/s
- ▼ Top observed performance per controller: 84 MB/s, 11,000 IO/s

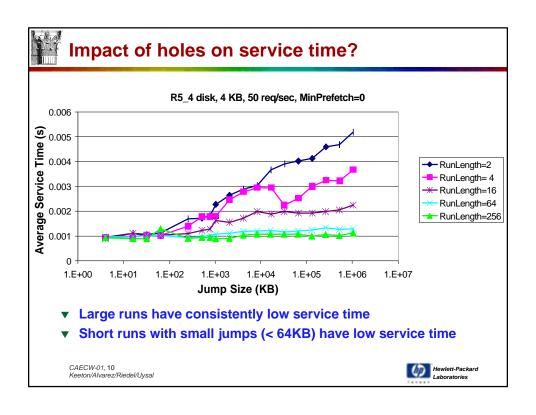
CAECW-01, 6 Keeton/Alvarez/Riedel/Uysal

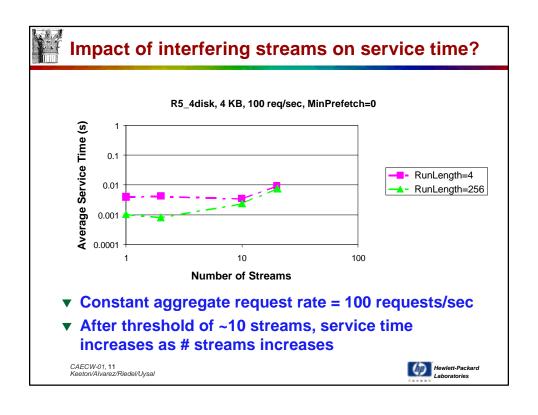


Prefetching features

- ▼ Both arrays and disks do prefetching
- **▼** Disk prefetching
 - Track buffer's worth
 - Up to disk controller cache segment
- ▼ Array prefetching
 - Along a logical unit (LUN) stripe group
 - Per-request minimum, maximum prefetch
 - Multiple of request size
- **▼** Effective for strictly sequential workloads
- **▼** Effective for other workload behaviors?

CAECW-01, 7 Keeton/Alvarez/Riedel/Uysal



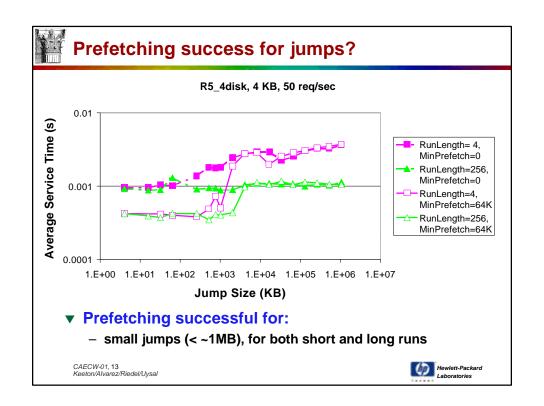

Synthetic experiments to focus on behaviors

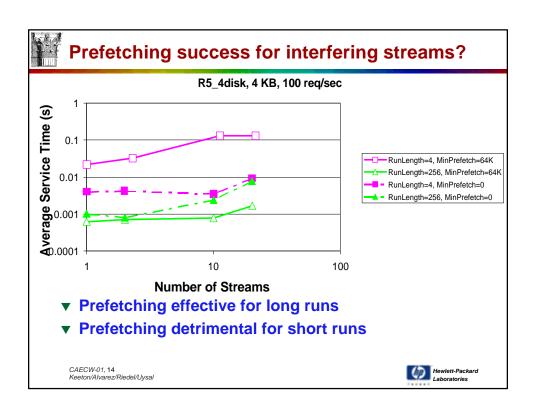
- ▼ How well does prefetching work for pseudosequential behavior?
- **▼** Evaluation criteria
 - Performance = average array service time
 - · includes no device driver queueing
- **▼** First set: jumps in sequential runs
- **▼** Second set: interleaved streams
- **▼** Experimental parameters
 - 4-disk R5 LUN, 16KB stripe unit size
 - 4 KB requests, 50 requests/sec
 - Short run counts (4 requests) vs. long run counts (256 requests)

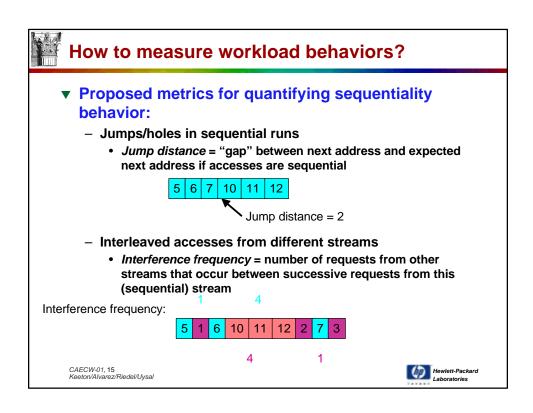
CAECW-01, 9 Keeton/Alvarez/Riedel/Uysal

Predicting prefetching effectiveness

▼ Expectations:


- Prefetching effective for short jumps
- Prefetching effective for small number of interfering streams


▼ Evaluation methodology:

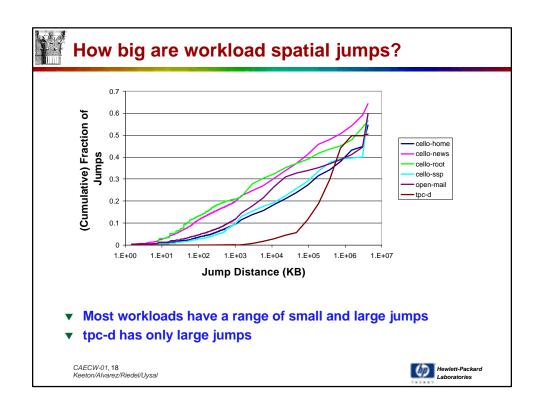

- Ideally, compare array with prefetching disabled vs. prefetching enabled control knobs unavailable
- Compare workload performance with no forced array prefetching vs. forced minimum array prefetching
 - MinPrefetch = 0, 64K
- Performance = average array service time
 - · includes no device driver queueing

CAECW-01, 12 Keeton/Alvarez/Riedel/Uysal

Real applications

- ▼ Questions
 - How big are the jumps in these workloads?
 - How much stream interference occurs in workloads?
 - Is there a single unified sequentiality metric?
- **▼** Replay traces from full-scale real workloads:
 - 300-GB TPC-D: table, index, temp, log, summary
 - Open Mail email server
 - Cello file server traces: root, news, home, ssp
- **▼** Start with single-LUN experiments
 - Pick a representative array, and a representative LUN

CAECW-01, 16 Keeton/Alvarez/Riedel/Uysal


Do workloads have jumps?

Workload	P(backward jump)	P(sequential)	P(forward jump)
cello-home	0.40	0.11	0.49
cello-news	0.35	0.03	0.62
cello-root	0.19	0.56	0.25
cello-ssp	0.06	0.85	0.09
open-mail	0.38	0.06	0.56
tpc-d	0.48	0.02	0.49

- ▼ Forward jumps comprise ~half of accesses for most workloads
- **▼** Cello-root and cello-ssp are mostly sequential

CAECW-01, 17 Keeton/Alvarez/Riedel/Uysal

Do workloads have interleaved streams?

Workload	Sequential Run Count (old)	Interference Frequency	Detangled Run Count	Relaxed Detangled Run Count
cello-home	1.12	124.6	1.49	3.29
cello-news	1.03	98.5	1.12	20.40
cello-root	2.23	29.0	2.71	9.40
cello-ssp	6.74	28.9	20.46	40.86
open-mail	1.06	7.4	1.32	3.98
tpc-d	1.02	14.3	21.07	21.30

- ▼ Multi-threaded workloads (tpc-d) have interfering sequential streams
- ▼ Difficult to discern interleaved sequential streams for workloads with more random behavior (cello-{home, news, root})

CAECW-01, 19 Keeton/Alvarez/Riedel/Uysal

Summary of results

- ▼ Simple run count spatial locality metrics too restrictive to capture prefetch-friendly behavior
- ▼ New workload characteristics to be captured:
 - "Holes" or jumps within a stream: jump distance
 - Interleaved accesses from other streams: interference frequency
- **▼** Array prefetching effective for:
 - Longer sequential runs
 - For shorter runs, smaller jumps between runs
 - Small number of streams (low interference frequency)
- ▼ Working on proposal for new run count metric to incorporate these characteristics

CAECW-01, 20 Keeton/Alvarez/Riedel/Uysal

Ongoing/future work

- ▼ Metric incorporating all factors doesn't predict as well as expected
- **▼** Other confounding features/behaviors to consider:
 - Burstiness
 - Cache capacity and interference
 - Write destaging
 - Stream detection
 - Degraded mode
- **▼** Ultimately:
 - Incorporate prefetching and other findings into our analytic array models and workload specifications

CAECW-01, 21 Keeton/Alvarez/Riedel/Uysal

Conclusions

- ▼ Developed methodology for evaluating how array features and workload behaviors impact performance
 - Identify several potential prefetching features and corresponding workload behaviors
 - Use synthetic workloads to isolate effects
 - Propose metrics for measuring prefetching behavior in real workloads
 - Measure proposed metrics on traces replayed from real workloads
- ▼ Simple sequentiality metrics provide insufficient predictive power
- ▼ Additional behaviors to consider
 - Jump distance and interference frequency

CAECW-01, 22 Keeton/Alvarez/Riedel/Uysal

Backup slides

CAECW-01, 23 Keeton/Alvarez/Riedel/Uysal

Related work

- **▼** Analytical modeling approaches
 - Modeling prefetching in disks [Shriver...98]
- **▼** Studies of array performance characteristics
 - Few on the real thing: [Chen...90],[ChervenakKatz91]
 - Conseqs of data distribution: layouts [LeeKatz93],[Alvarez...98]
- ▼ How arrays can take advantage of application characteristics
 - Autoraid [Wilkes...96]
 - Setting storage system params:[ChenLee95],[ChenPatterson90],[ShenoyVin97],[Jacob96]
 - Commercial products: [EMC's SRDF], [XP's moral eqv]
- ▼ How to present requests to devices, given a workload
 - prefetching
 - informed [Tomkins...97], [Kimbrel...96]
 - uninformed [Chervenak...99]

CAECW-01, 24 Keeton/Alvarez/Riedel/Uysal

