
1996 USENIX Technical Conference – January 22–26, 1996 – San Diego, CA 27

Abstract
Disk arrays are commonly designed to ensure that
stored data willalways be able to withstand a disk
failure, but meeting this goal comes at a significant
cost in performance. We show that this is unnecessary.
By trading away a fraction of the enormous reliability
provided by disk arrays, it is possible to achieve
performance that is almost as good as a non-parity-
protected set of disks.

In particular, ourAFRAID design eliminates the small-
update penalty that plagues traditionalRAID 5 disk
arrays. It does this by applying the data update
immediately, but delaying the parity update to the next
quiet period between bursts of client activity. That is,
AFRAID makes sure that the array isfrequently
redundant, even if it isn’t always so. By regulating the
parity update policy,AFRAID allows a smooth trade-off
between performance and availability.

Under real-life workloads, theAFRAID design can
provide close to the full performance of an array of
unprotected disks, and data availability comparable to
a traditionalRAID 5. Our results show thatAFRAID
offers 42% better performance for only 10% less
availability, 97% better for 23% less, and as much as a
factor of 4.1 times better performance for giving up
less than halfRAID 5’s availability.

We explore here the detailed availability and
performance implications of theAFRAID approach.

1. Introduction
In aRAID 5 disk array, small writes take a long time to
complete [Patterson88]. This is known as the “small
update problem”. In such an array, redundancy for a
stripe of data is provided by a parity block, computed
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Figure 1 : doing a small update in a traditional RAID 5.
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as theXOR of the data blocks in the stripe, in order to
allow recovery if any disk fails. If a portion of a stripe
is updated, the parity data must also be updated to
preserve the recoverability property (Figure 1). To do
this, it is necessary to (1) read the old value of the data
to be overwritten, unless it is already cached in the
array controller; (2) read the old parity; (3)XOR the
new data with the old, andXOR the result with the old
parity to generate the new parity data; (4) write the
new data and (5) write the new parity.

Thus, three or four disk I/Os are needed to achieve one
small write — all of which are in the critical path. In
contemplating this problem we made the following
observations:

 • modern disks are extremely reliable—so much so
that disk array reliability is limited more by its
support components than its disks;

 • many real workloads have slack periods between
bursts of client activity;

 • people are already well-used to the notion of time-
limited exposure to risk.

These eventually led us to the idea ofAFRAID (A
Frequently Redundant Array of Independent Disks).1

AFRAID is a RAID 5 disk array that relaxes the
coherency between data and parity for short periods of
time; parity is made consistent again in the idle periods
between bursts of client writes. Thus the stored data is
frequently held redundantly, rather than always
guaranteed to be so.

In this approach, small updates are not required to wait
for the parity to be updated, thereby reducing the four
I/Os in the critical path of the traditional small-update
protocol to just one: write the new data. The benefit is
that performance approaches that of an unprotected
array. The disadvantage is a slightly increased risk of
data loss from a disk failure, but we will show that this
increase is small in practice, and also that it can be
bounded at the cost of some performance. That is,
AFRAID allows a smooth trade-off between increased
reliability and increased performance.

1 Like so many good ideas, ours was of course developed by
back-determination from the acronym.
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1.1.  TheAFRAID  design

A write in AFRAID does two things: it updates the on-
disk copy of the original data, and it causes the target
stripes to be markedunredundant—i.e., that their
parity needs rebuilding. This is indicated by setting a
bit per stripe in a non-volatile memory in the array
controller; attempting to re-mark an already-marked
stripe does nothing. Once one or more stripes have
been marked, theAFRAID controller waits until the
array is idle and then starts to process the pending
parity updates where they can be achieved at
effectively zero performance cost to the clients of the
array.

Each parity update requires reading all the data blocks
in the stripe andXORing them together to generate a
new parity block. The new parity block is then written
over the top of the old one, after which the
unredundant mark for the stripe is removed. The
rebuilding of adjacent unprotected stripes can be
coalesced to increase the efficiency of disk accesses.
Since the overhead of the parity update is linear with
the number of disks in a stripe group,AFRAID is best
suited to arrays with smaller numbers of disks.

The additional cost to build anAFRAID is just the cost
of the marking memory: one bit per stripe. With an
array that is 5 disks wide and has a stripe unit size, or
stripe depth, of 8KB, this is ~3 bits per 100KB, or 3KB
of memory per 1GB of stored data—a trivial cost
compared to the cost of the disk storage itself. The
recovery technique for a failed marking memory is
simply to rebuild parity for the whole array. This
rebuilding can proceed in parallel with continued use.

Any write to a stripe unprotects it all—not just the data
being written to. Somewhat counterintuitively, this
loss may include data that has not been written to
recently. This failure mode is a natural consequence of
RAIDs protecting whole stripes, rather than individual
blocks. In practice, the exposure is quite small,
because the likelihood of data being lost is minimal.

Rather than simply waiting for an idle period before
starting to reconstruct parity, it is possible to configure
AFRAID to be more aggressive about availability, at the
possible cost of greater interference with foreground
I/Os. Sample policies include:

 • allowing parity rebuilding to start even when there
is a non-zero client load on the array;

 • giving parity rebuilding priority over foreground
client I/Os;

 • reverting to normalRAID 5 behavior.

These techniques can be enabled dynamically and
adaptively to achieve specified long-term availability
and performance goals. We explore the performance
and availability effects of some of these policies
below.

1.2. AFRAID  design assumptions

In this section we provide some additional information
about the suppositions on which we based our work.

Disk reliability.Modern disks have published mean
time to failure (MTTF) times of 0.5–1 million hours,
and this number is increasing every year. As a result,
small disk arrays have vanishingly small chances of
experiencing a dual-disk failure, which would cause a
data loss. The expected disk-related mean time to data
loss (MTTDL) in a smallRAID 5 with a half-dozen disks
is measured in hundreds of millions of hours—several
tens of thousands of years. This is far larger than the
limits imposed by other “support” components such as
the array’s power supply, controller, and cabling.
Small disk arrays with less than a dozen disks are the
most common in practice, and their overall data
availability may not be reduced much if full on-disk
redundancy is not provided for short periods.

As we will show, any data-redundancy scheme that
produces a disk-relatedMTTDL of a few million hours
or better will be dominated in practice by the array
support components. An aggregateMTTDL of a million
hours (114 years) translates into only a 2.6%
likelihood of any data loss at all during a typical 3-year
array lifetime. This is much lower than the rate of
problems due to software failures, operator errors, and
other environmental difficulties [Gray90, Gray91a]—
that is, a small-to-medium sized array that achieves an
overallMTTDL of 1M hours or better will probably be
entirely adequate for the majority of its applications.

In addition to reduced failure rates, modern disks also
provide feedback mechanisms for predicting when
such failures will occur. These can warn of impending
disk failures hours or days in advance by looking at
soft-error logs (e.g., the number of retries required on
reads), or the variation in head flying-height. [Lin90c]
discusses one such experiment, which was able to
predict 93.7% of system failures in a distributed file
system, typically many hours before they happened.
More recently,IBM disks drives have incorporated a
scheme that has been shown to offer a mean of 10 days
warning of disk failures [IBMpfa95], with an
anticipated success rate of 50–60%. Other
manufacturers are following suit. With such
techniques available, the likelihood of experiencing an
unexpected disk failure can be made very small.

Bursty access patterns.Many (if not most) real uses of
disk arrays have bursty access patterns, with periods of
relative inactivity between groups of client accesses.
[Ruemmler93] offers one quantification of this, in
some detail. Indeed, we believe that it is usually only
in benchmarks or very large, carefully-tuned systems
that arrays are driven to saturation for long periods of
time. Given this, there will be spare I/O time available
in the idle periods between bursts. If expensive
operations such as parity updates can be delayed to
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these less busy periods, they can be achieved at little or
no apparent performance cost to the client.

Time-limited exposure to data loss.This principle is
already well understood and frequently exploited. For
example, data inUNIX2 file systems is held unprotected
in volatile memory buffers before it is written out to
disk [Ritchie84a]. Because data is typically only held
in volatile memory for short periods of time before
being written to disk, this exposure is tolerated in
exchange for the increased performance that results.
This idea has been extended still further by special file
systems that deliberately store data in volatile memory
[McKusick90, Ohta90].

Most systems that use non-volatile memory (NVRAM)
assume that a single copy of the stored data is
sufficient: providing true single-failure-tolerant
NVRAM systems is difficult [Menon93], and so is rarely
done. Examples of common systems that make this
tradeoff include the popular PrestoServe card
[Moran90] for NFS servers, as well as recent file
system designs, such asLFS [Rosenblum92] and Zebra
[Hartman95]. All these rely on assembling large
amounts of data inNVRAM to obtain both good
performance and acceptable reliability. Other studies
have suggested ways to extend this use ofNVRAM still
further [Baker92b].

Together, these thoughts led us to theAFRAID notion:
consciously sacrificing a small amount of data
redundancy in order to achieve considerably better
performance.

The remainder of the paper explores theAFRAID idea
in some detail. We begin with a short discussion of
closely-related prior work. This is followed by a
description of analytic availability models forAFRAID,
and then a quantitative evaluation of the availability
and performance effects of theAFRAID design as
compared to a traditionalRAID 5 and a set of
unprotected disks. We conclude with some
observations on what this study taught us.

2. Related work
The most obviously related prior solution to the small
update problem is parity-logging [Stodolsky93]. A
parity-logging array defers the parity-update cost to a
later time, at which point it can be performed more
efficiently. It does this by performing the traditional
RAID 5 read-modify-write operation on the data block
being updated, but then, instead of doing the same for
the parity block, it writes theXOR of the old and new
data to a log—thereby preserving full redundancy all

2 UNIX is a registered trademark in the United States and other
countries, licensed exclusively through X/Open Company
Limited.

the time. At a later date, the log file is replayed against
the disk array, and the parity updated in situ.

By comparison,AFRAID avoids a pre-read of the old
data in the critical path for writes, and thus saves a
complete disk revolution on most small writes. It also
avoids potentially long delays during parity rebuilds.
For efficiency, the parity logging scheme applies a
batch of parity updates at a time, which can interfere
with foreground I/O requests. Although some of the
policies used inAFRAID to control availability can also
generate interference with foreground I/Os, they are
less intrusive because parity updates may be
preempted between stripes.

The parity logging scheme could be extended to apply
its parity updates in idle periods, likeAFRAID. This
would improve its performance, except under
workloads in which the parity log fills up, when either
the pending parity updates must be applied
immediately, interrupting foreground processing to do
so, or the array must revert to a regularRAID 5 model
of operation until it becomes idle enough to apply
updates. Efficiency will drop for either approach.
There is no parity log to fill up inAFRAID—all that
happens is that the data becomes less well protected.

Finally, parity logging is quite a complicated scheme;
AFRAID is much simpler.

Another approach to the same problem is the floating-
parity scheme [Menon89]. This reduces the cost of
parity updates by writing the new parity data to an
empty, rotationally-nearby slot in the array, rather than
waiting for a full revolution to go by to update it in
place. Such an array still needs to do the old-data and
old-parity reads. The floating-data scheme extends this
placement optimization to data blocks, too, but this
requires considerably larger amounts of non-volatile
state information: a word or two per stored block.

In contrast to these two schemes,AFRAID has a less
efficient parity update scheme (reading all the data
portions of the stripe and recalculating the parity from
scratch), but it uses it during a time when the array is
less utilized, so that the resulting client-visible cost is
small or zero. The result is better performance when
the array is active, at the cost of a small exposure to
data loss if a (rare) disk failure happens before the new
parity has been calculated and written. We quantify the
degree of this exposure more precisely in Section 3.

The idea of allowing a file to become unredundant
while it was being created was proposed in
[Cormen93], in the context of parallel file systems for
scientific computing. This paper also suggested the
notion of paritypoints, by analogy to checkpoints, at
which an application could ask for the parity to be
computed for the file. OurAFRAID design takes these
ideas several steps further: it automates the process of
recomputing parity; and does so in idle periods rather
than only on demand; it isolates the parity rebuilding
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inside the disk array where it need not be visible to
application programs; and it is not limited to stripe-
aligned files.

Determining when the array is going to be idle enough
to do the rebuild without impacting incoming work is
a problem that has been studied already. [Golding95]
discusses this problem and a variety of solutions to it.

All the well-known techniques that have been
developed for performing stripe rebuilds in a recently
repaired disk array can be applied to the problem of
rebuilding the parity inAFRAID (e.g., [Muntz90,
Holland92]). These include opportunistically
piggybacking the parity updates on other “nearby”
activity done in the foreground; batching together
updates that are physically close together; or simply
doing a single, linear sweep through the disks.

Similarly, existing schemes for balancing disk traffic
under failure conditions can be applied toAFRAID (e.g.,
[Gray90c, Muntz90, Blaum94, Reddy91]). For ease of
exposition, however, we concentrate here on a
straightforward left-symmetricRAID 5 data layout.

3. Availability model of AFRAID

In this section we develop analytic models of data-loss
mechanisms forAFRAID, basing them on similar
models for traditionalRAIDs. In the next section we
apply these models to the data from our simulation
experiments to provide a quantitative evaluation of
data availability inAFRAID.

Following [Gibson93], we do not separate the cases of
inaccessible data from data that has been lost
irrevocably. We use the termavailability in this paper
to refer to the amount of time that data is accessible
and/or not lost. To make our discussion concrete, we
apply a set of assumptions about typical failure rates
for modern array components; these are summarized
in Table 1.

Because manufacturers do not yet publish
MTTFunexpected separately from overallMTTF, we have
been fairly conservative and set the coverage factorC
for disk failure predictions to 0.5 in our calculations.
That is, we assume that half of the disk failures will not
be predicted ahead of time. In what follows, we
include the coverage factor in theMTTFdisk
calculations:

MTTFdisk = MTTFdisk-raw / (1 –C)

3.1.  Mean time to first data loss

Most RAID data-loss calculations look only at the time
to the first catastrophic data loss due to disk failure,
which occurs if two disk failures occur so close
together that the first failure has not yet been recovered
from. If this happens, two disks worth of data is lost. A
convenient measure for this kind of catastrophe is the
mean time to data loss (MTTDL). The equation for a

RAID 5 disk array withN+1 disks, assuming rare,
independent, exponentially-distributed disk failures
is:3

MTTDLRAID-catastrophic=

(MTTFdisk)
2 / ( N (N+1) × MTTRdisk ) (1)

With a 5-disk array, and the parameters of Table 1, this
gives a theoreticalMTTDL of ~4.109 hours, or about
475,000 years.

In addition to the regularRAID failure mode,AFRAID
exhibits data loss if a single disk fails unexpectedly
while there is some unprotected data. To determine the
combined effect of these two modes, we look at the
likelihood of data loss occurring when there is
unprotected data (Tunprot) and when there is not (Ttotal
– Tunprot). A conservative measure of the contribution
to MTTDL for the period in which there is unprotected
data is:

MTTDLAFRAID-unprotected =

(Ttotal/Tunprot) × MTTFdisk/(N+1) (2a)

This measure is conservative because we do not take
account of the fact that in some cases only parity data
will be lost: we just simplify and assume that there will
always be some data loss. The rest of the time, when
there is no unprotected data,AFRAID behaves just like
a RAID for theMTTDL measure:

MTTDLAFRAID-RAID-catastrophic = (2b)

Ttotal/(Ttotal – Tunprot) × MTTDLRAID-catastrophic

Summing these two contributions, which are best
through of as inverses of rates, gives:

MTTDLAFRAID =

1 / ( 1/MTTDLAFRAID-unprotected

+ 1/MTTDLAFRAID-RAID-catastrophic ) (2c)

3 [Gibson93] includes several rather fancier formulae (e.g.,
equations 12 and 14) that give additional accuracy for large
arrays with many tens to hundreds of disks. In addition to the
fact that it would need another page or so to explain them, they
don’t help characterize the much smaller arrays that are the
common case, and the target ofAFRAID.

Table 1 : values assumed for calculations in this paper.

Parameter Value

disk mean time to failure MTTFdisk-raw 1M hours

support hardware mean time to
data loss MTTDLsupport

2M hours

disk failure-prediction coverage (C) 0.5

mean time to repair (MTTR) 48 hours

stripe unit size (S) 8KB

size of disk (Vdisk) 2GB
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Section 4.3 presents the results of experimental
determinations of this value over several workloads.

One more kind of multiple failure can afflict an
AFRAID: if its NVRAM marking memory fails, the array
will start reconstructing parity across all the stripes.
This will take a little while (about ten minutes for an
array using 2GB disks that can read at a sustained rate
of 5MB/s). If a disk failure occurs before the parity has
been completely rebuilt, the array has no way of
knowing which stripes were still unprotected, if any,
although it will be bounded by the knowledge of how
far the reconstruction has progressed. The likelihood
of this failure is exceedingly small, however, because
of the small window of vulnerability (MTTDL > 1011

hours), so we can safely ignore it here.4

3.2.  Mean data loss rate

The MTTDL measure indicates the expected rate of
failures leading toany data loss. In anyRAID 5-based
system this occurs on a dual-disk failure, at which
point a catastrophe occurs: two whole disks worth of
data vanishes. In addition, unprotected data inAFRAID
is vulnerable to loss from a single-disk failure.
However, the amount of data lost in this case is
bounded by how much is unprotected—and we will
show later that it is often quite small.

There is an important qualitative difference between
losing a block or two on a disk and losing the whole
disk. For example, all disks have a few defective
sectors or tracks, and new ones are occasionally added
to this list over its lifetime—but the occurrence of a
bad block on a disk doesn’t mean that the entire disk
has been lost, or even that it should be discarded.
Similarly, the effect of accidentally deleting a single
small file is usually much less severe than that of
losing an entire file system. The former may be merely
tedious, while the latter can be a catastrophe.

There are several reasons for this qualitative
difference: not all data is equally valuable; some data
can easily be reconstructed or recomputed; much data
“dies young”—that is, it will be deleted or overwritten
soon after it is created [Ousterhout85a]; recovering a
single file is often simpler than rebuilding an entire
disk set. Others have taken advantage of this
difference before us. For example, theBSD fast file
system [McKusick84] and its journalling file system
successors take considerable care to maintain
consistency of file system metadata, but are much
more cavalier with user information.

As a result, we feel that it is important to measure the
amount of data subject to loss, as well the time to lose
the first byte. A good metric for this is themean data
loss rate (MDLR): the product of the amount of data

4 The formula, for the curious, is:
MTTDLNVRAM+disk = MTTFNVRAM

× MTTFdisk / ((N+1) × rebuild-time)

loss and the rate at which it is likely to occur. In
addition to quantifying the effects of such losses, it has
the advantage of being a reminder that mean time to
failure values should be used only to define failure
rates, not expectations oflifetimes.

The catastrophic data loss rate for a regular array due
to a two-disk failure can be cast in these terms as:

MDLRRAID-catastrophic=

2Vdisk × N/(N+1) × 1/MTTDLRAID-catastrophic (3)

whereVdisk is the capacity of a single disk, which is
reduced by the second term to reflect that some of the
lost disk space held parity rather than data blocks. The
RAID 5 array we considered earlier would have aMDLR
of ~0.8 bytes/hour from this failure mode.

Analyzing the impact of single disk failures inAFRAID
requires additional information. To provide a basis for
this availability analysis, we first introduce the notion
of parity lag, which is the amount of unredundant non-
parity data present in the array at any time, measured
in bytes. Themean parity lag is the average parity lag
over some test period, such as the duration of a test
workload. Note that parity lag is workload dependent.

Data loss only occurs from a single disk failure if the
parity lag is non-zero at the time of the failure. When
this happens, one stripe unit (block) from each
unredundant stripe is lost (the one on the failed disk),
unless the lost block is a parity block, in which case no
actual data loss occurs.

The mean data loss rate for a single-disk failure on
AFRAID with unprotected data is:

MDLRunprotected =

(mean-parity-lag/N) × (N+1)/MTTFdisk (4)

where the first term reflects the average amount of
unprotected non-parity data vulnerable to a single disk
failure, and the second term gives the total failure rate
of all the disks in the array. We will present
experimental determinations of these values in section
4.3.

Summing the different component contributions gives
us the final mean data loss rate for the disk-related
components ofAFRAID:

MDLRAFRAID  =

MDLRRAID-catastrophic + MDLRunprotected (5)

3.3.  The effect of support components

We have concentrated so far only on disk failures. This
emphasis made sense when disks were much less
reliable than support components such as cooling fans,
power supplies, cabling, and other passive
components. But one of our contentions is that disks
are no longer the primary cause of problems in a disk
array. The reliability of the support hardware and the
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array controller is little or no better than that of the
disks.

The data in [Schulze89] suggests that these support
components would together lead to a mean time to
failure of a small array of about 46k hours; [Gibson93]
simply increases this to “a more reasonable value of
150k hours” without further discussion. Fortunately,
more recent designs and pressure by manufacturers to
boost reliability seem to have increased the quality of
these components, and although many array
manufacturers disconcertingly consider the data either
irrelevant or proprietary, a few do not, and we were
quotedMTTF numbers of 20–35k hours, andMTTDL
values of 270k to 5M hours. Some typical component
MTTF examples are: 150k or 0.5–1M  hours for the
controller; 300–500k hours for a host bus adapter; 50–
350k hours for a power supply module; and 1–3M
hours for cabling and packaging.5

It takes considerable engineering effort and use of
redundant components to increase the overallMTTDL
above 1M hours. For example, theHP AutoRAID array
[Wilkes95] uses two redundant power supplies, three
fans (any two of which can keep the system cool
enough for continued operation), and can support a
dual controller configuration; each controller has a
separateNVRAM that uses dual rechargeable batteries
that are periodically discharge-tested. The result: with
a fully-populated system (12 disks and 2 controllers),
the array’s overallMTTDL is specified (probably
conservatively) as 1.97M hours, together with an
overall MTTF of 31k hours. Few designers of small
arrays go to all this trouble: for example, the Network
Appliance’s FAServer350 product has a predicted
MTTF of around 20–30k hours with four disks, and
disks are its only redundant components.6

Together, these figures suggest that the current “more
reasonable value” for the aggregated non-disk
components of aconservatively-engineered array is
probably about 2M hours. This is a far cry from the
4.109 hours calculated from the independent-disk
failure model considered earlier. With a 2M hour
MTTDL, our 5-disk array would suffer aMDLR of
4.0KB/hour; using the 150k hour figure from
[Gibson93] would increase this to 53KB/hour.

The lesson here is that it is the support components that
determine the availability of a modern disk array, not
its disks.

3.4.  Non-volatile memory

Despite the extensive use ofNVRAM in high-
availability systems, remarkably little data has been
published on its reliability.

5 Storage Dimensions technical support line, personal
communication, October 1995.

6 Rich Boburg, Network Appliance, personal communication,
October 1995.

Integral lithium-cell-backed staticRAM is probably
one of the most reliable kinds ofNVRAM: it offers
retention lifetimes of 25–87k hours and extremely low
failure rates [Dallas94, Dallas95], but it is quite
expensive: ~$350/MB for a representative state-of-the-
art part from Dallas Semiconductor.

To avoid this expense, many systems use dynamic
RAM backed by rechargeable batteries based on NiCd
cells. The battery technology often limits the resulting
availability: achievingMTTF values above a few tens
of thousands of hours requires the use of redundant
batteries whose status is periodically tested by
controlled discharging, and careful attention to
charging circuitry and battery conditioning. The
complexity and cost of this design means that it is not
often used, so most battery-backedNVRAM has a much
lowerMTTF than the Li-cell backedRAM. For example,
the popular PrestoServe card has a predictedMTTF of
15k hours [Neary91]; with 1MB of vulnerable data, this
corresponds to anMDLR of 67 bytes/hour.

We will show that this means that single-copyNVRAM
applications are already accepting significantly higher
risk of data loss than results from the temporary lack
of parity protection inAFRAID.

3.5.  Power failure

One additional support component that is particularly
important is external power. Up to this point, our
discussion has assumed that external power failures
simply don’t happen. This matters because a power
failure that happens while aRAID 5 is writing can lead
to data loss unless a separate, non-volatile intentions
log is kept.

[Gibson93] reports aMTTF of 4300 hours for mains
power (i.e. a power failure about every 6 months). This
is probably reasonable for parts of North America and
Europe, but would be optimistic in some other parts of
the world. In our traces, we saw outstanding writes up
to 59% of the time, with a mean of 20%. Even using a
more conservative value of a 10% write duty cycle on
a 5-diskRAID 5 gives aMTTDL of only 43k hours due
to external power failures. The effect onMDLR is
roughly to double it (0.7bytes/hour), but the change in
MTTDL represents losing about 98% of the availability
that the array offers.

It might be thought that providing an uninterruptible
power supply, orUPS, would be overkill for a small
array, but it may be the single largest contributor to
preventing data loss. Using a high-gradeUPS with an
MTTF of 200k hours [Best95] and a 10% write duty
cycle returns theMTTDL for the array’s external power
components to 2M hours.

The large variability in power andUPS reliability can
obscure the other support contributions toMTTDL, so
we have chosen not to include external power failure in
the calculations in this paper.
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3.6.  How much availability is enough?

When RAIDs were first being discussed as a
replacement for large disks, theMTTF for small disks
was 20–30,000 hours, and the target was to match the
reliability of a single, large disk with aMTTF of 30–
100,000 hours [Patterson88]. Things have improved
since then: modern small-form-factor disks typically
have a publishedMTTF of 0.5–1.0M hours. Given that
the expected useful lifetime of a disk or disk array is
probably no more than 3 years, or about 26k hours,
this is equivalent to a lifetime expected failure
likelihood of 3–5%. If it held 2GB, its mean data loss
rate would be 2–4KB/hour. This means that thebest of
the traditional 5-diskRAIDs, limited to aMTTDL of
about 1–2M hours by their support components, are
achieving a MDLR for the whole array roughly
equivalent to that of a single disk.

We contend that the combination of modern, highly
reliable disks with traditionalRAID technology
provides more than enough protection against disk
failures, and that further efforts to increase data
availability are attacking a solved problem for the vast
majority of customers. Instead, we suggest that it may
be worth exchanging some of the “excess” disk
availability for better performance—which is
precisely whatAFRAID does.

4. Evaluation
To provide a quantitative evaluation of theAFRAID
concept, we used a detailed event-driven simulator to
compare the performance and availability of an
AFRAID array with a non-AFRAID system under a
variety of workloads. We report here on three aspects
of this evaluation:

 • the relative performance ofAFRAID, RAID 5, and
RAID 0 (an unprotected array);

 • quantitative availability measures;

 • the relationship between performance and
availability underAFRAID.

We begin with a description of our experimental setup.

4.1.  Experimental methodology

In order to evaluate whether real-life workloads are
bursty enough for anAFRAID array to rebuild parity
quickly, it was necessary to look at some real-life
workloads. So we did. Here are the ones we used:

 • hplajw — a single userHP-UX [Clegg86] system
used mainly for email and document editing.

 • snake — an HP-UX file server for a cluster of
workstations atUC Berkeley.

 • cello — anHP-UX timesharing system for about 20
people doing text editing and program
development. We used two subsets of the full cello
trace:cello-usr is the set of three disks holding the

root file system, /usr, and /users;cello-news is a
single disk holding the Usenet news database: it
received half of all the disk I/Os in the system.

 • netware — an intensive database-loading
benchmark measured on a Novell Netware server.

 • ATT — a production telephone-company database
system. On the real system, the entire dataset was
mirrored; for our tests, we just used one copy of the
data.

 • IBM AS400 — four productionAS400 systems.
These traces were supplied to us by Bruce McNutt
of IBM San Jose; we called themAS400-1 through
AS400-4.

The workloads for the first three of these systems are
described in great detail in [Ruemmler93]. We used
one-day subsets of them for this work.

To evaluate our claims we constructed a detailed
event-driven performance simulation ofAFRAID using
the Pantheon7 simulator, which includes the calibrated
disk models discussed in [Ruemmler94]. To simplify
the discussions and save space, we just consider spin-
synchronized arrays here.

To addAFRAID to Pantheon, we started with a detailed
RAID 5 model and adapted it to supportAFRAID. The
changes were small: they consisted of adding the
marking memory and updating it on writes, and not
doing the read-modify-write cycle for the parity in
AFRAID mode. We added a background idle-task to do
the parity rebuilds, triggered by an idle-detection
network [Golding95] or explicit foreground policies.
By default, we used a timer-based idleness detector
with a 100ms delay: that is,AFRAID started processing
parity updates once the array had been completely idle
for 100ms; the output from the idle-period predictor
was ignored.

To make sure that we were seeing the effects of the
AFRAID policies themselves rather than just the disk
array’s cache policies [Ruemmler94], we chose a
small (256KB) write staging area with a write-through
policy together with a small (256KB) read cache with
no array-level readahead. Since our workloads came
from systems with much larger file buffer caches, read
hits in the array’s cache were rare. We limited the
number of concurrently active client requests inside
the array to the number of physical disks it had; the
host device driver used theCLOOK policy
[Worthington94a], the back-end device drivers inside
the array usedFCFS. We modelledHP C3325 2GB 3.5”
5400RPM disks in the array [HPC3324].

Multiple writes to the same stripe were allowed to
proceed in parallel, but would block if a parity-rebuild

7 The simulator used to be known as TickerTAIP: we changed
its name to avoid confusion with the parallelRAID array of the
same name [Cao94b].
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on that stripe was in progress. Requests were never
preempted: once started, they ran to completion.

The I/O times we report in this paper start when a
request is given to the device driver, and stop when the
request is completed by the array. They include both
the time spent in the array itself and any time spent
queued in the device driver. Given that we are using an
open-queueing, trace-driven workload, this provides
the fairest assessment of the performance that would
be seen by a user or file system.

We took no special action for synchronous writes: ones
for which the file system waits until the data being
written has been put onto non-volatile media. Such
writes are designed to ensure resilience against power-
failure, not against disk failure; for example, they are
used to disable immediate-reporting in disks that allow
this [Ruemmler93, Ruemmler94]. Even if we had
chosen to force a parity-update on a stripe updated by
a synchronous write, the redundancy would go away
again on the next update to any block in the stripe—not
just the one that had been written to synchronously—
because parity protection is at the stripe level, not the
block level.

Because almost all of the code was the same between
the various array models, direct performance
comparisons between them are possible. Indeed, to
make sure that the exact same disk and cache
algorithms was executed in all cases, we modelled
RAID 0 as anAFRAID that simply never did parity
updates.

About the only things that we did not model were a few
performance improvements forAFRAID, of which the
most important were probably aggregation of adjacent
stripes needing parity rebuilds and piggybacking
parity updates on disk accesses to nearby blocks.

In addition to the baselineAFRAID design, which
updated parity only in idle periods, we implemented a
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Figure 2 : absolute performance of RAID 5 (leftmost
bars), AFRAID-baseline and RAID 0 (rightmost bars) with
a range of AFRAID-MTTDL-X policies in between.

policy which directly traded off performance for
improved availability. This MTTDL-X policy is
designed to keep the disk-basedMTTDL above a
particular target value (X). To do this, it continuously
calculates theMTTDL that has been achieved so far, and
reverts toRAID 5 mode if the goal is not being met. (It
also starts the parity update for any unprotected stripes
at this time.) The policy attempts to limitMDLR by
automatically starting a parity update when more than
20 stripes are unprotected, even if the array is not idle;
we had found earlier that this was fairly effective and
caused little performance degradation.

4.2.  Performance evaluation ofAFRAID

Figure 2 and Table 2 present the results of exploring
the relative performance ofAFRAID, RAID 5 andRAID 0
across a range of workloads and parity-update policies.
The figure and table show that, as predicted, pure
AFRAID performance is very close to that ofRAID 0,
with a smooth degradation in performance towards
that ofRAID 5 asAFRAID is configured to increase data
availability.

The performance of the baselineAFRAID was a
geometric mean of 4.1 times that ofRAID 5 across our
test workloads. By comparison,RAID 0 performance
was 4.2 times that ofRAID 5. Thus,AFRAID is living up
to the first part of its promise: performance
comparable to non-protected arrays.

4.3.  Availability measures forAFRAID

Our next experiments determined the availability
delivered by the different parity update policies under
real workloads. The results are shown in Table 3 and
Table 4. TheAFRAID contribution to MDLR from
unprotected data is extremely low: with the exception
of the heavy load from theATT trace,MDLRunprotected
contributes less than one byte per hour to the overall
MDLR. This is tiny by comparison to the overallMDLR,
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Figure 3 : relative performance and MTTDL for RAID 5
(top left) to AFRAID-baseline (bottom right). These are
geometric means across all the workloads we studied.



1996 USENIX Technical Conference – January 22–26, 1996 – San Diego, CA 35

Table 2 : performance data for the traces we studied.
AFRAID-MTTDL-X is an AFRAID that reverts to RAID 5 when the availability drops below a target threshold.

Workload AS400-1 AS400-2 AS400-3 AS400-4 ATT
cello-
news

cello-
usr hplajw netware snake

Number of disks (N+1) 4 4 4 4 5 4 4 4 8 4

Trace duration (hours) 0.6 1.5 1.7 1.0 1.0 24 24 24 1.1 24

Mean I/O time (milliseconds)

RAID0 58.0 18.0 12.8 22.6 17.1 48.1 13.0 20.9 8.9 8.7

AFRAID-baseline 58.5 18.4 12.9 22.9 17.5 48.2 13.2 21.2 9.7 8.8

AFRAID-MTTDL-2M 125 38.9 23.8 39.3 33.6 77.1 18.5 27.2 37.4 17.2

AFRAID-MTTDL-16M 179 68.2 33.5 73.6 83.2 115 43.3 27.2 45.9 17.2

AFRAID-MTTDL-64M 183 73.8 37.2 79.9 111 179 96.8 27.2 46.4 25.1

RAID5 183 74.2 37.8 80.4 111 188 104 70.2 46.4 29.7

Table 3 : mean data loss rate (MDLR) for the traces we studied.
MDLR-nosupport excludes data losses due to the support hardware, while MDLR-total includes them.

Workload AS400-1 AS400-2 AS400-3 AS400-4 ATT
cello-
news

cello-
usr hplajw netware snake

MDLR-unprotected (bytes/hour)

AFRAID-baseline 0.08 0.02 0.01 0.02 5.93 0.47 0.06 <0.01 0.71 0.02

MDLR-nosupport (bytes/hour)

RAID0 18K 18K 18K 18K 32K 18K 18K 18K 98K 18K

AFRAID-baseline 0.51 0.45 0.44 0.46 6.70 0.90 0.50 0.43 3.06 0.45

RAID5 0.43 0.43 0.43 0.43 0.77 0.43 0.43 0.43 2.35 0.43

MDLR-total (bytes/hour)

RAID0 21K 21K 21K 21K 36K 21K 21K 21K 105K 21K

RAID5, AFRAID 3K 3K 3K 3K 4K 3K 3K 3K 7K 3K

Table 4 : mean time to data loss (MTTDL) data for the traces we studied.
MDLR-nosupport excludes data losses due to the support hardware, while MDLR-total includes them.

Workload AS400-1 AS400-2 AS400-3 AS400-4 ATT
cello-
news

cello-
usr hplajw netware snake

Percentage of time with unprotected data

AFRAID-baseline 51.1% 18.3% 13.4% 22.4% 22.5% 7.9% 8.8% <0.1% 51.3% 4.2%

AFRAID-MTTDL2M 25.6% 12.7% 7.4% 13.7% 10.7% 3.9% 3.2% <0.1% 12.3% 2.1%

AFRAID-MTTDL64M 0.8% 0.8% 0.8% 0.8% 0.6% 0.7% 0.7% <0.1% 0.3% 0.7%

MTTDL-nosupport (hours)

RAID0 0.33M 0.33M 0.33M 0.33M 0.25M 0.33M 0.33M 0.33M 0.14M 0.33M

AFRAID-baseline 0.98M 2.74M 3.74M 2.23M 1.77M 6.29M 5.63M 300M 0.49M 11.8M

AFRAID-MTTDL2M 1.95M 3.92M 6.74M 3.66M 3.74M 12.8M 15.5M 556M 2.02M 24.0M

AFRAID-MTTDL64M 61.2M 63.5M 63.6M 62.9M 62.9M 66.4M 66.4M 556M 64.6M 75.3M

RAID5 6.94G 6.94G 6.94G 6.94G 4.17G 6.94G 6.94G 6.94G 1.49G 4.17G

MTTDL-total (hours

RAID0 0.29M 0.29M 0.29M 0.29M 0.22M 0.29M 0.29M 0.29M 0.13M 0.29M

AFRAID-baseline 0.66M 1.16M 1.30M 1.05M 0.94M 1.52M 1.48M 1.99M 0.39M 1.71M

AFRAID-MTTDL2M 0.99M 1.32M 1.54M 1.29M 1.30M 1.73M 1.77M 1.99M 1.01M 1.85M

AFRAID-MTTDL64M 1.94M 1.94M 1.94M 1.94M 1.94M 1.94M 1.94M 1.99M 1.94M 1.95M

RAID5 2.00M 2.00M 2.00M 2.00M 2.00M 2.00M 2.0M 2.00M 2.00M 2.00M
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which is dominated by support-component effects.
Consequently,AFRAID and RAID 5 have essentially
identicalMDLRs. TheMDLRunprotected drops to less than
0.1 bytes/hour if any of theMTTDL-X policies are used.

Because theMDLR values forAFRAID are so close to
those forRAID 5, the more interesting comparison is
between theMTTDL values. The first thing to note is
that even the baselineAFRAID design is uniformly
better than an unprotected disk array. It delivers a
geometric meanMTTDL 4.3 times better thanRAID 0,
and is only a factor of 1.8 worse than pureRAID 5.

The MTTDL-X policy can bring the overallAFRAID
MTTDL as close toRAID 5 as desired. Even the simple
implementation of this policy that we used proved
highly effective: the disk-relatedMTTDL was never
more than 5% below its target, and usually far
exceeded it.

As with MDLR, the dominant factor in overallMTTDL
comes from the support components, which limit
overall MTTDL to 2 million hours for all but the
baselineAFRAID with the busiest workloads.

Thus, AFRAID is living up to the second part of its
promise: availability comparable toRAID 5.

4.4.  How changing availability affects
performance

Figure 3 indicates just how little of the availability of
a RAID 5 is relinquished byAFRAID in order to obtain
better performance. The graph indicates relative
performance and availability (MTTDL) by comparison
to RAID 5 (the top left data point); it uses the geometric
mean of the results obtained from all of our workloads.
As the targetMTTDL-X value is reduced (points further
to the right), performance increases rapidly, while
availability drops off much more slowly. For example,
AFRAID offers 42% better performance for only 10%
less availability, and 97% better for 23% less. By the
time pureAFRAID is reached at the bottom right of the
graph, performance is 4.1 times better thanRAID 5, at
a cost of less than half its availability.

Thus, a great deal of performance improvement can be
had for a small reduction in data availability.

Figure 4 shows how performance varies with the
parity-update policy for each of the traces that we
studied. This figure highlights whatAFRAID is all
about: providing a choice between more performance
or more availability.
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Figure 4 : performance of RAID 0, RAID 5 and AFRAID under different workloads and policies.
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The tradeoff between performance and availability is
directly related to the characteristics of the workload.
For instance, the highly bursty workloads such as
snake, hplajw, and cello-usr show relatively little
change in mean I/O time as availability is increased by
choice of more conservativeMTTDL-X policies. This is
because the workloads have enough idle time to
update unredundant stripes and therefore the amount
of unprotected time usually stays low; in turn, this
means that there is little need to revert toRAID 5 mode.
In workloads with fewer idle periods and more write
traffic, such asAS400-1 andATT, there is a smooth
decline in mean I/O time asMTTDL is increased across
the entire range betweenRAID 5 and pureAFRAID.

This adaptability is one of the key features ofAFRAID.
Once a desired level of availability has been specified,
an AFRAID array will translate any unneeded
redundancy into performance. A typical bursty
workload will show performance close to that of an
unprotectedRAID 0 disk array, while even the most
highly utilized workload will deliver performance no
worse than aRAID 5.

The net result is thatAFRAID lives up to the last part of
its promise: it offers a smooth trade-off between
performance and protection that a regularRAID cannot.

5. Refinements of theAFRAID  ideas
This section suggests some further applications and
refinements of theAFRAID idea.

An array could begin in a “conservative”RAID 5 mode,
and automatically switch intoAFRAID behavior once it
had determined that the I/O patterns included
sufficient idle time to keep the redundancy deficit
below some bound. This would be a more conservative
scheme than the one we used in theMTTDL-X policy,
which took the opposite approach, switching intoRAID
5 when it felt that its target could not be achieved.

Stripe-aligned subsets of anAFRAID’s storage space
could be permanently flagged with different
redundancy properties, from fullRAID 5 redundancy-
preservation to zero-redundancyRAID 0-style storage.
Data could then be mapped to portions of the array that
provided different redundancy guarantees, allowing
fine-tuning of the array’s availability properties
according to user-specified goals [Wilkes91]. The host
could then actively request that a set of stripes be made
redundant, analogous to the traditional database
COMMIT operation.

The units of parity-reconstruction can have a smaller
“height” than the stripes used for data layout if more
marker memory can be provided. For example, ifM
memory bits can be afforded per stripe, then parity
computations will still be efficient for small writes that
update only 1/M of a stripe unit.

A RAID 6 array keeps two parity blocks for each stripe,
and thus pays an even higher penalty for doing small

updates than doesRAID 5. TheAFRAID technique could
be combined with theRAID 6 parity scheme to delay
either or both parity-block updates: if only one was
deferred, partial redundancy protection would be
available immediately, and full redundancy once the
parity-rebuild happened for the other parity block.

6. Conclusions
The main AFRAID idea is the notion of allowing
deliberate, controlled, temporary non-redundancy in a
disk array in order to get significantly better
performance. Because real-life workloads are very
often bursty, these performance gains can be achieved
with a minimally increased chance of data loss—and
indeed, there may be less exposure to data loss than
existing single-point-of-failure solutions such as
single-copy volatile orNVRAM caches.AFRAID also
offers a choice that has not been possible before: that
of selecting just how much availability is wanted in a
particular situation.

The AFRAID design appears to be highly appropriate
for workloads that have even moderate amounts of idle
time between bursts of activity. Like otherRAID
designs, there are some workloads and applications for
which it is not particularly well suited. For example,
we would not advocateAFRAID for the cases where
data must be protected at all costs, but it does offer a
very good solution for the majority of people who
want something between completely unprotected data
and a fully-redundant, high-end disk array with its
performance, purchase, and configuration costs.

In particular, we believeAFRAID is an appropriate
design for low-load environments where latency is
important, such as systems with a small number of
interactive users. We hypothesize that these
applications are also the ones least likely to benefit
from the full availability improvements ofRAID 5.

What did we learn as a result of this study? In addition
to the performance and availability results we have
described already, a few lessons stand out:

 • Throughout this paper we have been attempting to
reinforce a larger point that deserves more
attention in system design: there is little value in
bolstering the fault-tolerance of a single
component to heroic levels if the rest of the system
is less reliable. We call this theend-to-end
availability argument, by analogy with [Saltzer81].
Making simplifying assumptions about end-to-end
availability (for example, that complete data
redundancy in the disk layer of an array is
sacrosanct, or thatNVRAM storage never fails)
prevents taking advantage of performance
opportunities likeAFRAID.

 • Real-life workloads really are bursty (we’ve been
saying this for a while, but it bears repeating).
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 • Although the amount of unprotected data in the
array is a function of the workload, there are
several algorithms for bounding it, at the cost of
some of the performance gains from pureAFRAID.
UnboundedAFRAID and pureRAID 5 are simply
different points on a continuum of allowed parity
lag—and our design allows a user to choose where
on this scale they would like their array to be.

 • Thinking of different availability solutions in
terms of data-loss-rate proved a useful way to
unify a number of effects.

Finally, just because an idea has a strange acronym
doesn’t mean you should be worried by it:

“Always do what you are afraid to do.”
- Ralph Waldo Emerson
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