Utility functions, prices, and negotiation

john wilkes, hp labs SMDB'08, Cancun, Mexico

© 2008 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change

Context a sample Tuscany ecosystem

each is an example of an independent service provider

Utility functions, prices and negotiation communicating business intent to (automated) IT

- What makes automation easier?
 - -a single metric to optimize against
- What do business care about? – money!
- What is money a proxy for?
 utility → a measure of "goodness"

SLAs as contracts

• a Service Level Agreement (SLA) is a contract

- between mutually suspicious parties
 if you care about something, put it in the SLA!
- -agreement can be explicit or implicit

assumptions

- -machine readable, can be reasoned about
- -two-party (other variations possible)

SLAs WS-Agreement basics

- 1. Context
 - who, why, duration
- 2. Service terms
 - what service is offered, and how it is offered
- 3. Guarantee terms
 - scope + conditions (e.g., time of day)
 - Service Level Objectives (SLOs)
 - penalties and rewards

Outcome-based pricing a better way

- replace all the SLA guarantee terms
- by a single price function
- that specifies how much the service provider is paid for each possible **outcome**
- omitting all details of *how* the outcomes are achieved

Outcome-based pricing A price and a price function

Outcome-based pricing A price and a price function

Outcome-based pricing *what if* ... price functions

specify consequences, not behaviors!

inveni

Outcome-based pricing *what if* ... price functions

specify consequences, not behaviors!

exactly one price function in each SLA

-function(set of metrics/parameters) \rightarrow a price

evaluated by:

- -service provider to work out what to charge
- -client to predict what might happen

-third party to audit

SLA structure what if ... price functions

- typically structured as a tree
- summation, discounts, library-of-parts, etc

SLA structure what if ... price functions

- benefits:
 - -either side can predict price for given outcome
 - -can be audited by 3rd party
 - -consequences can be explored automatically
- requirements:
 - -standalone, deterministic
 - -flexible
 - -well-defined, visible inputs: SLIs (Service Level Indicators)

SLA structure what if ... price functions

Setting prices

- Pricing is the strategy used for setting prices

 pricing strategy → emits *price function* e.g., loss leader; bundling, differential, …
- Competition, price pressures → sets max prices
- Customer utility → limits what customers will pay – demand-elasticity curves

specify

consequences,

not behaviors!

Utility

Utility = local measure of goodness more is better!

- Arbitrary, local units
 - -cannot be:
 - compared across agents
 - normalized across agents
 - summed across agents
 - -can be rescaled and re-normalized

• e.g., > 0 → win, <0 → lose

Utility for a fixed outcome **Some simple forms**

Utility for a fixed outcome **Example: buying a car**

Client utility for 2 outcomes

Client utility for 1 outcome

Service provider utility 1 outcome + price

Service outcome (e.g., number of widgets)

Service outcome (e.g., throughput)

Negotiation

Price

Negotiation goal An agreed-upon price function

Negotiation goal An agreed-upon price function

Negotiation goals: basics

success → SLA; failure → no SLA

-there's a utility aspect to reaching an agreement, too

support each party's interests

- -maximize achievable utility
- -caution: don't send max-price function to the other!

purely rational agents not people!

Negotiation goals: fairness

• "Fairness" is entirely optional ...

- -self-interested parties
- but: people will walk away from a deal they consider unfair, even if they would benefit from it

Approaches

- -note: cannot do "equal utility"
- *k-pricing*: split the profit/loss difference
 requires trusted 3rd party

Negotiation mechanisms/protocols

- here: two-party
 - -can always add a third party (e.g., auctioneer)
- either party can set the price
 - -e.g., price-setting service provider
 - -price functions can be built jointly
 - e.g., client \rightarrow penalty, service provider \rightarrow nominal cost
- many other aspects ...
 - -e.g., incentive compatibility

Negotiation strategies

what to concede when?

e.g., push hardest where resistance is weakest
 – find where disparity in outcome/slope surface is greatest

Negotiation goal An agreed-upon price function

Variance in outcome expected utility

invent

Variance in outcome expected utility

Variance in outcome risk

- variance in outcome = risk
- examples:
 - offered load \rightarrow poor performance, or more resources
 - component failure \rightarrow poor availability
 - –lack of resources \rightarrow poor performance
- with what-if prices:
 - −outcome variance → price variance

Variance in outcome risk sharing

• who takes on the risk if effort required is unknown?

- -cost-plus prices: client
- -fixed prices: service provider
- example: how many resources?
 - -model-based (e.g., response time + load \rightarrow resources)
 - systemic uncertainty from model biases/inaccuracies
 - stochastic uncertainty from environment, workload, etc

Variance in outcome risk lotteries, risk aversion

• a **risk lottery** is a game with multiple outcomes

- -pay \$60, or a 50% chance of \$100? (risk-averse \$10)
- -pay \$50, or a 50% chance of \$100? (risk-neutral)
- -pay \$45, or a 50% chance of \$100? (risk-seeking \$5)

- risk aversion is a measure of how much an agent dislikes the uncertainty/variance
 - strictly, risk is any variance; but people dislike downside risk more than they like upside risk

Variance in outcome cumulative prospect theory

People are:

loss aversive

-a loss matters more than a gain of the same amount

- target-relative:
 - -more receptive to risk below a target;
 - -significantly averse to it above
- long-shot biased:
 - -overweight rare, extreme events
 - -discount "average" occurrences

Variance in outcome penalties

- their *purpose* is to be bad for the victim
 - -punitive vs. compensatory?
 - caution: moral hazard: a bad outcome that can be triggered by the other party
- pricing for penalties
 - -estimate expected outcomes
 - -add profit margin (or other pricing strategy)
 - -add risk aversion (cf. insurance)

Future – what's next?

- Applying all these ideas to automated service providers
 - -e.g., database management systems!
- Reflecting people's biases, not just being purely rational
 - -e.g., cumulative prospect theory

special thanks to ...

- HP Labs, Palo Alto, CA:
 - -Sharad Singhal + Subu Iyer
- IHPC, Singapore:
 Elaine Wong + Yang Yinping
- BDIM (Business-driven IT Management workshop):
 Claudio Bartolini + Jacques Sauvé

http://www.hpl.hp.com/personal/john_wilkes/papers/#Tuscany

