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Abstract  
Starting in 1994/5, the Storage Systems Program at HP Labs em-
barked on a decade-long journey - to automate the management of 
enterprise storage systems by means of a technique we initially 
called attribute-managed storage.  The key idea was to provide 
declarative specifications of workloads and their needs, and of 
storage devices and their capabilities, and to automate the map-
ping of one to the other.  One of many outcomes of the project 
was a specification language we called Rome1 – hence the title of 
this paper, which offers a short retrospective on the approach and 
some of the lessons we learned along the way. 

Categories and Subject Descriptors  D.4.2 Storage Manage-
ment, D.4.5 Reliability, D.4.8 Performance, I.6.5 Model Devel-
opment, K.4.3 [Organizational Impacts] automation, K.6.2 
Installation Management, K.6.4 System Management. 

General Terms Algorithms, Management, Measurement, Per-
formance, Design, Economics, Reliability, Experimentation. 

Keywords  storage management; attribute-based storage; de-
clarative system management; storage performance models; 
solvers. 

1. Before the beginning 
In the late 1980s, I’d worked on a scalable storage system called 
DataMesh [Wilkes1989], which advocated (about a decade too 
soon!) building a storage system out of intelligent building blocks 
containing a disk drive, some local processing power, and a high-
speed network port.  The idea was to connect these together into a 
mesh, and build a storage system that could be scaled to meet 
whatever performance or availability demands were placed on it.  
It quickly became obvious that such a beast would be a nightmare 
to control and configure if viewed a disk at a time, so we started 
to think about how you might delegate control of design choices 
to it, starting with failure recovery goals [Wilkes1990]. 

DataMesh never took off. But the seed of an interesting idea 
had been planted. 

2. Setting out 
In 1994, we were about to finish helping our colleagues on the HP 
AutoRAID project [Wilkes1996] and asked ourselves – “what if 

                                                 
1 The names chosen by the HPL Storage Systems program team for the 
various project components were derived from an architectural theme 
consistent with our logo – a Corinthian column.  Over time, this pro-
gressed towards names with a generally classical bent.  We apologize for 
none of them! 

we could apply the same principles to an enterprise-scale storage 
system?” That is: what if users of large-scale storage systems 
didn’t have to micro-manage the data placement, choice of RAID 
level, and kind and number of storage devices to purchase?  What 
if the system could work these things out for itself, given a speci-
fication of what the customer wanted?  The obvious motivations 
were offered: reduced system management costs; lower-cost sys-
tem designs, faster (and more accurate) response to changing 
inputs; and fewer errors injected. 

We wanted to separate the specification of what was desired 
from the process used to get to an answer – i.e., we were defining 
a declarative system for storage management.  The name we 
chose was attribute-managed storage [Golding1995], by com-
parison to IBM’s system-managed storage [Gelb1989].  Stores 
(data objects), streams (access patterns), and storage devices were 
each given attributes that specified their properties or behaviors. 
Streams were associated with stores.  We called the process of 
assigning stores to devices the mapping problem, and proposed to 
solve it automatically.  

 
Figure 1. The attribute mapping problem. 

 
Different aspects of the mapping problem included “how many 

devices are needed to support this load?”; “how much load can 
this set of devices support?” (which introduced a need for an early 
version of utility); and “half my data center has just burned down 
– which subset of the load can I still support?”  In practice, we 
spent the majority of our time focused on the first question, on the 
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grounds that most users had a set of work they wanted to get 
done, and were interested in seeing how to support it. 

3. Packing for the outward journey 
It was pretty straightforward to generate a mathematical formula-
tion of the mapping problem as a constraint-based optimization 
problem, with the constraints being things like “all workloads 
should be assigned exactly once”, and “no capacity limit should 
be exceeded”, and with objective functions of the form “ mini-
mize the cost of a complete solution”, or “maximize the utility” 
[Shriver1996].   

Two additional outcomes were observable at this stage: a first, 
clear specification of a set of parameters and attributes for work-
loads, stores, and storage devices; and the need for models to 
determine whether constraints were satisfied.  

Adding up storage capacity to check a constraint was trivial; 
determining if the load imposed by placing a set of stores on a 
device would be too high was much trickier.  We quickly ruled 
out simulations as being too costly, and resorted to simple ana-
lytic models for the expected behavior.  Our background in simu-
lation models for storage devices [Ruemmler1994] led us to a set 
of analytical models for disk devices that was more complete than 
most, and yet executed quickly [Shriver1998]. 

We had started down the path of analytical performance mod-
els that would occupy us for much of this leg of our journey. 

To help ground our work, we picked the TPC-D benchmark as 
a representative sample of the kinds of application we would have 
to cope with.  Taking I/O traces of a (non-audited!) system run-
ning this load showed us that there were several distinct phases in 
which one portion of the system was heavily used while another 
lay idle – and vice versa.  Time-sharing the storage resources 
between different phases could save as much as a factor of six in 
storage system cost. Addressing this issue resulted in us develop-
ing a sophisticated set of performance models that could handle 
both short-term workload peaks and correlations between longer-
term workload behaviors [Borowsky1998]. 

So far, we had just been modeling single disk drives.  Our real 
target was disk arrays, which introduced a great many complica-
tions in the performance models for various RAID levels 
[Varki2004].  Hard work on analytical device models eventually 
addressed these [Uysal2001]. 

Nonetheless, the time required to generate a set of calibrated 
storage device models proved troubling – as did the fact that it 
took a set of highly competent people with PhDs to do it.  An 
alternative approach was needed.  We found it in a clever applica-
tion of brute force.  Instead of carefully crafting models that pre-
dicted the likely behavior of a storage device, we built models 
that extrapolated the likely behavior from sets of stored measure-
ments – lots of them.  We called this approach table-based model-
ing [Anderson2001]; using spline-based interpolations to fit the 
data, and being careful about unwarranted extrapolations gave us 
accuracies similar to – or better than – the analytic models, with 
comparable or better runtimes, and considerably less work on our 
part. 

4. On the road, outbound 
Early on, it became clear that the search space we wanted to ex-
plore was rather large: this is a variant of the multi-dimensional, 
multi-knapsack problem, which is (of course) NP complete – and 
the scale at which we were operating largely precluded exhaustive 
search.   

We called the tools we used to explore alternative assignments 
of work to devices solvers. Our first attempt at a solver was called 

Forum; it handled the single-device models described above, and 
used greedy hill-climbing to select the best alternative 
[Borowsky1997].  A few simple heuristics for ordering the ex-
amination of alternatives were explored, including (repeated) 
randomization of the order to consider workloads for assignment; 
sorting the workloads on various attributes, and using the Toyoda 
algorithm for deciding which device to pack the next load onto 
[Toyoda1975]. 

Forum tackled performance for single storage devices.  A 
completely separate tool, Corbel, was the first to tackle the con-
joint design problem for availability and performance at the same 
time [Amiri1996].  Corbel synthesized RAID designs, tested their 
availability against the objectives associated with stores, and then 
selected a suitable design from the ones that were left.  Unfortu-
nately, Corbel was never integrated into our mainstream code 
base – partly because it relied on a somewhat hard-to-use Markov 
chain analysis tool that was written in Fortran.  Corbel used a 
greed first-pass assignment process that took the raw hardware 
cost plus the cost of downtime into account, followed by a re-
finement pass that fixed up the solution by selective moving of a 
few stores that were not well matched to their placements.  

5. Making good progress 
Our second attempt to support disk arrays was a solver called 
Minerva [Alvarez2001].  That tackled the problem in two parts: it 
first tagged workloads with the recommended kind of RAID level 
that they should be assigned to, and then performed a Forum-like 
assignment.  As with Corbel, a final optimization pass cleaned up 
a few stragglers – especially stores that ended up consuming an 
entire RAID group. 

To make Minerva work well, we had to make good choices 
about deciding which RAID level to use for each store 
[Anderson2002].  Using simple rules of thumb – as a human 
might do – produced acceptable answers, but integrating the 
choice into the process of assigning stores to devices did much 
better, albeit at the cost of some additional computation time. 

At one point we thought that genetic algorithms (GAs) seemed 
like an obvious approach to this problem: the species genotypes 
would represent the current sets of assignments of load to devices, 
and mutations and combinations would explore the space of alter-
natives in an efficient fashion.  Having tried the experiment, we 
learned that the cost of evaluating each of the solutions was so 
high that it dominated the running time of the GA solver, even 
after aggressive memoization. 

Initially we had been leery of trying to do performance- and 
availability-based assignments simultaneously because of the 
huge search space that it engenders.  However, Eric Anderson 
was able to get around this problem by constructing a solver that 
used speculative exploration plus a tree-like representation of the 
design of a storage system and its assignments.  The solver, called 
Ergastulum,2 performed much faster than Minerva, and was able 
to explore a great many more alternatives [Anderson2005]. 

6. Arriving at the destination 
The material so far has described how we developed solutions to 
the declarative design of a single storage system configuration.  
But our goal was always to develop a way to make the storage 

                                                 
2 The name means a private prison attached to most Roman farms, where 
the slaves were made to work in chains. It was selected when Eric was a 
summer intern in our group – he claims that it seemed like a good idea at 
the time.  Regrettably, the ACM TOCS reviewers took aversion to it, and 
we had to drop it from the published version. 



system self managing – by which we meant self-configuring, self-
optimizing, self-healing, and all of the other self-* objectives.  

The approach was straightforward – at least in principle: (1) 
take a specification for what is wanted; (2) build a storage system 
that matches those needs; (3) deploy the application or workload 
on that system; (4) monitor it to see if it is meeting the actual 
needs of the workload; (5) re-design if necessary, and migrate the 
application to the new configuration – preferably while it is still 
running. 

Hippodrome was the name of the system we devised to do all 
this [Anderson2002a].  It went one better: it didn’t need a detailed 
specification of the performance requirements of the workload, 
just the capacity and availability needs.  It would run the applica-
tion, measure the result, design and deploy a system to meet those 
needs, and iterate until the result stabilized – typically in only 2-3 
iterations.  This was the system we had been aiming for all along.  

7. Language barriers 
Workload descriptions (streams plus stores), device capabilities, 
models, objective functions, and configuration settings for our 
tools all needed writing down.  Some years before we had in-
vented a way of marrying Tcl with a complicated simulation sys-
tem [Golding1994], and we continued this approach as we 
developed ways to write down these various inputs.  The result 
was a fairly flexible language for recording attributes and other 
specifications that naturally supported nesting of components and 
dynamic extensibility (by being interpreted, and making it easy to 
ignore elements that were not understood).   

We christened this language Rome; it stood us in good stead 
for quite some time, but eventually became encrusted with hidden 
assumptions about the meanings of various elements and their 
relationships.  

Rome 2 was an attempt to provide a clean specification for 
both the syntax and semantics of the language we were using.  It 
was derived from the de facto version, and followed it quite 
closely in may ways.   

We should have done this sooner; by the time Rome 2 was 
ready, it was too late – the team had moved on to other goals.  
Another lesson was the importance of separating the semantics of 
a language from its expression.  Well-meaning people kept on 
pressing us (unhelpfully) to use XML – as if that would solve any 
of our problems.  In practice, having a language that humans can 
manipulate, plus automated translations back and forth into a 
more “standard” representation like XML, is the right way to 
proceed – a lesson that has yet to be relearned by many groups, I 
fear.3 

8. The journey back 
One slightly troubling aspect of our approach that we had chosen 
to elide was how we were going to answer the question: “where 
do the requirements come from?”  Hippodrome offered one way 
out (measure them), but that doesn’t work for systems that don’t 
exist yet, or for non-measurable metrics such as availability or 
reliability targets. 

We never did come up with a better answer for the first prob-
lem, but we did make some headway on the latter, by taking a 
step back and realizing that availability and reliability require-
ments are ultimately driven by business needs.  If we could ex-

                                                 
3 To press this point home, two forms of representation were provided for 
the Rome language: the native version (derived from the Tcl syntax) was 
called Latin; the alternative XML one was called Greek – and was typi-
cally 2-3 times as long.  

tract those business needs, we reasoned, we could use them to 
drive decision-making about the right availability levels to push 
for.   

In fact, we ended up realizing that we could go one better: if 
business objectives can be expressed in monetary terms – such as 
the hourly cost of an outage (unavailability) or data loss – we 
could add that to the [calculated] cost of achieving a particular 
level of availability or reliability, and treat the result as an optimi-
zation problem, with the objective of minimizing their sum.  This 
turned out to work well; first for designing the storage system 
itself [Keeton2004], for evaluating how well the storage system 
will behave when things go wrong [Keeton2004a], and – best of 
all – for working out how to recover once things have started to 
go wrong [Keeton2006].  We suspect that the latter is particularly 
valuable, as the likelihood of making errors increases greatly 
when people are under stress. 

9. Entertaining excursions 
Hippodrome requires the ability to reconfigure a storage system 
between iterations, but there are plenty of other reasons to want to 
move data from one setup to another.  We found that applying the 
same kind of declarative problem-specification plus an automated 
solver to the migration problem led to similar dividends.  The 
setup here is simple: descriptions are provided of an initial data 
layout and a final one, and the goal is to derive a plan that moves 
the data from one to the other, while minimizing the number of 
spare staging areas needed, or the elapsed time, or both 
[Saia2001, Anderson2008].  The problem is by no means com-
pletely solved: our work didn’t support changing the format of 
containers or taking performance effects such as network bottle-
necks into account. 

As described, the storage system design cycle is a long-lived 
one, operating at the timescale of provisioning decisions (hours or 
days).  In order to cope with shorter-term fluctuations, it’s neces-
sary to provide a finer-grained control mechanism.  One approach 
to this is to enforce quality of service at runtime [Karlsson2004, 
Wang2007].  Doing so requires a clear understanding of the speci-
fications that it is intended to enforce – another example of the 
need for precise declarative specifications. 

10. Returning home 
What has all this taught us about declarative approaches?  First:  
they can be made to work, at significant scale and complexity, 
and across a wide range of problems.  The capabilities of the 
technology are exciting; and the use of goal-based declarative 
specifications seems much cleaner than rule-based or process-
based ones such as workflows. 

Second: that deploying such systems is much more than a 
technical problem.  In fact, I believe that the single greatest bar-
rier to adoption of such systems is not our ability to generate the 
technology to build such systems, but our ability to persuade the 
likely users that they should trust that the systems will do the 
right thing.  To this end, we need to invest more in making our 
systems trustworthy – which means ensuring that they don’t sur-
prise people; making it easier to express what we want them to 
do; putting limits on what they can do without our consent; and 
explaining their decisions when requested.   

Ultimately, we need to remind ourselves that we are building 
systems to serve people, and the success of our technical accom-
plishments will be dictated by how comfortable we can make 
those people with what we are accomplishing on their behalf. 
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