

Traveling to Rome:
a retrospective on the journey

john wilkes
HP Laboratories, Palo Alto, CA

john.wilkes@hp.com

Abstract
Starting in 1994/5, the Storage Systems Program at HP Labs em-
barked on a decade-long journey - to automate the management of
enterprise storage systems by means of a technique we initially
called attribute-managed storage. The key idea was to provide
declarative specifications of workloads and their needs, and of
storage devices and their capabilities, and to automate the map-
ping of one to the other. One of many outcomes of the project
was a specification language we called Rome1 – hence the title of
this paper, which offers a short retrospective on the approach and
some of the lessons we learned along the way.

Categories and Subject Descriptors D.4.2 Storage Manage-
ment, D.4.5 Reliability, D.4.8 Performance, I.6.5 Model Devel-
opment, K.4.3 [Organizational Impacts] automation, K.6.2
Installation Management, K.6.4 System Management.

General Terms Algorithms, Management, Measurement, Per-
formance, Design, Economics, Reliability, Experimentation.

Keywords storage management; attribute-based storage; de-
clarative system management; storage performance models;
solvers.

1. Before the beginning
In the late 1980s, I’d worked on a scalable storage system called
DataMesh [Wilkes1989], which advocated (about a decade too
soon!) building a storage system out of intelligent building blocks
containing a disk drive, some local processing power, and a high-
speed network port. The idea was to connect these together into a
mesh, and build a storage system that could be scaled to meet
whatever performance or availability demands were placed on it.
It quickly became obvious that such a beast would be a nightmare
to control and configure if viewed a disk at a time, so we started
to think about how you might delegate control of design choices
to it, starting with failure recovery goals [Wilkes1990].

DataMesh never took off. But the seed of an interesting idea
had been planted.

2. Setting out
In 1994, we were about to finish helping our colleagues on the HP
AutoRAID project [Wilkes1996] and asked ourselves – “what if

1 The names chosen by the HPL Storage Systems program team for the
various project components were derived from an architectural theme
consistent with our logo – a Corinthian column. Over time, this pro-
gressed towards names with a generally classical bent. We apologize for
none of them!

we could apply the same principles to an enterprise-scale storage
system?” That is: what if users of large-scale storage systems
didn’t have to micro-manage the data placement, choice of RAID
level, and kind and number of storage devices to purchase? What
if the system could work these things out for itself, given a speci-
fication of what the customer wanted? The obvious motivations
were offered: reduced system management costs; lower-cost sys-
tem designs, faster (and more accurate) response to changing
inputs; and fewer errors injected.

We wanted to separate the specification of what was desired
from the process used to get to an answer – i.e., we were defining
a declarative system for storage management. The name we
chose was attribute-managed storage [Golding1995], by com-
parison to IBM’s system-managed storage [Gelb1989]. Stores
(data objects), streams (access patterns), and storage devices were
each given attributes that specified their properties or behaviors.
Streams were associated with stores. We called the process of
assigning stores to devices the mapping problem, and proposed to
solve it automatically.

Figure 1. The attribute mapping problem.

Different aspects of the mapping problem included “how many

devices are needed to support this load?”; “how much load can
this set of devices support?” (which introduced a need for an early
version of utility); and “half my data center has just burned down
– which subset of the load can I still support?” In practice, we
spent the majority of our time focused on the first question, on the

wilkes1
Text Box
Presented at the "The Rise and Rise of the Declarative Datacentre" research meeting,
Microsoft Cambridge, England, 12-13 May 2008. http://research.microsoft.com/riseandrise/
Published as Microsoft Research technical report MSR-TR-2008-61, pages 49-52.

grounds that most users had a set of work they wanted to get
done, and were interested in seeing how to support it.

3. Packing for the outward journey
It was pretty straightforward to generate a mathematical formula-
tion of the mapping problem as a constraint-based optimization
problem, with the constraints being things like “all workloads
should be assigned exactly once”, and “no capacity limit should
be exceeded”, and with objective functions of the form “ mini-
mize the cost of a complete solution”, or “maximize the utility”
[Shriver1996].

Two additional outcomes were observable at this stage: a first,
clear specification of a set of parameters and attributes for work-
loads, stores, and storage devices; and the need for models to
determine whether constraints were satisfied.

Adding up storage capacity to check a constraint was trivial;
determining if the load imposed by placing a set of stores on a
device would be too high was much trickier. We quickly ruled
out simulations as being too costly, and resorted to simple ana-
lytic models for the expected behavior. Our background in simu-
lation models for storage devices [Ruemmler1994] led us to a set
of analytical models for disk devices that was more complete than
most, and yet executed quickly [Shriver1998].

We had started down the path of analytical performance mod-
els that would occupy us for much of this leg of our journey.

To help ground our work, we picked the TPC-D benchmark as
a representative sample of the kinds of application we would have
to cope with. Taking I/O traces of a (non-audited!) system run-
ning this load showed us that there were several distinct phases in
which one portion of the system was heavily used while another
lay idle – and vice versa. Time-sharing the storage resources
between different phases could save as much as a factor of six in
storage system cost. Addressing this issue resulted in us develop-
ing a sophisticated set of performance models that could handle
both short-term workload peaks and correlations between longer-
term workload behaviors [Borowsky1998].

So far, we had just been modeling single disk drives. Our real
target was disk arrays, which introduced a great many complica-
tions in the performance models for various RAID levels
[Varki2004]. Hard work on analytical device models eventually
addressed these [Uysal2001].

Nonetheless, the time required to generate a set of calibrated
storage device models proved troubling – as did the fact that it
took a set of highly competent people with PhDs to do it. An
alternative approach was needed. We found it in a clever applica-
tion of brute force. Instead of carefully crafting models that pre-
dicted the likely behavior of a storage device, we built models
that extrapolated the likely behavior from sets of stored measure-
ments – lots of them. We called this approach table-based model-
ing [Anderson2001]; using spline-based interpolations to fit the
data, and being careful about unwarranted extrapolations gave us
accuracies similar to – or better than – the analytic models, with
comparable or better runtimes, and considerably less work on our
part.

4. On the road, outbound
Early on, it became clear that the search space we wanted to ex-
plore was rather large: this is a variant of the multi-dimensional,
multi-knapsack problem, which is (of course) NP complete – and
the scale at which we were operating largely precluded exhaustive
search.

We called the tools we used to explore alternative assignments
of work to devices solvers. Our first attempt at a solver was called

Forum; it handled the single-device models described above, and
used greedy hill-climbing to select the best alternative
[Borowsky1997]. A few simple heuristics for ordering the ex-
amination of alternatives were explored, including (repeated)
randomization of the order to consider workloads for assignment;
sorting the workloads on various attributes, and using the Toyoda
algorithm for deciding which device to pack the next load onto
[Toyoda1975].

Forum tackled performance for single storage devices. A
completely separate tool, Corbel, was the first to tackle the con-
joint design problem for availability and performance at the same
time [Amiri1996]. Corbel synthesized RAID designs, tested their
availability against the objectives associated with stores, and then
selected a suitable design from the ones that were left. Unfortu-
nately, Corbel was never integrated into our mainstream code
base – partly because it relied on a somewhat hard-to-use Markov
chain analysis tool that was written in Fortran. Corbel used a
greed first-pass assignment process that took the raw hardware
cost plus the cost of downtime into account, followed by a re-
finement pass that fixed up the solution by selective moving of a
few stores that were not well matched to their placements.

5. Making good progress
Our second attempt to support disk arrays was a solver called
Minerva [Alvarez2001]. That tackled the problem in two parts: it
first tagged workloads with the recommended kind of RAID level
that they should be assigned to, and then performed a Forum-like
assignment. As with Corbel, a final optimization pass cleaned up
a few stragglers – especially stores that ended up consuming an
entire RAID group.

To make Minerva work well, we had to make good choices
about deciding which RAID level to use for each store
[Anderson2002]. Using simple rules of thumb – as a human
might do – produced acceptable answers, but integrating the
choice into the process of assigning stores to devices did much
better, albeit at the cost of some additional computation time.

At one point we thought that genetic algorithms (GAs) seemed
like an obvious approach to this problem: the species genotypes
would represent the current sets of assignments of load to devices,
and mutations and combinations would explore the space of alter-
natives in an efficient fashion. Having tried the experiment, we
learned that the cost of evaluating each of the solutions was so
high that it dominated the running time of the GA solver, even
after aggressive memoization.

Initially we had been leery of trying to do performance- and
availability-based assignments simultaneously because of the
huge search space that it engenders. However, Eric Anderson
was able to get around this problem by constructing a solver that
used speculative exploration plus a tree-like representation of the
design of a storage system and its assignments. The solver, called
Ergastulum,2 performed much faster than Minerva, and was able
to explore a great many more alternatives [Anderson2005].

6. Arriving at the destination
The material so far has described how we developed solutions to
the declarative design of a single storage system configuration.
But our goal was always to develop a way to make the storage

2 The name means a private prison attached to most Roman farms, where
the slaves were made to work in chains. It was selected when Eric was a
summer intern in our group – he claims that it seemed like a good idea at
the time. Regrettably, the ACM TOCS reviewers took aversion to it, and
we had to drop it from the published version.

system self managing – by which we meant self-configuring, self-
optimizing, self-healing, and all of the other self-* objectives.

The approach was straightforward – at least in principle: (1)
take a specification for what is wanted; (2) build a storage system
that matches those needs; (3) deploy the application or workload
on that system; (4) monitor it to see if it is meeting the actual
needs of the workload; (5) re-design if necessary, and migrate the
application to the new configuration – preferably while it is still
running.

Hippodrome was the name of the system we devised to do all
this [Anderson2002a]. It went one better: it didn’t need a detailed
specification of the performance requirements of the workload,
just the capacity and availability needs. It would run the applica-
tion, measure the result, design and deploy a system to meet those
needs, and iterate until the result stabilized – typically in only 2-3
iterations. This was the system we had been aiming for all along.

7. Language barriers
Workload descriptions (streams plus stores), device capabilities,
models, objective functions, and configuration settings for our
tools all needed writing down. Some years before we had in-
vented a way of marrying Tcl with a complicated simulation sys-
tem [Golding1994], and we continued this approach as we
developed ways to write down these various inputs. The result
was a fairly flexible language for recording attributes and other
specifications that naturally supported nesting of components and
dynamic extensibility (by being interpreted, and making it easy to
ignore elements that were not understood).

We christened this language Rome; it stood us in good stead
for quite some time, but eventually became encrusted with hidden
assumptions about the meanings of various elements and their
relationships.

Rome 2 was an attempt to provide a clean specification for
both the syntax and semantics of the language we were using. It
was derived from the de facto version, and followed it quite
closely in may ways.

We should have done this sooner; by the time Rome 2 was
ready, it was too late – the team had moved on to other goals.
Another lesson was the importance of separating the semantics of
a language from its expression. Well-meaning people kept on
pressing us (unhelpfully) to use XML – as if that would solve any
of our problems. In practice, having a language that humans can
manipulate, plus automated translations back and forth into a
more “standard” representation like XML, is the right way to
proceed – a lesson that has yet to be relearned by many groups, I
fear.3

8. The journey back
One slightly troubling aspect of our approach that we had chosen
to elide was how we were going to answer the question: “where
do the requirements come from?” Hippodrome offered one way
out (measure them), but that doesn’t work for systems that don’t
exist yet, or for non-measurable metrics such as availability or
reliability targets.

We never did come up with a better answer for the first prob-
lem, but we did make some headway on the latter, by taking a
step back and realizing that availability and reliability require-
ments are ultimately driven by business needs. If we could ex-

3 To press this point home, two forms of representation were provided for
the Rome language: the native version (derived from the Tcl syntax) was
called Latin; the alternative XML one was called Greek – and was typi-
cally 2-3 times as long.

tract those business needs, we reasoned, we could use them to
drive decision-making about the right availability levels to push
for.

In fact, we ended up realizing that we could go one better: if
business objectives can be expressed in monetary terms – such as
the hourly cost of an outage (unavailability) or data loss – we
could add that to the [calculated] cost of achieving a particular
level of availability or reliability, and treat the result as an optimi-
zation problem, with the objective of minimizing their sum. This
turned out to work well; first for designing the storage system
itself [Keeton2004], for evaluating how well the storage system
will behave when things go wrong [Keeton2004a], and – best of
all – for working out how to recover once things have started to
go wrong [Keeton2006]. We suspect that the latter is particularly
valuable, as the likelihood of making errors increases greatly
when people are under stress.

9. Entertaining excursions
Hippodrome requires the ability to reconfigure a storage system
between iterations, but there are plenty of other reasons to want to
move data from one setup to another. We found that applying the
same kind of declarative problem-specification plus an automated
solver to the migration problem led to similar dividends. The
setup here is simple: descriptions are provided of an initial data
layout and a final one, and the goal is to derive a plan that moves
the data from one to the other, while minimizing the number of
spare staging areas needed, or the elapsed time, or both
[Saia2001, Anderson2008]. The problem is by no means com-
pletely solved: our work didn’t support changing the format of
containers or taking performance effects such as network bottle-
necks into account.

As described, the storage system design cycle is a long-lived
one, operating at the timescale of provisioning decisions (hours or
days). In order to cope with shorter-term fluctuations, it’s neces-
sary to provide a finer-grained control mechanism. One approach
to this is to enforce quality of service at runtime [Karlsson2004,
Wang2007]. Doing so requires a clear understanding of the speci-
fications that it is intended to enforce – another example of the
need for precise declarative specifications.

10. Returning home
What has all this taught us about declarative approaches? First:
they can be made to work, at significant scale and complexity,
and across a wide range of problems. The capabilities of the
technology are exciting; and the use of goal-based declarative
specifications seems much cleaner than rule-based or process-
based ones such as workflows.

Second: that deploying such systems is much more than a
technical problem. In fact, I believe that the single greatest bar-
rier to adoption of such systems is not our ability to generate the
technology to build such systems, but our ability to persuade the
likely users that they should trust that the systems will do the
right thing. To this end, we need to invest more in making our
systems trustworthy – which means ensuring that they don’t sur-
prise people; making it easier to express what we want them to
do; putting limits on what they can do without our consent; and
explaining their decisions when requested.

Ultimately, we need to remind ourselves that we are building
systems to serve people, and the success of our technical accom-
plishments will be dictated by how comfortable we can make
those people with what we are accomplishing on their behalf.

Acknowledgments
The work described here was actually done by a talented pool of
colleagues who I had the pleasure – and good luck – to work with
over the last two decades. Space precludes listing them, but my
thanks to them all!

References
[Alvarez2001] Guillermo A. Alvarez, Elizabeth Borowsky, Susie Go,

Theodore H. Romer, Ralph Becker-Szendy, Richard Golding, Arif
Merchant, Mirjana Spasojevic, Alistair Veitch, and John Wilkes. Mi-
nerva: an automated resource provisioning tool for large-scale stor-
age systems. ACM Transactions on Computer Systems 19(4):483-
518, November 2001.

[Amiri1996] Khalil Amiri and John Wilkes. Automatic design of storage
systems to meet availability requirements. Technical report HPL-
SSP-96-17, HP Laboratories, August 1996.

[Anderson2001] Eric Anderson. Simple table-based modeling of storage
devices. Technical report HPL-SSP-2001-4, HP Laboratories, July
2001.

[Anderson2002] Eric Anderson, Ram Swaminathan, Alistair Veitch, Gui-
llermo A. Alvarez and John Wilkes. Selecting RAID levels for disk
arrays. File and Storage Technology (FAST’02, Monterey, CA) pp.
189-201, January 2002.

[Anderson2002a] Eric Anderson, Michael Hobbs, Kimberly Keeton,
Susan Spence, Mustafa Uysal, and Alistair Veitch. Hippodrome: run-
ning circles around storage administration. File and Storage Tech-
nology (FAST’02, Monterey, CA) pp. 175-188, January 2002.

[Anderson2005] Eric Anderson, Susan Spence, Ram Swaminathan,
Mahesh Kallahalla, Qian Wang. Quickly finding near-optimal stor-
age designs. ACM Transactions on Computer Systems 23(4): 337-
374, November 2005.

[Anderson2008] E. Anderson, J. Hartline, M. Hobbs, A. Karlin, J. Saia, R.
Swaminathan and J. Wilkes. Algorithms for Data Migration. Algo-
rithmica, to appear, 2008

[Borowsky1997] E. Borowsky, R. Golding, A. Merchant, L. Schreier,
E.Shriver, M.Spasojevic, and J. Wilkes. Using attribute-managed
storage to achieve QoS. 5th Intl. Workshop on Quality of Service
(IWQoS, Columbia Univ., New York, NY), June 1997, pp. 199-202.

[Borowsky1998] Elizabeth Borowsky, Richard Golding, Patricia Jacob-
son, Arif Merchant, Louis Schreier, Mirjana Spasojevic and John
Wilkes. Capacity planning with phased workloads. Workshop on
Software and Performance (WOSP’98, Santa Fe, NM), October
1998.

[Gelb1989] J. P. Gelb. System managed storage. IBM Systems Journal
28(1):77–103, 1989.

[Golding1994] Richard Golding, Carl Staelin, Tim Sullivan, John Wilkes.
"Tcl cures 98.3% of all known simulation configuration problems"
claims astonished researcher! Tcl Workshop (New Orleans), May
1994.

[Golding1995] Richard Golding, Elizabeth Shriver, Tim Sullivan, and
John Wilkes. Attribute-managed storage. Workshop on Modeling
and Specification of I/O (San Antonio, TX), 26 Oct. 1995.

[Karlsson2004] Magnus Karlsson, Christos Karamanolis and Xiaoyun
Zhu. Triage: performance isolation and differentiation for storage

systems. International Workshop of Quality of Service (IWQoS'04,
Montreal, Canada), pp. 67-74, June 2004.

[Keeton2004] Kimberly Keeton, Cipriano Santos, Dirk Beyer, Jeffrey
Chase and John Wilkes. Designing for disasters. File and Storage
Technologies (FAST’04, San Francisco, CA), March-April 2004.

[Keeton2004a] Kimberly Keeton and Arif Merchant. A framework for
evaluating storage system dependability. International Conference
on Dependable Systems and Networks, (DSN’04, Florence, Italy),
June-July 2004.

[Keeton2006] Kimberly Keeton, Dirk Beyer, Ernesto Brau, Arif Merchant,
Cipriano Santos and Alex Zhang. On the road to recovery: restoring
data after disasters. European Systems Conference (EuroSy’06s,
Leuven, Belgium), pp. 235-248, April 2006.

[Ruemmler1994] Chris Ruemmler and John Wilkes. An introduction to
disk drive modelling. IEEE Computer 27(3):17-28, March 1994.

[Saia2001] Jared Saia, Eric Anderson, Joe Hall, Jason Hartline, Michael
Hobbes, Anna Karlin, Ram Swaminathan, and John Wilkes. An ex-
perimental study of data migration algorithms. Algorithm Engineer-
ing, the Proceedings of WAE 2001: 5th Workshop on Algorithm
Engineering (BRICS, University of Aarhus, Denmark), August
2001). Published as Springer-Verlag Lecture Notes in Computer Sci-
ence 2141, pp. 145-158, August 2001.

[Shriver1996] Elizabeth Shriver. A formalization of the attribute mapping
problem. Technical report HPL-SSP-95-10 revision D, HP Laborato-
ries, July 1996.

[Shriver1998] E. Shriver, A. Merchant, and J. Wilkes. An analytical be-
havior model for disk drives with readahead caches and request reor-
dering. Int’l. Conf. on Measurement and Modeling of Computer
Systems (SIGMETRICS), pages 182–91, June 1998.

[Toyoda1975] Y. Toyoda. A simplified algorithm for obtaining approxi-
mate solutions to zero-one programming problems. Management Sci-
ence, 21(12):1417–27, August 1975.

[Varki2004] Elizabeth Varki, Arif Merchant, Jianzhang Xu and Xiaozhou
Qiu. Issues and challenges in the performance analysis of real disk
arrays. IEEE Transactions on Parallel and Distributed Systems
(TPDS) 15(6):559-574, June 2004.

[Wang2007] Yin Wang and Arif Merchant. Proportional share scheduling
for distributed storage systems. File and Storage Technologies
(FAST ‘07, San Jose, CA), February 2007.

[Wilkes1989] John Wilkes. DataMesh --- scope and objectives. Technical
report HPL-DSD-89-37rev1, HP Laboratories, July 1989.
http://www.hpl.hp.com/research/ssp/papers/#DataMesh

[Wilkes1990] John Wilkes and Raymie Stata. Specifying data availability
in multi-device file systems. 4th ACM-SIGOPS European Workshop
(Bologna, Italy), September 1990, published as Operating Systems
Review 25(1):56-59, January 1991.

[Wilkes1996] John Wilkes, Richard Golding, Carl Staelin, and Tim Sulli-
van. The HP AutoRAID hierarchical storage system. ACM Transac-
tions on Computer Systems 14 (1):108-136, February 1996.

[Uysal2001] Mustafa Uysal, Guillermo A. Alvarez, and Arif Merchant. A
modular, analytical throughput model for modern disk arrays. 9th
Int’l Symposium on Modeling, Analysis and Simulation of Computer
and Telecommunications Systems (MASCOTS’01, Cincinnati, Ohio),
pages 183-192, August 2001.

