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ABSTRACT

Modern storage systems are sophisticated. Simple direct-
attached storage devices are giving way to storage systems
that are shared, flexible, virtualized and network-attached.
Today, storage systems have their own administrators, who
use specialized tools and expertise to configure and manage
storage resources. Although the separation of storage man-
agement and database management has many advantages,
it also introduces problems. Database physical design and
storage configuration are closely related tasks, and the sep-
aration makes it more difficult to achieve a good end-to-
end design. In this paper, we attempt to close this gap by
addressing the problem of predicting the storage workload
that will be generated by a database management system.
Specifically, we show how to translate a database workload
description, together with a database physical design, into
a characterization of the storage workload that will result.
Such a characterization can be used by a storage administra-
tor to guide storage configuration. The ultimate goal of this
work is to enable effective end-to-end design and configura-
tion spanning both the database and storage system tiers.
We present an empirical assessment of the cost of workload
prediction as well as the accuracy of the result.

Categories and Subject Descriptors: H.2.4 [Database
Management]: Systems; D.4.2 [Operating Systems|: Storage
Management

General Terms: Algorithms, Experimentation, Manage-
ment, Performance

Keywords: workload characterization, storage management,
storage configuration, database management systems

1. INTRODUCTION

The complexity of modern enterprise computing environ-
ments is prompting changes in the way that computing re-
sources and the systems that depend on them are deployed
and managed [6, 9, 12, 13, 19]. In the case of storage re-
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sources, simple, direct-attached storage devices are giving
way to shared, flexible, virtualized, network-attached stor-
age systems. Increasingly, storage resources are consolidated
into a common pool, virtualized to accommodate individ-
ual application requirements, and shared by multiple enter-
prise applications, including database management systems
(DBMS). Furthermore, storage resources are increasingly
administered separately from the server infrastructure; stor-
age administrators are expected to balance the requirements
of multiple database systems and other storage clients. As a
result, database administrators (DBAs) are no longer in di-
rect control of the design and configuration of their database
systems’ underlying storage resources.

Managing the storage infrastructure is, like database ad-
ministration, a complex task. A storage administrator (SA)
has to configure storage arrays, create logical units at stor-
age arrays, create logical volumes at servers, configure stor-
age controllers and storage network switches with appropri-
ate access credentials, and manage the ongoing usage of the
storage devices to prevent bottlenecks or resource shortages.
Configuration decisions made by the SA determine the per-
formance, reliability, and capacity characteristics of the stor-
age system as seen by the DBMS. To help SAs cope with the
complexity of these tasks, researchers have developed stor-
age management tools that can be used to automate storage
design and configuration tasks [3, 4, 8, 16].

Effective storage administration, whether manual or au-
tomatic, depends on knowledge of the storage system work-
load. However, accurate workload characterizations can be
difficult to come by, particularly at initial configuration time.
Often storage administrators must rely on rough workload
“guesstimates”, perhaps informed by previous experience
with other systems or general knowledge of the clients that
the storage system is expected to support. Once the stor-
age system is operational, workload characteristics can be
observed. However, such observations are not a panacea:
they may be expensive to obtain and use, they do not solve
the initial configuration problems, and they are of no use in
addressing “what if” questions. For example, a DBA may
be considering a possible physical design change such as the
creation of an index. If created, this index would affect the
I/0 workload experienced by the underlying storage system.
Direct observation of the current storage system workload
does not by itself provide any guidance as to what the stor-
age workload would look like if the index were added.

In this paper, we attempt to close the information gap
between the database tier and the storage tier by address-
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ing the problem of predicting the storage workload that will
be generated by a database management system. Specif-
ically, we show how to translate a database workload de-
scription, together with a database physical design, into a
characterization of the storage workload that will result. By
estimating database systems’ storage workloads, we can pro-
vide storage administrators with information that they can
use to make informed planning, design, and configuration
decisions. In doing so, we enable end-to-end solutions to
physical design and storage configuration problems. One
example of this is shown in Figure 1, which illustrates how
existing database physical design tools and storage configu-
ration tools could be combined to determine both a database
physical design and an appropriate storage configuration for
a given database workload, while preserving the adminis-
trative autonomy of the database and storage tiers. With
storage workload estimation, both the DBA and SA have
sufficient information to address their part of the end-to-
end design and configuration problem.
This paper makes several contributions:

e We formulate the storage workload estimation prob-
lem for relational database management systems. In
our formulation, storage workloads are described in
a domain-independent and configuration-independent
language called Rome [18]. By “domain-independent”,
we mean that the workload description that is pro-
duced is not specific to database management systems.
Similar descriptions can be produced by other storage
system clients. As storage consolidation becomes more
common, this property becomes more important.

e We present a technique for producing storage workload
estimates. Our technique has been implemented in the
context of the Postgres DBMS.

e We present an empirical evaluation of the accuracy of
the storage workload estimates produced by our tech-
nique, and the cost of producing them.

The remainder of this paper is structured as follows. Sec-
tion 2 defines the input database workload, the target stor-
age workload model and the workload estimation problem.
Section 3 presents our workload estimation technique and
its implementation in Postgres, and Section 4 describes its
evaluation. Section 5 provides a brief survey of related work,
and Section 6 concludes.

2. PROBLEM FORMULATION

In this section, we will define the problem of estimating
storage workload characteristics given a specification of the
database workload. To formulate this problem more pre-
cisely, we begin by defining what we mean by “database
workload” and “storage workload”.

2.1 Database Workload Model

Existing relational database design tools typically expect
the database workload to be defined as a set of SQL state-
ments (queries and updates) along with some indication of
the relative frequency of occurrence of each statement [2,
20]. We use a similar characterization of the database work-
load for our storage workload estimation problem, so that
a single workload description can be used for both tasks.
Specifically, we assume that the workload is characterized
by a fixed set Q of SQL statements defined over a known
database schema. We refer to each such statement as a query
type. Each query type Q; has an associated weight f; which
represents its prevalence in the workload. The proportion
of queries of type @; in the workload is given by ZJ: i 7

This kind of database workload characterization describes
the mix of queries and updates in the database workload.
This is sufficient for tasks such as index selection, where
the goal is to choose a set of indexes that will provide su-
perior performance relative to the performance achievable
using other sets of indexes. However, we would like our
storage workload estimates to be useful for a variety of stor-
age management tasks, including those that require informa-
tion about absolute frequency of occurrence of the various
queries. An example of such a task is capacity planning.
To enable this, we also require that the database workload
description include a specification of a target operating point
for the database system. We use two parameters to char-
acterize an operating point. The first is the total query
throughput, denoted by A. The second is the query multi-
programming level, k, which describes the expected number
of concurrently executing queries at any given time.

Finally, since our storage workload estimator relies on
the database system’s query optimizer, we require that op-
timizer be configured to behave as it would at the target
operating point. In particular, database statistics should be
available so that the query optimizer will choose appropri-
ate query execution plans. Again, existing database admin-
istration tools have similar requirements for the availability
of statistics, and some database systems support the defi-
nition of hypothetical database instances to support cost-
based “what if” analyses without the need to populate the
hypothetical instance [5].

We assume that a database physical design has been se-
lected, perhaps through the use of a physical design advi-
sor [2, 20], and that the physical design is known to the
query optimizer. We use D to represent the set of physical
database objects: tables, indexes, materialized views and so
on. Figure 2 summarizes the database workload parameters.

2.2 1/0O Workload Model

One way to characterize I/O workloads is to use a trace
of I/O events, or a set of traces. Although traces are a very
detailed and expressive way to describe storage workloads,
they have some disadvantages. They are large and expensive
to store and manipulate. Traces of database 1/O workloads
are also expensive to collect, as collection requires populat-




[ Symbol [ Description ‘

9 set of possible SQL statements (query types)
fi relative frequency of query type Q;

A query throughput

k number of concurrent queries

D set of database physical objects

Figure 2: Database Workload Model Parameters

ing the database and applying a realistic load. Trace-based
workload descriptions cannot be used as input to analytical
models of storage system behavior. Finally, traces tend to
be specific to a particular storage configuration, and difficult
to generalize. It is prohibitively expensive to collect traces
from multiple candidate storage configurations.

Instead, we adopt a more abstract I/O workload model
called the Rome model [18]. The Rome model is the unifying
“glue” for a collection of storage management tools that sup-
port performance modeling, capacity planning, storage sys-
tem design and configuration, and other tasks [3, 4, 16]. The
Rome model is not specifically designed to model the I/O
workloads generated by database management systems. It
is a general purpose model intended to model storage work-
loads generated by any kind of storage client. Since shared,
consolidated storage systems must accommodate workloads
from a variety of clients, including databases, we believe that
it is important to target a generic workload model. Doing
so allows a storage administrator to aggregate workload de-
scriptions from multiple storage applications. By targeting
the Rome model in particular, we are also able to leverage
existing Rome-based workload analysis and storage manage-
ment tools.

The Rome model views the storage system abstractly, as
a set of stores. A store can be thought of as a virtual block
storage device, disjoint from other stores, to which block
read and write requests can be directed. The I/O workload
directed to a store is represented by one or more concurrent
streams. A stream consists of bursts of I/O request activity
of duration t,, interleaved with idle periods of duration ¢,g,
during which no requests occur. During each on-burst, read
requests to the underlying store occur at rate A, and write
requests occur at rate Ay, .

Each I/O request has a starting position (within the un-
derlying store) and a size, or length, B. The starting posi-
tion of each request is determined by a run length parameter
L. Successive requests in a stream start where the previous
request left off, until the total number of requests in the run
reaches L. The next request then starts a new run, with
a randomly chosen starting position. Thus, L = 1 mod-
els a random I/O request pattern, while larger values of L
model sequentiality. Figure 3 summarizes the parameters
associated with a Rome request stream. Together, these
parameters describe the request stream properties that are
important to the underlying storage modeling and manage-
ment tools: request rates, read/write mix, burstiness, re-
quest size, and sequentiality.

In addition to these per-stream properties, Rome also de-
scribes burst correlations, which model the amount of tem-
poral overlap among the bursts of different streams. Given
a set S of streams, Rome defines an |S| x |S| overlap matriz
C. Entry C[i,j] in the overlap matrix describes the per-
centage of stream i’s burst period during which stream j

l Symbol [ Description

ton burst duration
tog inter-burst gap
Ar read request rate during bursts
Aw write request rate during bursts

B size of each request
L total length of a sequential run
Cli, j] burst overlap between streams ¢ and j

Figure 3: I/O Request Stream Parameters in Rome

is also active. Note that, as defined by the Rome model,
the overlap matrix need not be symmetric. For example,
consider two streams S; and S;, with t,,[i] = 100 and
ton[j] = 10, for which S;’s bursts are completely contained
within S;’s bursts. This will be described by C[i, j] = 10%
and C[j,1] = 100%.

2.3 The Storage Workload Estimation Prob-
lem

With the definitions of a database workload and storage
workload in place, we can now state our problem:

DEFINITION 2.1. Storage Workload Estimation Prob-
lem: Given a database workload characterization, including
a target operating point, and a database physical design, pro-
duce an 1/0 workload characterization that accurately mod-
els the storage workload that will be generated by the database
system under the given database load at the target operating
point.

For now, we will leave open the issue of how to measure the
accuracy of the resulting storage workload model. We will
address this issue in Section 4.

In general, to estimate a Rome storage workload charac-
terization, it is necessary to address several questions:

e How many stores should the model have?
e How many request streams should each store have?

e What stream parameter settings should be used for
each stream?

In this paper, we have simplified the workload estimation
problem by fixing the answers to two of these questions, thus
restricting the space of workload models that can poten-
tially be generated by the estimator. First, we restrict our
attention to workload models that include exactly |D| Rome
stores, one for each physical database object. There is little
reason to have more than one store per physical database
object, since this provides sufficiently fine granularity in the
workload description for most storage configuration tasks.
Second, we restrict our attention to workload models with a
single request stream per store. A natural alternative to this
would allow up to |Q| request streams for each store, where
each stream would describe the I/O requests generated by
queries of a particular type against a particular physical
database object. In contrast, single-stream-per-store mod-
els must use a single set of stream parameter settings to
characterize the aggregate workload of all types of queries
against a given store. We focus on single-stream-per-store
here because they are simpler. However, the storage estima-
tion method described in Section 3 can easily be extended
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Figure 4: High-Level Description of Storage Workload Estimation Method

to generate |Q|-streams-per-model if additional expressive-
ness is required. Furthermore, existing Rome-based storage
management tools can accommodate multi-stream stores.

3. WORKLOAD ESTIMATION

Figure 4 gives a high-level outline of our method of esti-
mating a Rome I/O workload model. As described in Sec-
tion 2.3, the output of this method is one set of Rome I/0
model parameter values (as shown in Table 3) for each phys-
ical database object D; € D. The model parameters for D;
describe the I/O workload that the DBMS is expected to
apply to the stored representation of that object.

The method shown in Figure 4 consists of three phases.
First, we generate an I/O request sequence corresponding
to each query type in the database workload (Figure 4 lines
1-4). Second, we merge those individual sequences into a
single I/O request trace, which we call the representative
I/0 trace for the given database workload and operating
point (line 5). Finally, we project each physical object’s re-
quests from the representative trace and fit the Rome stream
parameters to the projected trace (lines 6-9). In the remain-
der of this section, we describe each of these phases in more
detail.

3.1 Estimating Query Request Sequences

An I/0 request sequence is an ordered list of records,
each of which describes a single I/O operation. Specifically,
each record consists of the following fields: physical object
identifier, starting offset within the physical object, request
length, and request type (read or write). Note that, in Fig-
ure 4, we have distinguished request sequences from request
traces. A request trace differs from a request sequence in
that the former includes timing information for each I/O
operation, while the latter does not.

The first phase of the storage workload estimation pro-
cess is to predict a separate I/O request sequence for each
type of query in the database workload. These request se-
quences describe the I/0 behavior of a single query running
in isolation. Figure 5 summarizes our approach.

To obtain these sequences, we perform a data-free sim-
ulation of the control flow of each query’s execution plan.
During the data-free simulation of a plan, the plan opera-
tors generate I/O records describing any I/O operations that
they would have generated during a normal plan execution.
However, they do not actually generate the I/O operations.
These I/O records are concatenated to form the I/O request
sequence for the query.

When a query plan is actually executed by the database
system, its control flow depends on the data that is flowing
through the plan. During our data-free simulation, we nei-

Database Workload Database
Statistics

DBMS
Query Optimizer
Query Plans
(one per query type)

Data—Free Plan
Simulation

(modified Postgres)

1/0 Request Sequences
(one per query type)

Figure 5: Generating I/O Request Sequences

ther retrieve the data nor flow the data through the plan.
The simulation relies instead on the cardinality estimates
produced by the query optimizer to approximate the control
flow that would have occurred during an actual execution of
the plan. For example, for a tuple-oriented nested loop join,
we use the optimizer’s estimate of the cardinalities of the in-
ner and outer relations and its estimate of the join selectiv-
ity to estimate the number of times that the join operator’s
left and right children in the plan will be asked to produce
data. The simulation also relies on some operator-specific
optimizer assumptions. For example, a sort operation is as-
sumed to create initial runs that are twice the size of the
working memory available for the sort.

By performing the data-free simulations, we hope to cap-
ture several important properties of the I/O workload that
will be generated by queries of each type. First, the result-
ing I/O sequences will contain the correct numbers of I/O
requests for each physical database object used by the query,
up to the accuracy of the query optimizer’s cardinality es-
timates and our own simplifying assumptions in the simu-
lation. Second, the I/O request sequences will distinguish
sequential and random I/0, based on the type of operator
that is generating the requests, as well as information from
the database catalogue. For example, a table scan of a re-
lation will generate sequential requests, while an index scan
of the same relation using an uncorrelated secondary index
will generate random requests. Finally, the sequence will
capture the interleaving of requests for the various physical
database objects used by the query plan. For example, the
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Figure 6: Data-Free Simulation of Postgres Plan Operators. In the diagram, operators are annotated with
the names of state variables maintained by the simulation. Operator inputs and outputs are annotated with
the names of Postgres optimizer statistics and configuration parameters that are used by the simulator.

simulation understands that a hash join will first retrieve
the entire build input and then retrieve the entire probe in-
put, resulting to non-interleaved access to the physical ob-
jects that provide the build and probe inputs. Conversely,
a nested loop join will result in interleaved accesses to the
inner and outer inputs.

Our implementation of data-free simulation is embodied
in a modified version of Postgres. In our version of Postgres,
there are 18 different operators that may appear in execution
plans. Our plan simulator handles most aspects of these op-
erator types. One limitation of our current implementation
is that certain kinds of SQL subqueries (those that result in
query-valued qualifiers in plan nodes) are not handled. This
is a restriction of our current prototype, not a fundamental
restriction. We do not have space here to present the entire
simulator. However, Figure 6 illustrates the simulation for
three of the Postgres operators: sequential scan, index scan,
and nested loop join.

Note that data-free simulation of a query plan is generally
much faster than the actual execution of the plan. This is
because the simulation does not retrieve any stored data,
does not flow these data through the plan operators, and

does not generate any intermediate or final query results.
More information about the cost of data-free simulation is
given in Section 4.4.

3.2 Generating the Representative Trace

The I/O request sequences generated in the first phase
capture the I/O workload characteristics of a single work-
load query running in isolation. In the second phase, we
generate a representative 1/O trace that describes the ag-
gregate storage workload of the entire database workload.

The generation of the representative I/O trace adds three
kinds of information to the individual query request se-
quences. First, since representative I/O trace describes the
aggregate storage workload generated by the database sys-
tem, it reflects the mixture and frequency of the various
types of queries that make up the database workload. Sec-
ond, it accounts for the effect of the database system’s buffer
cache on the aggregate /O stream. Finally, unlike the per-
query request sequences, the representative trace incorpo-
rates timing information in the form of an arrival times-
tamp for each I/O request. These timestamps reflect the
1/0 request throughput that will be required to support the
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Figure 7: Generating the Representative I/0O Trace

database system at the specified operating point.

Figure 7 summarizes the process of generating the repre-
sentative I/O trace. We use a simple probabilistic opera-
tional model of the database system to generate a merged
I/0 sequence from the per-query 1/O sequences obtained in
the first phase. The database system is assumed to have a
fixed query multiprogramming level k at the target operat-
ing point. k is specified as a workload parameter (see Figure
2). To generate a merged I/O sequence, k query types are
selected at random, with query type ¢ selected with proba-
bility proportional to f;. The I/O sequences for the selected
query types are then round-robin merged to produce a single
request sequence. When one of the per-query sequences is
exhausted during the merger, another query type is selected
and its I/O sequence replaces the exhausted one. This gener-
ative process continues until a specified number of per-query
I/0 sequences have been merged.

As the merged request sequence is formed, we apply it to
a DBMS-specific buffer cache model. To model the buffer
cache, we are currently using a simulation of the 2Q cache
replacement algorithm [7] that is used by Postgres. This
simulation is parameterized by the buffer cache size. The ef-
fect of the simulation is to remove from the request sequence
any I/O requests that hit the (simulated) buffer cache.

Finally, we associate timing information with each remain-
ing I/O request in the sequence to produce the represen-
tative I/O trace. To do this, we use the query through-
put X that is supplied as a parameter to the workload es-
timation process. We first translate query throughput to
1/0 throughput by multiplying query throughput by the
expected number of I/O requests per query:

> Nifi
Zi fi

where N; is the cache-corrected length of I/O request se-
quence (from phase 1) for query type @;. The jth request
in the representative I/O trace is assigned an arrival time
of j/Xio. This reflects the requirement that the necessary
query throughput at the target operating point be satisfied
by a storage system capable of handling I/O requests at this
rate.

3.3 Fitting the Rome Model

To produce a Rome model of the 1/O workload, we must

Aio = A

choose a set of Rome stream parameter values to character-
ize the 1/0 requests directed to each of the physical database
objects. To select parameter values for a given object, we
first project that object’s requests from the aggregate rep-
resentative trace, and then choose Rome parameter values
(see Table 3) to fit the per-object trace.

We take advantage of an existing 1/O trace analysis tool
called Rubicon [15] to implement this procedure. Rubicon
implements both the per-object projection of the representa-
tive trace as well as the parameter fitting. Rubicon includes
a number of statistical analyzers for estimating Rome model
parameters from a request trace. Figure 8 summarizes how
each of the per-object Rome parameters is estimated. In
addition to the parameters shown in Figure 8, Rubicon also
estimates the burst overlap matrix, C. Entry C[¢, j] describes
how stream j’s bursts overlap with those of stream i. To
estimate this, Rubicon measures the total amount of time
during which both streams are simultaneously in I/O bursts.
This is divided by the sum of stream ¢’s burst durations to
generate an estimate for C[g, j].

4. EVALUATION

In this section, we present an empirical evaluation of our
storage workload estimation technique. Our evaluation has
two goals. First, we would like to determine how accurate
our storage workload estimates are. Second, we would like
to determine how costly it is to generate those estimates.

What do we mean by accurate? One way to characterize
accuracy is to compare, for a given database workload, the
estimated storage workload with the actual storage workload
generated by the DBMS. This approach gives a characteri-
zation of accuracy that is independent of the intended usage
of the storage workload estimate. However, it requires that
we have some means of comparing storage workloads, which
are complex artifacts.

An alternative means of evaluation is to characterize the
suitability of the estimated workload for a particular pur-
pose. In our case, our primary interest is in generating stor-
age workload characterizations that will be useful as input to
design and configuration advisors for storage systems. Such
advisors use storage system cost models to determine how
well a particular storage system configuration will perform
under a given workload. Thus, one way to characterize the
accuracy of a workload estimate is to use both estimated and
actual workloads as input to a storage system performance
model, and test whether they result in similar performance
predictions. If they do, this indicates that the estimated
workloads are accurate enough to replace actual workloads
as inputs to a storage system design advisor.

We have considered both types of evaluation. In Sec-
tion 4.2, we present a direct comparison of estimated and
measured workloads. In Section 4.3, we examine the utility
of estimated workload traces for the purpose of predicting
the performance of various storage system configurations.
Section 4.4 presents measurements of the cost of estimation.

4.1 Experimental Configuration

We modified Postgres-8.0.6 so that it would produce I/O
request logs during query execution. The request logs in-
clude one record for each 1/O operation issued by Postgres.
These logs capture the actual storage workload generated
by the database system, against which we can compare our
estimated workloads.



l Symbol [ Description

Estimation

ton burst duration

Trace requests are partitioned into bursts, with a request inter-
arrival gap greater than 2 seconds indicating a burst boundary.
ton is estimated as the average duration of the resulting bursts.

tog inter-burst gap duration

Estimated as the average duration of the inter-burst gaps.

Ar read request rate during bursts

Estimated as the total number of read requests in the trace
divided by the sum of the burst lengths.

Aw write request rate during bursts

Estimated as the total number of write requests in the trace
divided by the sum of the burst lengths.

Estimated as the average size of the requests in the trace.

B request size
L sequential run length

Trace requests are partitioned into runs. Consecutive requests
are part of the same run if the starting position plus the length
of the first request matches the starting position of the second
request. Otherwise, there is a run boundary between the re-
quests. L is estimated as the average length of the runs in the
trace.

Figure 8: Estimation of Rome I/O Model Parameters using Rubicon Trace Analyzers

Postgres was running on a Dell Poweredge 2600 server
with two 2.2 GHz Intel Xeon processors and 4 gigabytes of
main memory, running SUSE 10.0 Linux with a 2.6.13-15.8
kernel. The server has a 70 gigabyte 15K RPM SCSI disk
that is used to hold all system software, including Postgres
itself, as well as the I/O logs generated by our modifications.
In addition, the server has five 18.4 gigabyte 15K RPM hard
drives behind a configurable Dell Perc 4di RAID controller.
These drives were configured in a variety of ways, depending
on the particular experiment that was running. Our default
configuration grouped 4 of the disks into a single RAIDO
logical device, on which we built a Reiserfs file system to
hold the database. The fifth disk was used for transaction
logging.

Postgres uses an 8 kilobyte page size, and we configured
our system with a 2 gigabyte shared buffer. In addition, we
minimized the impact of the Linux kernel’s I/O buffering
by allocating (non-pageable) huge pages that consumed the
remaining main memory. The Postgres work_mem parameter,
which controls the amount of memory used by operators that
hash or sort, was set to 1 megabyte.

We experimented with instances of the TPC-H database.
The default database workload used for many of our experi-
ments used a TPC-H instance at scale factor 20. The queries
consisted of randomly-generated instances of TPC-H query
types Q1, Q3, Q5, Q6, Q10, Q12 and Q14, with each query
type having equal probability of occurrence. The execution
plans for these queries make use of a total of eleven phys-
ical database objects, including 7 tables (lineitem, orders,
supplier, region, nation, customer, and part), 3 primary key
indexes (orders_pkey, customer_pkey, and part_pkey) and an
index (i-l-orderkey) on the orderkey attribute of the lineitem
time. We will denote this workload by WSEQ20, as it gen-
erates primarily sequential I/0.

We also experimented with a mixed workload, WMIX5,
consisting of the same TPC-H queries plus additional queries
that generate a more random I/O workload. WMIX5 used
a database instance at scale factor 5. WMIX5 is described
further in Section 4.2.1.

4.2 Accuracy of Estimated Workloads

Our first goal was to directly compare estimated storage
workloads with actual storage workloads generated by Post-

gres. Figure 9 illustrates the design of our experiment. Us-
ing our default WSEQ20 query workload at a specified mul-
tiprogramming level k, we generated queries and submitted
them to Postgres for execution. We captured a trace of the
actual storage workload generated by Postgres as it executed
the queries, and also measured the query throughput, A.
We then used this workload, including the measured query
throughput, as input to the storage workload estimator.’
This produces an estimated storage workload model, M.,
as well as a representative I/O trace as an intermediate re-
sult. Finally, we fit a Rome workload model to the actual
storage workload trace using the same Rubicon-based model
fitting procedure used in the third phase of our estimation
process. This results in a Rome model of the measured stor-
age workload, which we denote by Meqs-

Figure 10 gives a direct comparison of the I/O request
counts found in the actual workload trace and the estimated
representative trace. The columns labeled WSEQ20 show
this comparison for the WSEQ20 workload at two concur-
rency levels, Kk = 1 and k = 5. The columns labeled WMIX5
are discussed in Section 4.2.1. With no database concur-
rency (k = 1), the estimated I/O request counts are very
accurate. This reflects the fact that the Postgres optimizer
estimates used by the storage estimator are quite accurate
for the WSEQ20 workload. Under these workload condi-
tions the Postgres buffer cache is largely ineffective, and this
is captured by the estimator’s cache simulation.

Introducing concurrency into the database workload (k =
5) introduces some error into the I/O request counts: the
total count is overestimated by about 15%. Since the iso-
lated per-query request traces have accurate I/O counts, as
shown by the k = 1 case, we attribute this error largely to
the cache simulation. Although the simulator itself mimics
the Postgres buffer manager, the request sequence seen by
the cache will be different in the estimator than in reality,
and thus the simulated buffer cache does not, in general,
have the same performance as the actual buffer cache.

"We ensured that the estimator ran the same set of queries
as Postgres, and that they were initiated in the same order
as they were in Postgres. This ensures that any storage
modeling error can be attributed to our methodology and
not to differences in the database workloads seen by Postgres
and the estimator.
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Figure 9: Experiment to Compare Estimated and Measured Storage Workloads

WSEQ20 @ k =1 WSEQ20 @ k =5 WMIX5 @ k=5
object measured [ estimated [ error || measured [ estimated [ error || measured [ estimated [ error
lineitem 20891772 | 20891784 | 0.0% || 62363598 | 74365812 | 19.2% 9637369 7767389 | -19.4%
orders_pkey 273564 274221 | 0.2% 1002063 1004521 0.2% 22799 22864 0.3%
orders 2928151 2927070 | 0.0% || 11596208 | 11585626 0.0% 585604 531263 | -9.3%
supplier 4919 4919 | 0.0% 19676 19676 0.0% 0 0 0.0%
i_lorderkey 786003 788223 | 0.3% 4451114 4702823 5.7% 262020 262754 0.3%
region 1 1] 0.0% 4 4 0.0% 0 0 0.0%
nation 2 2 1 0.0% 11 11 0.0% 1 1 0.0%
customer 241566 241558 | 0.0% 1256966 1071097 | -14.8% 60415 80551 | 33.3%
customer_pkey 9122 9149 | 0.3% 63856 73192 | 14.6% 2283 2289 0.3%
part_pkey 12161 12197 | 0.3% 48644 48788 0.3% 9126 9150 0.3%
part 97251 97251 | 0.0% 389272 389004 0.0% 72942 72942 0.0%
i_l_commitdate 0 0] 0.0% 0 0 0.0% 11508 8102 | -29.6%
[ TOTAL [ 25244512 [ 25246375 [ 0.0% [ 81191412 | 93260554 | 14.9% [ 10664067 | 8757305 [ -17.9% |

Figure 10: Estimated vs. Measured I/O Counts

I/0 request counts are only one property of the I/O work-
load. As described in Section 2.2, our I/O workload model
captures other significant properties, including request rates,
burstiness, and sequentiality. Figure 11 compares some of
these statistics in measured (Meas) and estimated (Mest)
workload models.?2 Each bubble in these graphs represents
one database object (table or index), with bubble sizes scaled
to the object’s actual I/O request count. Thus, more im-
portant objects have larger bubbles. Figure 12 summarizes
these results as weighted average estimation errors over all
of the objects’ request streams.

Burst Request Rate: With no concurrency, burst rate es-
timates are fairly accurate. The accuracy decreases

somewhat with the addition of concurrency. Figure 11(d)

shows that this increase can be attributed largely to
overestimation of lineitem’s burst rate when k£ = 5.
This, in turn, is a largely a reflection of the overes-
timation of the total I/O count for lineitem, as was
shown in Figure 10. There are a few outliers in Fig-
ure 11(d), but these are tiny tables like nation and
region that make a negligible contribution to the total
I/O workload. The estimation errors for those tables
are artifacts of the way that the lengths of very short
bursts are determined by Rubicon.

Percentage Burst Time: Low burst time percentages in-
dicate bursty 1/O streams with relatively long idle

times, while high burst time percentages indicate smoother

Two I/O workload model parameters, A\, and B, are not
represented in Figure 11. For our workload, A, = 0 and
B = 8192 bytes. Both of these parameters are captured
accurately by the estimator.

streams. Not surprisingly, increasing the query concur-
rency makes most of the I/O request streams smoother,
as can be seen by comparing Figures 11(b) and 11(e).
The estimator is accurate with and without concur-
rency (Figure 12).

Run Length: The estimator makes substantial errors in
predicting run lengths (Figure 11), largely due to er-
rors of several orders of magnitude in the run count
predictions of index objects (Figure 11(c) and 11(f)).
These errors can be traced to the index scan simula-
tion, which makes a simplifying assumption that an in-
dex scan results in sequential access to all index pages.
In reality, some non-leaf pages are never accessed and
not all pages that are accessed are accessed sequen-
tially because of the way that index pages are laid out.
Fortunately, this kind of run length estimation error is
probably not significant. Any L greater than 100 rep-
resents very sequential I/O. The most important thing
for the estimator is to distinguish between very small
run lengths (e.g., L = 1) and large run lengths. In
Section 4.3, we show that these large run length esti-
mation errors do not lead to large errors in predicting
the performance of the underlying storage system.

The remaining I/O model feature that is not shown in Fig-
ures 11 and 12 is the burst overlap matrix, C. Figure 13 com-
pares measured and estimated burst overlaps, C[i, j], among
the database objects’ request streams for the case of k = 5.
Each graph shows the percentage overlap of one object’s re-
quest bursts with the bursts of other objects. The nation,
region, supplier objects are not included as they make a
negligible contribution to the workload. These data show
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Figure 11: Estimated vs. Measured I/O Workload Model Parameters. Values from M., are on the vertical
The center of each bubble represents estimated and

axis, values from M,,.,s are on the horizontal axis.
Bubble area is scaled to the corresponding object’s total I/0

measured values for one database object.

count. The line in each graph is estimated = measured, indicating perfect estimation.

Burst Percentage
Request Burst Run
Rate Time Length
Workload Ar t(mt% L
WSEQ20 @ k=1 9% 9% 2602%
WSEQ20 @ k=5 30% 3% 1450%
WMIX5 @ k=5 23% 37% 174%

Figure 12: Weighted Relative Estimation Errors.
Error is computed for each database object as the
absolute difference of the estimated and measured
values, divided by the measured value. The reported
value is a weighted average over all database objects,
with weights determined by the objects’ measured
total I/O counts.

that the estimator does a very good job of estimating which
objects’ request bursts overlap and which do not. For exam-
ple, when the orders table is being accessed (Figure 13(e)),
so are the lineitem table, the orders table’s primary index
(orders_pkey), and the ilorderkey index. Other objects,
like the customer table and its primary index, are not. This
kind of information is useful to storage configuration tools,
since placing co-accessed objects on different storage devices
can reduce interference and improve performance [1].

4.2.1 Accuracy Under a Mixed Workload

We repeated the experiment of Figure 9 using a mixed
workload, WMIX5. This workload used 5 concurrent streams
of queries, i.e., Kk = 5. One stream consisted of the same
TPC-H query mixture as WSEQ20. The four remaining
streams ran simple selection queries against the lineitem ta-
ble, using a range predicate on the commitdate attribute.
These queries have a selectivity of 0.1%, and the Postgres
optimizer selects an execution plan that uses a secondary in-
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Figure 13: Measured and Estimated Burst Overlaps,
the right bar shows estimated values.

dex on commitdate. Specific range predicates for each query
are randomly selected from 1000 non-overlapping possibil-
ities with uniform selection probabilities. The results are
shown in Figures 10, 11, and 12 in the rows or columns
labeled “WMIX5”.

The most significant difference between the WMIX5 work-
load and the WSEQ20 workload is the nature of the accesses
to the lineitem table, which we expect to shift from sequen-
tial in WSEQ20 to largely random in WMIX5. This is,
in fact, what happens, as can be seen by comparing Fig-
ures 11(f) and 11(i). For lineitem in WSEQ20 at k& = 5,
L =~ 30000. For lineitem in WMIX5 at £k = 5, L ~ 5. The
workload estimator correctly characterizes this shift.

Estimation errors under WMIX5 were of comparable mag-
nitude to those under WSEQ20, although the nature of
the errors differed. Total I/O count was underestimated
for WMIX5 by about the same amount as it was overes-
timated under WSEQ20 (Figure 10). Again, we attribute
this largely to error in caching simulation, especially for the
lineitem table. Request rate prediction was more accurate
under WMIX5, but burst time prediction was less accurate
(Figure 12). For WMIX5, the estimated bursts were longer
and less intense than the real bursts, i.e., the estimated re-
quest rate was smoother and less bursty than in reality. We
are uncertain of the cause of this, but we suspect that it
is related to the way that the individual query request pat-
terns are merged to form the representative I/O trace in
phase two of the estimation process.

4.3 Storage Performance Prediction Using Es-
timated Workloads

As was noted in the Section 1, one of the motivations
for generating storage workload estimates is to be able to
use them to estimate the performance of candidate storage
configurations. Storage configuration advisors, such as the
Disk Array Designer [4], use storage system models to esti-
mate the performance of candidate configurations. In this
section, we present the results of an experiment in which we
used both measured and estimated storage workload models
as input to a storage system performance model. We then
compared the storage system performance predicted by the
model under the two workloads. Ideally, the predictions
would be identical. This would indicate that the estimated
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10

(e) orders ) orders._ pkey
wos aos
Custorner orders Tineitem Torderkey customer_pkey orders_pkey  part_pkey part Qmer orders  lineitem t omer_pkey orders_pkey  part_pkey part
(g) part (g) partfpkey
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workload models were as good as the measured models for
this particular task.

For this experiment, we used Delphi storage system per-
formance models [14]. Delphi models are modular analytic
models that take Rome storage workload descriptions as in-
put. Thus, the output of our workload estimator can be used
without modification as input to a Delphi model. A Delphi
model of a storage system is composed of individual models
of the components of the storage system, together with a de-
scription of how the components are interconnected. Com-
ponents include things like individual disk drives, array con-
trollers, caches, and so on. Each component predicts how it
will perform in response to a given workload. In addition,
components that pass workload “through” to other compo-
nents predict how the workload will be transformed as it is
passed through. For example, a RAID controller model de-
scribes how its input is divided among the disk drives that
form a particular RAID group. In addition to the individual
component and component interconnection models, a Del-
phi model describes how the “stores” that are referred to in
the workload are mapped to storage system devices. In our
case, each store corresponds to a physical database object,
so these bindings effectively describe how database objects
are laid out on the available storage devices.

Our Delphi models predict storage system utilization for
a given workload. The utilization of the entire storage sys-
tem is determined by the most heavily utilized storage sys-
tem component. More precisely, since workloads are bursty,
the models predict peak utilization over all burst periods,
except that very short bursts are ignored. It would be rela-
tively simple to change these models to predict, say, average
utilization rather than peak utilization.

We have developed Delphi component models for the stor-
age system components in our experimental environment
(Section 4.1), which we can compose to build Delphi models
of our storage system in various configurations, and for var-
ious data layouts. To run each experiment, we first chose a
target configuration and configured our storage system ac-
cordingly. We then followed the procedure shown in Figure 9
to generate measured (Mmeas) and estimated (Mest) storage
workload model. We then fed each of these workload models
into a Delphi model of our target storage system configura-
tion and compared the storage system utilizations predicted
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| workload H Phase 1 [ Phase 2 [ Phase 3 [ Total ‘
WSEQ20 Q@ k=1 273 86 83 435
WMIX5Q k=5 116 121 35 293

Figure 15: Total and Per-Phase Times (seconds) for
Storage Workload Estimation

by the Delphi model under each of the two workloads.

Figure 14 illustrates the storage system configurations
that we tested, as well as the predicted storage system uti-
lizations under M ,eqs and Mes:. Three of the configurations
(4RAIDO, 2RAIDO, 1RAIDO) defined a single RAIDO logi-
cal device (labeled LD1 in Figure 14) for use by the DBMS.
The other two configurations (4JBOD and 2RAID0-3JBOD)
defined multiple logical devices. For those configurations,
Figure 14 specifies which physical database objects were
mapped to the each logical device.

Absolute errors in predicted utilization ranged as high as
25%, although they were often much lower. Note that the
4JBOD and 2RAID0-3JBOD configurations used data lay-
outs that are quite imbalanced, and that this imbalance is
easily observable in the performance predictions produced
with Mes:. This is a limited experiment with a single work-
load and a small number of storage system configurations.
However, we consider that predictions of this level of ac-
curacy are quite reasonable, given that we start with SQL
workloads. For storage administrators, the alternatives (short
of populating the database, running a workload, and mea-
suring resulting the storage system load) are guesstimates
and rules of thumb.

4.4 Cost of Storage Workload Estimation

Figure 15 shows the wall-clock time required for storage
workload estimation under our two workloads. Recall that
Phase 1 includes the generation of storage request sequences
for individual queries. This takes longer for WSEQ20 than
for WMIX5 because of the larger database size. In gen-
eral, larger databases will result in longer per-query stor-
age request sequences. This is one of the limitations of our
trace-based approach. Phase 2 includes the request sequence
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merging and cache simulation, and Phase 3 is the statisti-
cal analysis by Rubicon. These times depend primarily on
the total length of the representative storage workload trace
that is generated. In comparison, actual (non-simulated)
execution of the workloads took approximately two hours
(WSEQ20) and three hours (WMIX5) in our test configu-
ration. This is an order of magnitude longer than the time
required by our data-free simulation approach.

S. RELATED WORK

In the database tier, a variety of tools are available to ad-
dress various aspects of the database physical design prob-
lem, such as choosing indexes and materialized views [2, 20]
and partitioning relations [2, 11]. These tools typically ex-
pect as input a database workload description similar to the
one that is expected by our estimation technique. These
tools are complementary to the workload estimation tech-
nique described in this paper.

Agrawal, Chaudhuri, Das, and Narasayya addressed the
problem of automating the layout of relational databases
on a given set of storage devices [1]. Internally, their solu-
tion uses an access graph to characterize the I/O resulting
from a given database workload. The graph describes esti-
mated number of I/Os to each DB object and edge weights
that characterize co-access (similar to our overlap matrix C
in our Rome-based descriptions). This is a less expressive
model than the one we have used. For example, it makes
no distinction between sequential and random I/O to an
object and no distinction between reads and writes. More
significantly, that work views storage layout as a a database
administration problem. In contrast, our goal is to generate
accurate database workload characterization to enable stor-
age administrators to make informed decisions about layout
and other related problems.

Wasserman, Martin, Skillcorn and Rizvi [17] describe a
workload characterization approach for database systems.
They characterize according to several resource-related at-
tributes, such as CPU consumption and sequential and ran-
dom I/O rates, as well as other properties such as join de-
gree. Our workload characterizations are more detailed, and
they do not contain DBMS-specific attributes, such as join



degree, that are not meaningful to the storage tier.
Narayanan, Thereska and Ailamaki describe a database

resource advisor for predicting transaction response times

and throughput based on end-to-end tracing [10]. Their

technique relies on instrumentation and tracing of live database

systems. Like the technique described here, their approach
seeks to identify a configuration-independent workload de-
scription with which to make model-based performance pre-
dictions. This allows the advisor to speculate about the
impact of hypothetical changes in the underlying resources.
However, because this approach relies on tracing a running
database system, it has no means of speculating about the
effects on the resource workloads of hypothetical changes
in the database system workload or physical design. Our
approach does accommodate such analyses.

There are several tools that address the automation of
storage system design and management, though these are
somewhat less mature than production database physical
design advisors. Disk Array Designer [4] addresses the prob-
lem of storage system configuration: which arrays to define,
how to configure each array, and how to lay out applica-
tion data to the arrays. Hippodrome [3] uses these design
tools to automate the management of a storage system as
the workloads change, using a measure, analyze, reconfigure
cycle. Similar design and automation tools also exists for
designing storage area networks [16] (SANs) that connect
storage devices to servers, and for designing data reliability
solutions (e.g., backups, mirrors, snapshots, etc) and config-
urations [8]. All of these storage layer tools require storage
workload characterizations, and can directly take advantage
of our storage workload estimator.

6. CONCLUSION

We have presented a technique for estimating the storage
system workloads that are generated by database manage-
ment systems. Our technique generates storage workload
models in a form that is easily used by storage administra-
tion tools, such as configuration advisors. We have demon-
strated the feasibility of this approach by implementing it in
Postgres. Our experimental results suggest that the work-
load estimations produced by our technique are sufficiently
accurate to be useful for predicting the performance of al-
ternative storage configurations. We expect the estimates
to be of similar use for other related tasks, such as capac-
ity planning. This is the first attempt that we are aware of
to design tools intended to improve the flow of information
from the database tier to the storage tier.
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