
pClock: An Arrival Curve Based Approach For QoS
Guarantees In Shared Storage Systems

Ajay Gulati
Rice University
6100 Main St

Houston, TX 77005
gulati@rice.edu

Arif Merchant
HP Labs

1501 Page Mill Rd
Palo Alto, CA 94304
arif@hpl.hp.com

Peter J. Varman
Rice University
6100 Main St

Houston, TX 77005
pjv@rice.edu

ABSTRACT
Storage consolidation is becoming an attractive paradigm for data
organization because of the economies of sharing and the ease of
centralized management. However, sharing of resources is viable
only if applications can be isolated from each other. This work tar-
gets the problem of providing performance guarantees to an appli-
cation irrespective of the behavior of other workloads. Application
requirements are represented in terms of the average throughput,
latency and maximum burst size. Most earlier schemes only do
weighted bandwidth allocation; schemes that provide control of la-
tency either cannot handle bursts or penalize applications for their
own prior behavior, such as using spare capacity.

Our algorithm pClock is based on arrival curves that intuitively
capture the bandwidth and burst requirements of applications. We
show analytically that an application following its arrival curve
never misses its deadline. We have implemented pClock both in
DiskSim [2] and as a module in the Linux kernel 2.6. Our evalua-
tion shows three important features of pClock: (1) benefits over ex-
isting algorithms; (2) efficient performance isolation and burst han-
dling; and (3) the ability to allocate spare capacity to either speed
up some applications or to a background utility, such as backup.
pClock can be efficiently implemented in a system without much
overhead.

Categories and Subject Descriptors: C.4 [Performance of Sys-
tems]: Modeling techniques; D.4.2 [Operating Systems] [Storage
Management] : Secondary storage; D.4.8[Operating Systems] [Per-
formance] : Modeling and prediction

General Terms: Algorithms, Design, Management, Performance

Keywords: Burst handling, Fair scheduling, QoS, Real time guar-
antees, Resource allocation, Storage performance virtualization

1. INTRODUCTION
Consolidation of storage belonging to one or more organiza-

tions in a centralized shared repository is an increasingly popular
paradigm for managing organizational or departmental-level data.
The advantages of this approach include the ease of centralized
management, flexibility in data placement, and lower operating

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMETRICS’07, June 12–16, 2007, San Diego, California, USA.
Copyright 2007 ACM 978-1-59593-639-4/07/0006 ...$5.00.

costs. Companies (like Amazon S3 [1] for instance) are begin-
ning to provide storage as a service, where a customer can buy a
specific amount (GBytes) of storage with certain reliability and ac-
cess requirements. Even within an organization, the need for data
sharing among different organizational units favors the use of cen-
tralized data repositories over ad hoc partitioning and replication
of the data sets. However, sharing resources is only practical if the
system can provide suitable isolation among the clients in terms of
security, privacy and performance.

In this work we focus on obtaining performance isolation among
concurrent workloads sharing the resources of a storage server.
Each workload must be provided the abstraction of having its own
dedicated server with a guaranteed minimum level of performance.
Conventionally, sharing of storage resources between workloads
with different requirements is handled by statically partitioning the
resources, for example, by ensuring that the data for different work-
loads resides on different disks within a disk array. However, static
partitioning is inflexible in its ability to adjust to workload varia-
tions, leading to over provisioned and unnecessarily expensive de-
signs. An alternative approach is to share the storage resources be-
tween workloads, using statistical multiplexing to reduce the over-
all resource requirements, and apply scheduling methods to logi-
cally isolate the workloads in a way that avoids destructive inter-
ference between them.

The performance requirements of a workload are usually ex-
pressed in terms of throughput and/or latency constraints. For ex-
ample, a multimedia workload might have strict latency require-
ments in order to provide glitch-free service, whereas a bulk file
transfer might care more about overall throughput than the latency
of individual requests. Similarly an online transaction and query
processing system may need to guarantee fast response time for
transactions while providing minimum throughput levels for queries.

The desired capabilities of a scheduling framework are: (1) Meet
throughput requirements and deadline guarantees for every work-
load that follows a stipulated service level agreement (2) Handle
bursts of stipulated maximum size without compromising deadline
guarantees (3) Flexibly allocate unused system capacity to work-
loads that desire more than their stipulated service without penal-
izing their contractual guarantees (4) Allocate spare capacity to a
background activity (such as a backup utility or defragmenter) in
large bursts, without hurting contractual flows (5) Be work con-
serving, i.e. the system should not idle if requests are pending.

In this paper we present a scheduling scheme pClock, that meets
the above requirements. The scheduler enables all well-behaved
clients (those satisfying their burst and throughput constraints) to
meet their stipulated deadlines. We prove that under certain pre-
cisely characterized assumptions of deterministic behavior, no well
behaved flow will miss its deadlines. In practice the assumptions

13

may be occasionally violated due to the stochastic nature of low-
level request scheduling in a storage system, resulting in some missed
deadlines. However, as we show empirically, the requirements are
met on the average. Our scheduling scheme pClock does not re-
quire exact knowledge of the system capacity, which is notoriously
difficult to estimate and varies dynamically in a storage server. An
estimate of the system capacity is necessary for higher-level admis-
sion control. To guarantee hard deadlines, conservative estimates of
the capacity and behavior of the flows need to be made. In practice,
the system may use less conservative “typical” values and employ
a statistical model of flow behavior, providing probabilistic rather
than hard guarantees. The modeling and analysis of statistical QoS
is not considered in this paper.

A second contribution of the paper is in designing a flexible
method to allocate spare capacity of the storage system to back-
ground activities. Our scheme allows us to identify chunks of un-
used capacity that can be allocated to background jobs, while guar-
anteeing that future requests of well-behaved flows will still be ser-
viced within their guaranteed bounds. In contrast, previous schemes
provide service to background jobs only in small granularities when-
ever there are no foreground jobs to be run. Alternatively, the spare
capacity may be used to accelerate contractual clients. However,
this needs to be done in a way that ensures these clients are not
penalized later for their use of this spare capacity.

The rest of the paper is organized as follows. We present related
work and discuss the limitations of existing techniques in the next
Section. In Section 3 we describe the system model and related
definitions and then we present our scheduling algorithm, pClock.
Formal results are summarized in Section 4. Section 5 presents
evaluation results using both DiskSim [2] and an implementation of
pClock as a Linux kernel module. We end with some conclusions
and future directions in section 6.

2. OVERVIEW
We model the storage system as a server with internal concur-

rency, providing shared service to a set of m clients or flows, f1, f2,
· · · , fm and to a background utility, as shown in Figure 1. Requests
from a flow wait in a private queue before being sent to the server.
We treat the storage server as a black box; it may have an inter-
nal queue that reorders the requests that have been dispatched to
it. Hence, our scheduler provides strict isolation in terms of queu-
ing delays observed by the competing flows before their requests
are dispatched to the server. Once dispatched, the request will fin-
ish within a small amount of time assuming an efficient, starvation
avoiding scheduler (such as C-LOOK, C-SCAN etc.) at the storage
server.

Background
Utility

m Clients Scheduler Server

〈σ1,ρ1,δ1〉
〈σ2,ρ2,δ2〉

〈σm,ρm,δm〉

Figure 1: System Model

The service requirements of fi are specified by a 3-tuple (σi,ρi,δi),
where σi is the maximum burst size (number of IOs), ρi is the
throughput (in IOs per second – IOPS) and δi is an upper bound
on the latency of an IO request (in ms). To guarantee the latency
constraints of a flow it is necessary to bound not just the maxi-

mum burst size but also how frequently bursts can occur. Other-
wise a flow that makes continuous bursts of maximum size could
quickly exceed the server capacity, leading to unbounded latencies.
The arrival function for fi denoted by Ri(s,t) is the total num-
ber of IO requests made by fi in the time interval [s,t]. We say
that fi is well behaved if Ri(s,t) ≤ σi + ρi(t − s), for all time inter-
vals [s,t]. This model of arrivals is also known as a leaky bucket
model [20, 23] with parameters (σi,ρi). The leaky bucket model
limits the burstiness of a flow by controlling the size and the fre-
quency of the bursts: the maximum burst size is σi and the average
arrival rate is ρi. The following condition states the requirement for
isolation among the flows: a well behaved flow should never miss
its deadline regardless of the behavior of other flows. Additionally,
we would like to meet other goals enumerated in the last section
such as the flexible use of spare capacity to speed up contractual
flows or background jobs, and work conservation. Note that we
do not assume that flows are voluntarily well behaved, nor do we
throttle them to conform to the leaky bucket parameters. Forcing
the flows to be well behaved allows for simpler scheduling algo-
rithms, but can result in low system utilization. Instead, flows are
allowed to opportunistically exceed their arrival function specifi-
cations. While the system cannot guarantee meeting the deadlines
of the flows with extra requests, in practice it will often be able to
use the unused capacity arising from statistical variations in the ar-
rivals to meet the requirements. For instance, in a closed-loop sys-
tem, where a client can adapt its input rate based on the response
time to gain additional service during periods of light load. Since
the scheduler isolates the flows, allocating the spare capacity does
not interfere with the remaining flows; clients that stay within their
arrival specifications will continue to receive guaranteed service.

Most bandwidth allocation algorithms that are used to provide
throughput guarantees are based on assigning tags to arriving re-
quests. The tags are based on the priority of the flow, arrival time
of the request, and its service demand. The queued requests are
then serviced in order of their tags. Our algorithm pClock is also
based on the use of tags, but has several advantages over the earlier
schemes. We now describe three idealized cases to illustrate the
benefits of the pClock algorithm. The examples describe simple
situations to make them easier to follow; nonetheless, the under-
lying advantages remain even under more complex system behav-
iors. These cases respectively illustrate goals 2, 3 and 4 described
in Section 1.

Case 1 – Ability to handle bursts: Consider two flows fA and
fB that have stipulated throughputs of ρA = ρB = 50 IOPS and
worst-case latencies δA = 500ms, δB = 250ms respectively. The
maximum burst sizes of fA and fB are σA = 0 and σB = 25 IOs. As-
sume the system capacity is 100 IOPS. Suppose that flow fA sends
requests at a uniform rate of 50 IOPS, whereas fB sends a burst of
25 IOs every 0.5 seconds. This is shown as Case 1 in Figure 2.

25

75
100

50

1 2 3

125

150

A
rr

iv
al

s

A
rr

iv
al

s 200

100

1 2 3
time(sec)

1 2 3
time(sec)time(sec)

desired

C
um

ul
at

iv
e

se
rv

ic
e

Case 1 Case 2

fA

fB

fB

fA

fA

fB

Figure 2: Case 1: fB is bursty and therefore misses its deadline
(250 ms), whereas fA meets its deadlines. Case 2: fA is starved
during [2,3] for using spare capacity during [1,2]

14

Bandwidth allocation algorithms (e.g. WFQ [8] and its succes-
sors [3,9,10]) will successfully provide both fA and fB their desired
throughput of 50 IOPS. However they will not be able to control
the latencies of the requests. The tags assigned by WFQ [8] (for
instance) to requests of both fA will and fB will be 1/50, 2/50,
3/50, · · · . Therefore WFQ will interleave the requests of fA and
fB in essentially a 1 : 1 ratio. Requests from fA will be serviced
with very little queuing delay. However, the requests of fB in each
burst will face a worst-case latency of 500 ms. In contrast, pClock
will meet the deadlines of both the flows, and all requests from fB
will finish within 250 ms of their arrival, by scheduling requests in
a different order.

Case 2 – Penalizing flows for use of spare capacity: Consider
two flows fA and fB with stipulated throughput ρA = ρB = 50 IOPS.
Assume the system capacity is 100 IOPS and burst sizes σ1 = σ2 =
0. Suppose that fA sends a burst of 200 IOs at t = 0, and then sends
requests at its stipulated rate of 50 IOPS from t = 2 onwards, while
fB sends a burst of 100 IOs at t = 2, and then sends requests at a
steady rate of 50 IOPS after t = 3. During the time interval [0,2] fB
is idle and the system has a spare capacity of 50 IOPS. The input
profiles are shown as Case 2 in Figure 2.

In the interval [0,2] the spare system capacity is absorbed by fA,
which receives 100 IOPS, well above its stipulated rate of 50 IOPS.
When fB becomes active at time 2, existing scheduling algorithms
like Virtual Clock [29] and SCED [23] (see Section 2.1 for further
details) penalize fA for the excess service it received during the first
two seconds. Intuitively this is because the tags of fA will become
very high due to the extra requests that were serviced in the first
two seconds, and fA is subsequently starved while the tags of fB
catch up. During the interval [2,3], these algorithms will give all
the service to fB and starve fA, even though it is fB and not fA that
is exceeding its service agreement at this time. In contrast, pClock
does not penalize a flow that has gained extra service by using spare
capacity. For this example, the service provided by pClock after
t = 2 is shown by the dotted lines in Case 2 of Figure 2; as can be
seen both flows receive 50 IOPS.

Case 3 – Flexible allocation of spare capacity: Spare capacity
can be allocated in two ways: one is to give all the spare capacity to
contractual flows and the second is to use spare capacity to speed up
background tasks. Our algorithm allows both these policies. Fur-
thermore, we are able to allocate spare capacity to background tasks
in batches rather than in small chunks. Because many background
activities (such as backup) perform mainly sequential IOs, system
throughput usually increases if the scheduler can provide service
to the background job in larger bursts instead of fine-grained inter-
leaving with the contractual flows.

2.1 Related Work
The work related to QoS-based resource allocation can be di-

vided into three broad categories. First is a class of scheduling algo-
rithms for proportionate bandwidth allocation, such as PGPS [20],
Virtual Clock [29], WFQ [8], WF2Q [3], SFQ [10], SCFQ [9],
Leap Forward [27] and Latency-rate scheduling [25]. As discussed
below, the primary goal of these algorithms is to divide up the
bandwidth in a specified manner between the flows; they do not
explicitly attempt to control the latencies of the requests. The sec-
ond class of scheduling algorithms based on survice curves [7,
19, 23, 26] attempt to simultaneously control both the bandwidth
allocation and the latencies of the flows. Finally, storage-specific
methods such as Façade [17], Stonehenge [13], SFQ(D) [15] and
Avatar [28], either use variants of virtual-time based tagging or a
feedback based mechanism to provide heuristic assurances. Table 1
provides a quick comparison of pClock with existing algorithms in
the three categories.

2.2 Fair Queuing Algorithms
Bandwidth allocation algorithms assign tags to requests based

either on real time or virtual time. An early solution, Virtual Clock,
assigned tags to requests based on real time [29]. However, it is
known that this solution can result in starvation. Other propor-
tional bandwidth schedulers, WFQ [8], WF2Q [3], SFQ [10, 11],
and SCFQ [9], use the notion of virtual time tagging to simulate
the idealized fine-grained multiplexing of the Generalized Proces-
sor Sharing (GPS) algorithm [12, 20]. While these algorithms pro-
vide very good bandwidth allocation, the worst-case latency expe-
rienced by a request can be high since it depends on the number
of active flows [4]. Bennett and Zhang [4], Leap Forward [27],
and Latency rate scheduler [25] significantly improved the latency
bounds, so that request delay depended only on a flow’s own band-
width allocation and request rate.

A fundamental limitation of these schemes is that it is not pos-
sible to independently control the bandwidth and latencies of the
flows. The latency incurred by a request is inversely related to its
bandwidth allocation, so that flows with high (low) bandwidth al-
location receive low (respectively high) latency. These algorithms
have just one parameter to adjust both throughput and latency, and
this is insufficient [7] for meeting both constraints independently.

Other issues that are not handled well by these schemes include
the ability to handle bursts and the difficulty of relating virtual time
tags to predict free system capacity.

2.3 Algorithms based on Service Curves
To decouple bandwidth allocation and latency requirements, Cruz

et al. [7, 23] extended the service curves concept introduced by
Parekh and Gallagher [20, 21] to allow variable rates. Using these
service curves both bandwidth and latency constraints may be sat-
isfied provided certain capacity constraints are met. They provided
SCED [7,23] algorithm to schedule workloads specified by a given
set of service curves that meet the capacity constraints. However,
a drawback of their solution is that a client that uses spare system
capacity may get starved in the future when resource contention
is high. The solution has both the drawbacks described in Case 2
and Case 3 in Section 2. In addition, SCED is unduly conserva-
tive in setting the deadlines of requests. It sets the deadline to be
the earliest value possible without causing other flows to miss their
deadlines; by contrast, pClock sets the deadline of a request to be
as late as possible. This permits greater flexibility in scheduling
spare capacity (Case 3 of Section 2).

Stoica et al [19, 26] have identified cases where SCED may fail
and have provided a modified virtual-time based algorithm to avoid
starving a client for using excess capacity. However they don’t
guarantee that the client can meet its deadline if it uses the ex-
cess capacity. Furthermore their scheme may also sometimes cause
well-behaved clients to miss their deadline.

2.4 Storage Specific Methods
For storage systems, Façade [17], Stonehenge [13], SFQ(D) [15],

and Avatar [28] propose virtual-time based scheduling strategies,
while incorporating issues specific to storage workloads. Most of
these schemes use virtual tags and a single set of weights to control
the throuhgput and the response time. However, it is not possible
to control both bandwidth and latency independently with a single
parameter, and the use of virtual time makes estimation of spare ca-
pacity and real-time deadlines difficult. SCAN-EDF [22] proposes
hybrid low-level disk scheduling algorithms to meet request dead-
lines while maintaining high throughput. Cello [24] and YFQ [5]
also provide fair bandwidth allocation mechanisms along with op-
timizing disk scheduling for seek minimization. SLEDS [6] uses

15

Algorithm class B/W allo-
cation

Latency
control

Burst han-
dling

Avoid star-
vation

Spare
capacity
control

Tagging mechanism

Fair Queuing Algorithms Yes No No Yes No Virtual Time
Service Curve based Yes Yes Yes No No Real Time

Storage specific heuristics Yes No No Yes No Virtual Time
pClock Yes Yes Yes Yes Yes Real Time

Table 1: Comparison of existing scheduling techniques

live feedback from the system to throttle flows based on a leaky-
bucket model. Throttling IOs may lead to non work conserving
schedules. It is also difficult to give fine grained guarantees on la-
tencies or to handle bursts in SLEDS. Avatar [28] is a two-level
scheme that uses EDF scheduling at the second level to meet re-
sponse time deadlines; however it does not provide guarantees. A
control-theoretic approach for scheduling in storage systems was
proposed in [16].

3. SCHEDULING FRAMEWORK
In this section we will present our scheduling algorithm and

show how each of the goals is met using our framework. We will
first introduce terminology and definitions followed by an intuitive
description of the components of the algorithm. We then formally
present our scheduling algorithm pClock and show that it meets the
desired goals. Finally, we discuss the estimation and allocation of
spare system capacity.

3.1 Definitions
To simplify the presentation, time is represented by discrete time

steps t = 0,1,2, · · · . The requirements of a flow fi are represented
by a triple (σi,ρi,δi) where σi is the largest number of IO requests
that fi can make at any time step, ρi is the average throughput
(IOPS) and δi (ms) is the maximum allowable latency of a request.
The number of requests made by fi at time step t is denoted by
ri(t). The arrival function Ri(a,b) = ∑b

t=a ri(t), is the total number
of IO requests made by fi in the interval [a,b]. The amount of ser-
vice (number of IOs) provided to fi in the interval [s,t] is denoted
by Si(s,t). In order to meet the performance guarantees the system
must service at least Ri(s,t) IOs of fi within the interval [s,t + δi];
i.e. Si(s,t +δi) ≥ Ri(s,t).

Flow fi is well behaved if the size and frequency of its bursts
are limited by a leaky bucket with parameters (σi,ρi). That is, for
every time interval [s,t], Ri(s,t) ≤ σi + ρi(t − s). This constraint
is difficult to use computationally in this form: to determine how
many requests fi can make at time t while remaining well behaved,
the definition requires us to check the inequality for all possible
intervals ending at t. Hence, the constraint is expressed in the form
of a function called the Arrival Upper Bound (AUB) that captures
the size of the burst permitted at time t succinctly, as defined below.

DEFINITION 1. The backlog of a flow fi at time t is denoted
by Bi(t) = Ri(0,t)−Si(0,t). Flow fi is said to be busy at time t if
Bi(t) > 0. A flow that is not busy at time t is idle. A system busy
period is a maximal-sized time interval during which at least one
flow is busy.

DEFINITION 2. Flow fi is active at time t if Ri(t,t) > 0; else it
is inactive at t. An interval [s,t] is an active period for fi starting
at s, if fi is inactive at time s− 1 and is continuously active at all
times in the interval [s,t].

DEFINITION 3. Let t = 0 be the start of a system busy period.
Let a and b, a < b, be the start times of two successive active pe-
riods for fi. Let Ri(0,b) be the cumulative arrivals for fi in the
interval [0,b]. The Arrival Upper Bound U b

i (t) for the active pe-
riod [b,t] of fi is defined as: U b

i (t) = min{U a
i (t), Ri(0,b) +

σi+ ρi(t −b)}.
The definition of the AUB function for flow fi is illustrated in Fig-
ure 3(a). The arrival function Ri(0,t) that represents the cumu-
lative arrivals of fi, is shown by the dotted line. The AUB con-
sists of three segments U0

i (t), Ua
i (t) and Ub

i (t) corresponding to
the start of the three active intervals [0, p], [a,r] and [b,∞). The
AUB in the interval [0, p] is given by U 0

i (t) = σi + ρit, and is
shown by the solid line of slope ρi at t = 0. For t ≥ a, since
Ri(0,a) + σi > U0

i (a), we have Ua
i (t) = U0

i (t). The next active
period for fi begins at time b. Since Ri(0,b)+σi <Ua

i (b), we have
for t ≥ b, U b

i (t) = Ri(0,b) + σi + ρi(t −b). A well-behaved flow
will never send more requests than specified by its current AUB
function.

LEMMA 1. Let a be the start of the active period for fi that
includes time t. Then fi is well behaved at t if and only if Ri(0,t)≤
U a

i (t).

Time

A
rr

iv
al

s

rp a b

Ri(0,b)+σi
Ri(0,a)

U b
i (t)

U 0
i (t) U a

i (t)

Ri(0,a)+σi

σi

Time
0 t1

Sr = t1

AUB

tat2

Ri(0, t)

σi

Sr = ta

slope = ρ i
A

rr
iv

al
s,

R
i(

0,
t)

(a) Computation of AUB (b) Compute tags using AUB

Figure 3: (a) Computation of Arrival Upper Bound (AUB)
function for a flow fi (b) Using AUB function to compute tags.
Well behaved arrival at t1 gets a deadline of t1 + δi; others are
delayed based on how much the arrivals exceed the AUB

System Capacity: Service guarantees for well behaved flows can
only be met if the system has sufficient capacity to meet their stipu-
lated requirements. A lower-bound on the system capacity, referred
to as the System Capacity Constraint is defined below. The con-
straint is defined based on the initial AUB functions U0

i (t) of the
flows, and their latency bounds δi. Note that the constraint depends
only on the static parameters of the flow requirements, and not the
dynamic behavior of the schedule. Hence it can be easily checked
to determine eligibility of a flow for admission control purposes.

To illustrate the definition we use an example of two flows with
requirements fA = 〈50 IOs, 50 IOPS, 200 ms〉 and fB = 〈110 IOs,

16

100 IOPS, 600 ms〉. Consider the case when the two flows begin at
t = 0; both send their maximum burst and then send at a fixed rate
corresponding to their throughput requirements. The first deadline
is at 200ms for fA and the system must service 50 IOs requested at
t = 0 by fA by this time. This provides a lower bound on the capac-
ity of 250 IOPS. At t = 600 ms, all requests of fA received before
t = 400ms must be serviced, as must all 110 IOs in the initial burst
of fB. Hence the system must service at least σA +ρA(δB−δA)+σB
= 50+50 × 400/1000+110 = 180 IOs by t = 600 ms, requiring a
capacity of at least 300 IOPS. Beyond t = 600 ms, the system must
service all requests from fA and fB that arrive at rates ρ1 and ρ2
respectively. Hence C ≥ 50 + 100 = 150 IOPS. The maximum of
these is a lower bound on system capacity, and in this example is
300 IOPS.

This motivates the definition below. By considering the case of
all m flows sending their bursts at t = 0, followed by requests at
their designated throughput it can be seen, as in the above example,
that meeting this constraint is necessary if the system is to deter-
ministically guarantee the requirements of all the flows.

DEFINITION 4. Let the flows be arranged in order of non de-
creasing latencies, represented by δ1 ≤ δ2 ≤ ·· · ≤ δm. Let C denote
the system capacity. The System Capacity Constraint is defined
by the following equations:

∑
∀i

ρi ≤C (1)

∀ k , ∑
i≤k

σi +
k

∑
i=1

ρi(δk −δi) ≤C×δk (2)

LEMMA 2. A necessary condition required to guarantee that
all well-behaved flows meet their deadlines is for the capacity C to
meet the System Capacity Constraint.

In Section 4, we show that these conditions are sufficient to guaran-
tee that flows never miss their deadlines. This does not obviously
follow from the definition. For instance if fA in the above example
sends its burst at the same time as fB is sending at its steady rate
of 100 IOPS, then to meet the burst of 50 IOs of fA within the 200
ms deadline and serve the requests of fB (100 IOPS) may appear to
require a capacity of 350 IOPS. However, as we show a capacity of
300 IOPS is sufficient to meet all deadlines.

3.2 pClock Algorithm
The algorithm assigns tags to arriving requests. Each request re-

ceives a start tag and a finish tag. The scheduler dispatches the
request with the smallest finish tag to the server on a request com-
pletion. The tags assigned are controlled by the current arrival up-
per bound (AUB) function of the flow. Informally, requests that are
within their arrival bounds will be assigned finish tags equal to the
real-time deadlines of the requests, while requests that exceed the
arrival bounds are assigned higher deadlines. Hence well-behaved
flows will have their requests serviced in preference to those that
exceed their arrival constraints, and will meet their latency bounds
if they are serviced by their finish tags.

Algorithm 1 provides a high level description of the actions of
the scheduler at request arrival and scheduling instants. There are
three actions to be performed when a request arrives: UpdateNum-
tokens updates the AUB function for the present arrival time t,
CheckandAdjustTags is used to resynchronize flows thereby avoid-
ing starvation, and ComputeTags assigns start and finish tags as in-
dicated above, based on the AUB. We describe these in more detail
below. A formal description of various components is presented in
Algorithm 2 along with related notation in Table 2.

Symbol Meaning
Sr

i Start tag of request r of fi
Fr

i Finish tag of request r of fi
MinSi Minimum start tag of a pending request from fi
MaxSi 1/ρi + Maximum start tag of a pending request

from fi
numtokensi Number of tokens available for fi

Table 2: Symbols used and their descriptions

Request Arrival:1

Let t be arrival time, of request r from fi;2

UpdateNumtokens();3

CheckandAdjustTags();4

ComputeTags();5

Request Scheduling:1

Choose the request w with minimum finish tag Fw
j and2

dispatch to the server;
Let the chosen request be from flow fk with start tag Sw

k ;3

MinSk = Sk;4

Algorithm 1: pClock algorithm

UpdateNumtokens:
On each request arrival from flow fi: Let Δ be time
difference between the current time and the time of the
previous request of fi;
numtokensi += Δ ×ρi;
if (numtokensi > σi) then

numtokensi = σi

CheckAndAdjustTags:
Let C be the set of currently busy flows;
if (∀ j ∈ C, MinS j > tr) then

mindrift = min j∈C {MinS j − tr};
∀ j ∈ C, Subtract mindrift from MinS j , MaxS j and all
start and finish tags

ComputeTags:
if (numtokensi < 1) then

Sr
i = max{MaxSi, t};

MaxSi = Sr
i +1/ρi

else
Sr

i = t;
Fr

i = Sr
i + δi;

numtokensi = numtokensi −1;
Algorithm 2: Components of pClock algorithm

UpdateNumtokens: In order to assign tags, the scheduler must
first update the arrival upper bound function U a

i () to the current
time t. It maintains a variable numtokensi for each flow fi. The
variable keeps track of the difference between the AUB at time t
and the cumulative number of arrivals up to that time (i.e. U a

i (t)−
Ri(0,t)). Its value indicates the number of requests that can be
made by fi at t without violating the arrival constraints. Hence a
value less than one means that a well behaved flow cannot make
any request at t.

The initial value of numtokensi is set to σi at the start of a system
busy period. It is decremented by 1 every time a request from fi
arrives, and continuously increases at the rate of ρi IOPS. Hence in
an interval of Δ seconds it will be incremented by Δ × ρi, but the
value is capped at σi.

17

500 1000 1500 2000 2500

25 IOs

1250750500 2500

0

Case II

Case I

1750

tag shift to 1500

Finish Tags(x1000)

Finish Tags(x1000)

N
um

be
r

of
 I

O
s

N
um

be
r

of
 I

O
s

fB

deadlines fA

deadlines fB

fA (20 ms apart)

fA (20 ms apart)

fB

Figure 4: Finish tags assigned by pClock for two cases

Compute Tags: This routine assigns start and finish tags (Sr
i

and Fr
i respectively) to the request r from fi arriving at time t.

Fr
i is simply set to the sum of Sr

i and the latency bound δi. The
value assigned to the start tag Sr

i depends on whether the request
is within the AUB or exceeds it. In the first case (recognized by
numtokensi ≥ 1), Sr

i is set to the current time t. If the total number
of requests made by fi through time t exceeds AUB (numtokensi <
1), the start tag will be assigned a future time greater than t. In
particular the start tag is set roughly to the time it would have taken
a well behaved flow (with identical burst and throughput specifica-
tions) to send the same number of requests.

Figure 3(b) shows how the tags are set. At t1 the total number
of requests made by fi is below the arrival upper bound. Hence the
request is assigned a start tag of t1 and a finish tag of t1 + δi. On
the other hand, at t2 the total requests Ri(0,t2) exceeds the AUB.
Hence the start tag is set to ta, the earliest time at which Ri(0,t2)
does not exceed the AUB.

The routine maintains two variables MinSi and MaxSi for each
flow fi. The start tag of the last request of fi dispatched to the server
is maintained by the variable MinSi. Requests belonging to fi will
have start tags spaced 1/ρi apart, i.e. MinSi + 1/ρi, MinSi + 2/ρi,
· · · , MaxSi −1/ρi. Hence if there is another request from fi while
this backlog persists it will be assigned a start tag of MaxSi , and
MaxSi will be increased by 1/ρi.

Example 1: We illustrate the assignment of tags and how the al-
gorithm meets deadlines of bursty flows with an example. Consider
two flows fA and fB with requirements 〈0, 50 IOPS, 500 ms〉 and
〈25 IOs, 50 IOPS, 250 ms〉. The system capacity is assumed to be
100 IOPS. fA sends requests at a uniform rate of 50 IOPS, whereas
fB sends a burst of 25 IOPS every 0.5 sec. The tags will be as-
signed as described below. (For convenience we scale values by
1000 i.e. we consider throughput in IOs per millisecond and assign
all tags in milliseconds). fA will have start tags of 0, 20, 40, 60,
· · · (0, 1000/ρA , 2000/ρA etc.) and finish tags starting from 500
and spaced at intervals of 20 ms each. fB will have 25 start tags
(σa = 25) with value 0 whose corresponding finish tags are all 250.
This will repeat again at 500 ms where the burst of 25 requests will
be assigned finish tags of 750. The finish tags are shown as Case I
in Figure 4. The scheduling based on finish tags will complete the
entire first burst from fB before doing any request of fA; similarly
it will do the entire second burst (with finish tag 750) after only
12 requests of fA. This is not possible using previous techniques
for bandwidth allocation which would interleave the requests from
the two flows (since they have the same throughput requirements)
resulting in large latencies for fB.

We finally discuss the remaining component of the algorithm.
Adjust Tags: The motivation for this component is to allow flows
to flexibly use spare capacity without being penalized. For instance
a closed-loop client fi that keeps a fixed number of requests out-
standing at the server, will automatically increase its input rate
when the system is lightly loaded and slow down as the load on
the system increases. Without the tag adjustment component, the
scheduler could penalize fi for the extra service, because the al-
gorithm would set the start tags of fi’s requests far into the future
beyond the current time t. As a new flow f j gets activated it will
receive start tags beginning from the current time t. Hence fi will
get starved till the tags of f j catch up. We need a mechanism to
synchronize flows like fi with newly activated flows.

The routine checks for the state when all the start tags of all
requests in the system are greater than the current time t. This in-
dicates that busy flows have received more than their guaranteed
amount of service by t. At this time, rather than allowing the tags
to keep running ahead of real time, the algorithm recomputes the
tags so that the smallest start tag after readjustment coincides with
the current time t. The relative values of the tags are not changed
and they just shift as a block by an offset that depends on the dif-
ference between the smallest start tag in the system and the current
time . Since new flows will begin their tagging from the current
time as well, all flows compete fairly from this point on, avoiding
starvation. The time at which the tags are adjusted is also called a
synchronization instant.

Note that this shift raises the possibility that some flows may
now miss their deadlines since a greater number of requests than
anticipated are pushed into a given time interval. However, as we
show in Theorem 1 the readjustment of tags does not result in any
missed deadlines. Hence this provides a simple method to avoid
starvation, while still maintaining the ability to handle bursts and
meet latency bounds.

Example II: We present an example to illustrate how the tags are
adjusted. Consider the same flows fA and fB as example 1 but with
a different arrival pattern (see Case II of Figure 4). Let fA send 100
IOs at t = 0 and 50 IOs from t = 1 onwards. Let fB send a burst of
size 25 IOs at t = 1 and 50 IOPS onwards. The finish tags for fA
will go from 500 ms to 2500 ms spaced by 20 ms each. At t = 1,
all the 100 IOs from fA have completed. fB will have 25 finish tags
at 1250 ms and the remaining tags will be 1270, 1290 and so on
(again spaced by 20ms each). Now if no tag shifting is done, fA
will get starved till the tags of fB catch up to 2500 ms. To avoid
this behavior pClock will shift the minimum start tag of fA from
2000ms to 1000 ms (and the corresponding finish tag from 2500
to 1500) when the first arrival from fB occurs. Thus fA will start
competing with fB as soon as the finish tag of fB reaches 1500 ms.

3.3 Calculation of Spare Capacity

DEFINITION 5. The spare capacity of the system is the maxi-
mum amount of service that can be provided to a background job
while ensuring that every well-behaved flow fi meets its deadlines.

The spare capacity can be allocated either to the foreground (con-
tractual) flows, so that they can get more than the contracted amount
of service or to some background job. The first case is easy to
implement since one can schedule the background job only when
there is no request present from any of the foreground flows. How-
ever a potential drawback of this scheme is that the requests of the
background job may be done in a scattered manner rather than in a
batch.

Allocation of all spare capacity to a background job is much
more challenging, because we need to identify the amount of spare
capacity that can be given to it without hurting any of the well-

18

behaved flows. As shown in Lemma 5 whenever the tags are ad-
justed by the algorithm, the system can provide a burst of size σi−1
from each of the busy flows to the background job. We allocate the
combined burst from all busy flows to the background task. Let F
be the set of busy flows; their tags would have been adjusted based
on the current time t. The background requests will be scheduled
as follows: ∀ fi ∈ F , schedule σi − 1 requests of the background
job with deadline equal to t + δi. This has two major benefits over
existing methods. First, the guarantees to well behaved flows are
not missed and second, the requests of the background job are done
in batches, which can lead to better disk utilization as many back-
ground jobs (backup, defragmenter) tend to be highly sequential.

Note that bandwidth allocation schemes based on virtual tags,
such as WFQ, SFQ, WF2Q etc. can only implement the first case,
where a background job is scheduled when no one else is active.
This is because there is no relation between virtual tags and actual
deadlines. In our case one can tune the allocation of spare capacity
between contractual flows and background jobs by assigning bursts
to the background job based on the actual slack time between the
minimum start tag and the current time.

4. PROOF OF CORRECTNESS
In this section we provide a proof of the scheduling guarantees

provided by our algorithm. We will show that if the system capacity
satisfies the constraint described in Section 3 and all flows are well-
behaved then all flows will meet their deadlines. We will then show
the stronger result that well-behaved flows are insulated from the
behavior of badly behaved flows by proving that the deadlines are
met for all the well-behaved flows even if other flows exceed their
AUB curve.

LEMMA 3. Let fi be a flow that is well-behaved. If every re-
quest of fi completes service before the finish tag assigned to it by
pClock, then fi never misses a deadline.

LEMMA 4. Let u be the last time before t at which the sched-
uler adjusts the tags of the set of busy flows. The total number of
requests (from all flows) with finish tags between u and t that have
not yet been serviced by u, is upper bounded by C× (t −u).

LEMMA 5. Let A denote the set of busy flows at a synchroniza-
tion instant u at which the tags are adjusted. Then the system has
spare capacity at least ∑ j∈A (σ j −1) at time u.

As a consequence of Lemma 5, at a synchronization instant u,
the system can schedule a background job in bursts of σ j − 1 re-
quests with deadline u+ δ j for each f j ∈ A , without affecting the
foreground flows.

LEMMA 6. Let s be the start of the system busy period that con-
tains time t. The total number of requests (from all flows) with finish
tags between s and t is upper bounded by C× (t − s).

THEOREM 1. If a flow fi is well behaved and the system ca-
pacity constraint is satisfied, then fi never misses its deadline, irre-
spective of the behavior of other flows.

5. PERFORMANCE EVALUATION
In this section we present extensive results of evaluating pClock

using simulation and actual implementation in Linux kernel 2.6,
on synthetically generated workloads and various benchmarks. We
evaluated our approach in three scenarios. First, we simulated a
single disk system using DiskSim3.0 [2], mainly to show compar-
ison between pClock and other methods. This is a simple environ-
ment that is easy to manage, understand, and reason about. Next,

we simulated a storage system using DiskSim3.0. The storage sys-
tem consists of 16 Seagate ST39102LW disks each with approxi-
mately 9GB capacity arranged in 4 strings of 4 disks each. Each
string is configured as a JBOD. The storage server consists of a
device driver with four attached controllers (one per string). Our
algorithm pClock is placed at the driver. Each disk runs a cyclic
SSTF (shortest seek time first) disk-head scheduling algorithm and
has a queue of size 4 for command queuing. DiskSim models
many of the details of the storage system such as caching, bus-
conflicts, write buffering, and low-level scheduling at disks that are
abstracted away in our model and analysis; this allows us to con-
firm that our algorithm works in a storage environment with these
features. Flows have a mixture of 70% reads and 30% writes un-
less otherwise stated. Finally, we implemented our algorithm in
the Linux kernel and tested it with various benchmarking tools.
The algorithm is implemented as a module1 that creates multiple
pseudo devices, one per flow, all backed up by a single disk. Each
pseudo device is associated with bandwidth, latency and burst re-
quirements and represents a single flow. All requests going to the
disk go through pseudo devices and our scheduler decides which
requests to forward and when. We experiment with both noop and
anticipatory as our underlying scheduler in the kernel; noop is a
very simple scheduler that just sends the requests to device in FCFS
order, and anticipatory [14] scheduler introduces some delay be-
fore scheduling a request in anticipation of a request closer to the
one that is just serviced.

We aim to show the following properties of our framework with
this evaluation: (i) additional features of our solution by compari-
son with other existing algorithms, specifically the SCED algorithm
[23] and W F2Q+ [3, 4]; (ii) the ability to isolate performance of
well and ill-behaved flows; (iii) ability to handle bursts in arrivals;
(iv) ability to assign available spare capacity without hurting the
deadlines of well-behaved flows.

5.1 Comparison with SCED and WF2Q+
Since SCED and WF2Q+ are the existing algorithms that come

closest to matching the features of pClock, we chose to compare
the performance of pClock against these two algorithms. We im-
plemented both SCED and WF2Q algorithms in DiskSim and used
a single disk server for comparison. As noted in Section 2.1, if a
flow uses spare capacity resulting from idle periods of other flows,
then SCED may starve the flow when the idle flows become active.
We show this behavior using the following test case: 2 identical
flows with requirements 〈10 IOs, 45 IOPS, 500 ms〉 each. The
system capacity is approximately 95 IOs/sec, which we found by
sending random IOs to the disk. As shown in Figure 5(a), flow 1
sends 45 IOs/sec between t = 0 and t = 20 seconds, then is inac-
tive until t = 70 seconds and then sends around 80 IOs/sec until
t = 90 seconds. Flow 2 sends 45 IOs/sec until t = 21 seconds, then
80 IOs/sec between t = 22 and t = 71 seconds, and returns to 45
IOs/sec from t = 71 onwards. This simulates the behavior of an
application that tries to use the spare capacity by sending a larger
number of requests when it detects that there is spare capacity at the
storage server. The application sends more requests if deadlines are
not missed and goes back to its contractual rate if the latency starts
to increase. We have shown the average arrival rate; the actual
inter-arrival time follows an exponential distribution. Figure 5(b)
shows the bandwidth allocated by SCED and Figure 5(c) shows
the latency observed. Figure 6 shows the arrival pattern, bandwidth
allocated, and latency observed using pClock. Note that when flow
1 sends requests at a higher arrival rate after t = 70 seconds, flow

1We thank Richard Golding and Theodore Wong of IBM Almaden
for providing the skeleton module for creating psuedo devices.

19

20

flow 1

flow 2
A

rr
iv

al
 r

at
e

(I
O

s/
s)

45

9070

8080

Time (sec)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 50 100 150 200

IO
s/

se
c

Time

flow 2 using spare capacity

flow 2 gets 10 IOs/s

flow 1 (45 IOs/s)
flow 2 (45 IOs/s)

 10

 100

 1000

 10000

 100000

 0 50 100 150 200

A
vg

 R
es

po
ns

e
T

im
e

(m
se

c)

Time

flow 2 has high latency

flow 1 (500 ms)
flow 2 (500 ms)

(a)Arrival pattern for flows (b)IOs/sec obtained by Flows (c)Latency observed by Flows

Figure 5: SCED Algorithm: Flow 2 uses spare capacity from 20 to 70 seconds and gets penalized when flow 1 gets active at 70
seconds. Flow 2 is starved and it only gets about 10 IOs/s, which is the capacity left after servicing flow 1

20

flow 1

flow 2

A
rr

iv
al

 r
at

e
(I

O
s/

s)

45

9070

8080

Time (sec)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 50 100 150 200

IO
s/

se
c

Time

flow 2 using spare capacity

flow 2 gets 45 IOs/s

flow 1 (45 IOs/s)
flow 2 (45 IOs/s)

 10

 100

 1000

 10000

 100000

 0 50 100 150 200

A
vg

 R
es

po
ns

e
T

im
e

(m
se

c)

Time

flow 1 has high latency

flow 1 (500 ms)
flow 2 (500 ms)

(a)Arrival pattern for flows (b)IOs/sec obtained by Flows (c)Latency observed by Flows

Figure 6: pClock Algorithm: Flow 2 uses spare capacity from 20 to 70 seconds. Later at 70 seconds, when flow 1 sends extra arrivals,
flow 2 still meets its requirements and flow 1 suffers. The spike in flow 2’s latency is because it reduces it arrival rate at 71 sec

2’s throughput falls to 10 IOs/sec in the case of SCED. However
flow 2 gets 45 IOs/sec after t = 70 in the case of pClock. Similarly,
the latency of flow 2 in pClock rises briefly to about 690ms when
flow 1 becomes active, and then drops back to normal within 2 sec-
onds. However in SCED the latency for flow 2 goes up to almost
15 sec, and it takes almost 135 sec for it to come back to its guar-
anteed value. In practice an application may abort and declare IO
failure when such large latencies are encountered. This shows that
SCED doesn’t support viable spare capacity usage, and can lead to
starvation.

In the case of virtual time based algorithms, W F2Q+ has been
shown analytically to have the best latency bounds and an efficient
implementation [4]. All these schemes are primarily scheduling al-
gorithms for bandwidth allocation, and there is no mechanism for
reducing latency or handling bursts other than increasing the band-
width allocation to a flow. To demonstrate and contrast with this
behavior, we experimented with the following setup: 2 flows with
requirements 〈5 IOs, 50 IOPS, 500ms 〉 and 〈20 IOs, 40 IOPS, 250
ms 〉 respectively. The system capacity is around 95 IOs/sec. Flow
1 sends 50 IOs/sec and flow 2 has periodic bursty arrivals where it
sends 40 IOs at the beginning of every 1-second window (in first 40
ms). Figure 7 shows the arrival pattern, bandwidth allocated and
latency observed by the W F2Q+ scheduler, and Figure 8 shows
the arrival pattern, bandwidth allocated and latency observed using
pClock. Note that, in the case of W F2Q+ the deadlines of flow 2
are missed because of the bursty arrivals, but the throughput guar-
antees are always met. In the case of pClock, flow 2 never misses
its deadlines, which also implies that its bandwidth guarantees are
fulfilled. This is because, unlike WF2Q+, burst handling is built
into pClock.

5.2 Performance Isolation
One of the basic requirements of our framework is to provide

performance isolation, i.e., to prevent an ill-behaving flow from
affecting the throughput and response times of other well-behaved
flows. To test if pClock can effectively provide isolation among the
flows, we experimented with three flows with requirements: 〈100
IOs, 650 IOPS, 500 ms 〉, 〈50 IOs, 400 IOPS, 300 ms 〉 and 〈50
IOs, 250 IOPS, 200 ms〉 respectively. The storage system capacity
is around 1500 IOs/sec, obtained by sending random requests to the
system, which has 16 disks. (All the DiskSim experiments from
here on use the 16-disk storage system.)

In this experiment, two of the flows are ill-behaved because they
exceed their request rate specification. Both flows 1 and 3 start
at their specified request rate, but increase the arrival rate by 30
IOs/sec and 20 IOs/sec respectively every 10 seconds (shown in
Figure 9(a)). The results are shown in Figures 9(b) and 9(c). The
well-behaved flow 2 never misses any deadlines despite the large
number of arrivals from other flows. Also note that flow 3’s laten-
cies rise much faster than those for flow 1 because the proportionate
increase in the arrival rate for flow 3 (about 8%) is higher compared
to flow 1 (about 4.6%).

Next we explored bad behavior in terms of large bursts in the ar-
rival pattern and show that pClock still meets all guarantees. A
bursty arrival pattern is simulated with ON-OFF arrivals, while
keeping the average arrival rate constant. A bursty flow is more
likely to miss its deadline because of higher queuing delay. How-
ever, the algorithm should be able to absorb bounded bursts. To test
the effect of sudden bursts we used the following flow parameters:
〈50 IOs, 650 IOPS, 400 ms 〉, 〈200 IOs, 400 IOPS, 200 ms 〉 and
〈50 IOs, 330 IOPS, 200 ms〉 respectively. Flow 1 sends a burst of
size 650 every second in single spike. A spike of n IOs is simulated

20

1 2 3 4 5

Time (sec)

50

1000

A
rr

iv
al

 r
at

e
(I

O
s/

s)
flow 2, bursty(40 IOs/s)
flow 1 (50 IOs/s)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 50 100 150 200

IO
s/

se
c

Time

flow 1 (50 IOs/s)
flow 2 (bursty, 40 IOs/s)

 0

 100

 200

 300

 400

 500

 600

 0 50 100 150 200

A
vg

 R
es

po
ns

e
T

im
e

(m
se

c)

Time

flow 1 (500 ms)
flow 2 (250 ms)

(a)Arrival pattern for flows (b)IOs/sec obtained by Flows (c)Latency observed by Flows

Figure 7: W F2Q Algorithm: Flow 2 sends a burst of 40 IOs every second (IOs are sent in first 40ms interval) and continuously misses
its deadlines. This is because it is not designed to handle bursty behavior

1 2 3 4 5

Time (sec)

50

1000

A
rr

iv
al

 r
at

e
(I

O
s/

s)

flow 2, bursty(40 IOs/s)
flow 1 (50 IOs/s)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 50 100 150 200

IO
s/

se
c

Time

flow 1 (50 IOs/s)
flow 2 (bursty, 40 IOs/s)

 0

 100

 200

 300

 400

 500

 600

 0 50 100 150 200

A
vg

 R
es

po
ns

e
T

im
e

(m
se

c)

Time

flow 1 (500 ms)
flow 2 (250 ms)

(a)Arrival pattern for flows (b)IOs/sec obtained by Flows (c)Latency observed by Flows

Figure 8: pClock Algorithm: Flow 2 sends a burst of 40 IOs every second and observes latency close to its deadline

by sending n IOs at a gap of 0.1 ms each. Thus, a spike of size
100 IOs will be sent in a period of 10 ms. Flow 2 sends a spike of
200 IOs every 500ms, thereby sending total arrivals of 400 IOs/sec.
The arrival pattern is shown in figure 10(a). Bandwidth and latency
observed by various flows are shown in Figures 10(b) and 10(c).
Note that flows 1 misses its deadlines because it sends bursts of
much larger sizes (larger than its σ value) but this doesn’t affect the
deadlines of flow 2 and 3 in any way. Flow 2 is able to meet its
deadlines inspite of the burst because its bursts are within its burst
size parameter of 200. We note here that if the flows are not bursty
then all the deadlines are actually met (since the system is capable
of doing it) and the deadlines are missed only because of the large
burst size.

 250

 300

 350

 400

 450

 500

 550

 600

 650

 0 50 100 150 200 250 300 350

A
ve

ra
ge

 L
at

en
cy

(m
s)

Burst Size Parameter

flow 1 (bursty, 300 ms)
flow 2 (500 ms)

(a) Average Latency vs σ

 250

 300

 350

 400

 450

 500

 350 400 450 500 550 600 650 700 750

A
ve

ra
ge

 L
at

en
cy

(m
s)

Actual Burst Size

flow 1 (bursty, 300 ms)
flow 2 (500 ms)

(b) Average latency vs actual bursts

Figure 11: Latency observed by flows when we vary either
burst parameter for flow 1 or actual burst size. Throughput
is kept constant in these tests.

5.3 Handling Bursty Arrivals
In this section we will show the effectiveness and sensitivity of

pClock in the presence of bursty arrivals (spikes). Our algorithm is
able to absorb bounded spikes. The spike size that can be absorbed
without missing any deadlines depends on the system capacity and

requirements of other flows. We will show two characteristics of
our burst handling mechanism: first we show that as we vary the
burst parameter of a flow, pClock is able to steal latency from one
flow to satisfy the burst of another flow. Second we show that as
long as the size of the spike is less than the burst parameter, pClock
never misses the deadline. As the spike size increases, the latency
of the bursty flow increases but the other flow never misses its dead-
line. This will also show the sensitivity of response time with the
variation in burst parameter of the flow.

We experimented with 2 flows with following parameters: 〈 350
IOs, 750 IOPS, 300 ms 〉, 〈50 IOs, 750 IOPS, 500 ms 〉. Flow 1
sends a burst of size 750 IOs (single spike) and we decrease the
burst parameter (σ1) for flow 1 from 350 to 0. Figure 11(a) shows
the average latency obtained by each of the flows in presence of
flow 1 bursts. Note that the latency for flow 1 increases as we de-
crease σ1 and the latency for flow 2 decreases with the decrease in
σ1. Thus, our algorithm is able to steal latency from one flow and
give it to another with variation in the burst size parameter. Note
that in this case flow 1 misses its deadline because it is sending a
larger burst that the limit but flow 2 never misses its deadline.

Next we will show that pClock is able to absorb the bursts if they
are not higher than the burst size bound (σ). The value of σ cannot
be arbitrarily increased because of the system capacity constraint.
Figure 11(b) shows the variation of average response time observed
by flows when we keep σ1 = 350, but we vary the spike size sent
by flow 1 between 350 and 750 IOs. The inter spike gap is decided
such that the IO rate is still 750 IOs/s. Note that flow 1 is able to
meet its deadlines on average until a burst size of 450, after that
its average latency goes to 350ms, whereas the desired deadline is
300ms.

21

20 30 40 50 60

flow 2

flow 3

A
rr

iv
al

 r
at

e(
IO

s/
s)

10 70

250

400

650

flow 1

Time (sec)

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 20 40 60 80 100 120

IO
s/

se
c

Time

flow 1

flow 2

flow 3

flow 1 (650 IOs/s)
flow 2 (400 IOs/s)
flow 3 (250 IOs/s)

 10

 100

 1000

 10000

 100000

 0 20 40 60 80 100 120

A
vg

 R
es

po
ns

e
T

im
e

(m
se

c)

Time

flow 1

flow 2

flow 3

flow 1 (500 ms)
flow 2 (300 ms)
flow 3 (200 ms)

(a)Arrival pattern for flows (b)IOs/sec obtained by Flows (c)Latency observed by Flows

Figure 9: Throughput and latency observed by flows, when flows 1 and 3 are increasing its arrival rate by 30 IOs/sec and 20 IOs/sec
every 10 seconds respectively. Flow 2 is unaffected by the behavior and it never misses its deadline

330

A
rr

iv
al

 r
at

e(
IO

s/
s)

10000

flow 2

flow 3

1 2 3
Time (sec)

flow 1

flow 1, bursty (650 =1x650)1
flow 2, bursty (400 = 2x200)
flow 3 (330)

 250

 300

 350

 400

 450

 500

 550

 600

 650

 700

 0 20 40 60 80 100 120 140 160

IO
s/

se
c

Time

flow 1 (bursty, 650 IOs/s)
flow 2 (bursty, 400 IOs/s)

flow 3 (330 IOs/s)

 0

 100

 200

 300

 400

 500

 600

 0 20 40 60 80 100 120 140 160

A
vg

 R
es

po
ns

e
T

im
e

(m
se

c)

Time

flow 3 misses deadlines due to large burst

flow 1 (400 ms)
flow 2 (200 ms)
flow 3 (200 ms)

(a)Arrival pattern for flows (b)IOs/sec obtained by Flows (c)Latency observed by Flows

Figure 10: Throughput and latency observed by flows, when arrivals of flows 1 and 2 are bursty. Flow 1 sends a spike of 650 IOs/sec.
Flow 2 sends two spikes of 200 IOs every 500ms. Flow 2 and 3 never miss their deadlines because flow 2 is sending bounded bursts

5.4 Spare Capacity Allocation
As mentioned before, we can allocate spare capacity in two ways:

the first is to give all the spare capacity to contractual flows if they
send more requests, and the second is to give it to background ac-
tivities and provide only the guaranteed capacity to the contractual
flows. Both policies can be useful under different scenarios.

To test the behavior of these two policies, we used the follow-
ing experimental set up: two foreground flows and one background
flow with a high probability (0.95) of sequential requests. All three
flows access a single disk. The background job has a fixed set of
requests (2000 IOs in our experiment) that it needs to finish. We
make flows send more than the specified request rates and see how
long it takes for background job to complete. This simulates the
behavior of a backup or defragmenter on the same disk as flows;
we want the backup to finish as fast as possible without affecting
the foreground tasks. The contractual parameters for both flows
are 〈15 IOs, 45 IOPS, 500 ms 〉. The system capacity for random
IOs is around 95 IOs/sec. Flow 1 sends around 42 IOs/sec and
flow 2 around 48 IOs/sec. The inter-arrival pattern for requests fol-
lows a uniform distribution between a minimum and a maximum
value. Figure 12(a) shows the throughput obtained by flows when
spare capacity is allocated to foreground flows and Figure 12(b)
shows the bandwidth obtained by flows when the spare capacity is
allocated to the background task. In the first case, the background
task only gets a few requests when there is no other request pend-
ing in the system, whereas in the second case the background task
is scheduled in batches whenever spare capacity is available. Note
that the background task finishes mush faster with the second policy
because of its sequential nature and because its requests are sched-
uled in batches, which leads to a higher disk throughput. Also the
bandwidth of foreground tasks isn’t affected and they still get the

contractual values. The latency of flow 1 is also unaffected because
it is well behaved, whereas flow 2 sees higher latencies because it
is sending more arrivals than specified, and the spare capacity is
given to background job. Thus, we can expedite a background job
when needed while still providing contractual guarantees to other
flows. A further improvement would be to allow a flexible way
to share the spare capacity between foreground (contractual) flows
and background jobs. This is outside the scope of this paper and is
part of our future work.

5.5 Linux Implementation
We implemented pClock in the Linux kernel as a loadable mod-

ule. Once the module is loaded it creates pseudo devices. Each
pseudo device can be backed up by a physical block device by
calling a special mount operation that uses a specific ioctl call

in the module. Each of the pseudo devices can be assigned three
parameters - burst size, bandwidth, and latency by using ioctl

calls defined in the module. Once this is done, we can run one
application per pseudo device and observe the desired allocation
from the algorithm. For these experiments we created four pseudo
devices, all of them are backed by a common hard disk. This disk is
only accessed by our module and the operating system is supported
using another disk. The capacity of the disk is about 85 IOs/s. This
is measured by sending random IOs to the device. The whole mod-
ule is implemented using about 900 lines of C code, along with
about 200 lines of code for mounting and unmounting operations.
The actual algorithm code is only 60 lines and the rest is code for
initialization, mounting and other setup related operations. First we
will provide some results for various micro benchmarks that show
the bandwidth allocation and latency control of pClock. We im-
plemented a workload generator for the micro benchmarks, using

22

 0

 10

 20

 30

 40

 50

 60

 70

 0 50 100 150 200 250 300

IO
s/

se
c

Time

background flow scattered

flow 1 (45 IOs/s)
flow 2 (45 IOs/s)
background flow

(a) Case I: spare capacity to flows

 0

 10

 20

 30

 40

 50

 60

 70

 0 50 100 150 200 250 300

IO
s/

se
c

Time

background flow batched,
finishes faster

flow 1 (45 IOs/s)
flow 2 (45 IOs/s)
background flow

(b) Case II: spare capacity to background job

Figure 12: IOs observed by contractual flows and background job, with two policies of implementing spare capacity. Note that when
spare capacity is allocated to the background job, it finishes much faster (in 96 seconds) and disk throughput is much higher

Workloads Specs
(σi,ρi,δi)

ops/s Avg
B/W
(mb/s)

Avg
Latency
(ms)

I (Webserver1) 〈5,30,500〉 16.6 1.3 2705.5
I (Webserver2) 〈5,60,500〉 33.2 2.7 1279.2

II (Varmail1) 〈5,30,500〉 53.4 1.2 966.3
II (Varmail2) 〈5,60,500〉 149.2 1.9 331.7

III (oltp) 〈20,60,250〉 60.9 0.1 367.2
III (Webserver) 〈5,60,500〉 23.9 1.9 942.9

Table 3: Filebench Results

threads to maintain multiple outstanding IOs and the nanosleep call
for rate control. Later, we present some results for macro testing of
pClock using filebench [18], a benchmark tool created by Sun.

Bandwidth allocation: We ran two applications with require-
ments 〈 5 IOs, 40 IOPS, 100 ms 〉 for both. Flow 1 is rate con-
trolled and sends 40 IOs/s whereas flow 2 is always backlogged
with 8 IOs pending. Figures 13(a) and 13(b) show the bandwidth
obtained and latency observed by two flows. Flow 2 gets around 45
IOs/s thereby utilizing the spare capacity in the system. However,
flow 1 gets its required 40 IOs/s at a latency of 30ms without being
affected by flow 2. The latency of flow 2 (around 180ms) is higher
because it is continuously backlogged. We also experimented with
two continuously backlogged flows with bandwidths of 20 IOs/sec
and 60 IOs/sec, keeping other factors constant. Since the flows are
always backlogged, they obtain about 24 and 63 IOs/sec. The av-
erage latencies observed are 320ms and 130ms respectively. This
shows that pClock is able to maintain a bandwidth allocation in
proportion to the requirements. The latencies observed are con-
sistent with the expected correlation between bandwidth allocation
and latency. The flow with higher bandwidth allocation observes
a smaller latency. In the absence of pClock, both applications get
an equal share of the bandwidth and no requirements are enforced.
(Plots omitted due to lack of space.)

Latency handling: In order to show that pClock is able to meet
latency requirements, we experimented with 2 flows with require-
ments 〈 5 IOs, 40 IOPS, 100 ms 〉 for both. The first flow sends
requests at the rate of 40 IOs/s whereas the second flow increases
its rate after every 1024 IOs. Throughput and latency results are
shown in Figures 13(c) and 13(d) respectively. We observe that
the average latency for the first flow stays close to 30ms, whereas
the other flow suffers a latency of 180ms at the peak (always back-
logged with 8 requests). In terms of throughput, the first flow gets
it share of 40 IOs/sec, whereas the other flow gets around 45 IOs/s,
thereby utilizing the spare capacity without affecting flow 1.

Filebench Results: Filebench comes with a number of work-
loads intended to represent standard applications. We ran various
workloads such as webserver, varmail, oltp using filebench. Each
workload is associated with a pseudo device with an ext2 file sys-
tem and it accesses files on that device only. For our experiments,
each pseudo device is backed up by a partition on the hard disk.
Thus, the workloads access different partitions on the same hard
disk. We experimented with different requirements for devices
and observed the impact of those reservations on actual workloads.
Each workload has a set of parameters to tune the dataset and ac-
tual workload. We mostly used the default parameters in the work-
load files in filebench but modified certain fields such as filesize
and the number of threads to ensure that the dataset is larger than
the available memory. For example, the webserver workload uses
the following parameters: 1000 files, file size = 256k, threads per
workload = 16 and mean directory width = 20. We experimented
with three scenarios, two concurrent webservers with bandwidth
requirements in a 1:2 ratio, two varmail workloads with bandwidth
requirements in a 1:2 ratio, and, finally, the oltp workload with
webserver, such that both have similar bandwidth requirements, but
oltp has a stringent latency requirement. The specifications and re-
sults reported by filebench are shown in Table 3.

Case I: Two webserver workloads with bandwidths in the ra-
tio 1:2, while the other factors are same. The results show that
the bandwidth reservation in a 1:2 ratio is visible at the application
level. The average latency shown is for macro file operations such
as readfile, openfile, closefile, appendfilerand, deletefile and thus
do not correspond to block level latency. However, the average la-
tency is inversely proportional to the bandwidth requirements. This
was expected because the workloads are always backlogged and the
disk is 100% utilized.

Case II: Two varmail workloads with bandwidths in the ratio
1:2, while the other factors are same. Again the bandwidth reser-
vation of 1:1.6 is visible even at the varmail application level. The
average latencies are in the ratio 3:1 and so are the number of ops/s.
This is again an artifact of the averages computed by filebench over
file level operations. This shows that providing a certain block-
level guarantee can affect the application’s performance in different
ways depending on the file operations involved.

Case III: Finally, we experimented with two diverse workloads,
oltp (which is rate controlled) and webserver (which is always back-
logged). We set a stringent deadline and a higher burst size for the
oltp workload. The results show that the average latency of oltp is
much lower than that of the webserver workload. The bandwidth
consumed by oltp is lower because oltp is rate controlled. Again,
the ops/s shown are the file level operations and it is higher for oltp
because oltp does a greater number of smaller operations, whereas
webserver mainly does open-readwholefile-close on files.

23

 38

 40

 42

 44

 46

 48

 50

 52

 54

 0 20 40 60 80 100 120 140 160 180 200

IO
s/

se
c

Time

flow 1 (controlled, 40 IOs/s)
flow 2 (always backlogged, 40 IOs/s)

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 20 40 60 80 100 120 140 160 180 200

A
vg

 R
es

po
ns

e
T

im
e

(m
se

c)

Time

flow 1 (controlled, 100ms)
flow 2 (always backlogged, 100ms)

 38

 40

 42

 44

 46

 48

 50

 52

 0 20 40 60 80 100 120 140 160 180 200

IO
s/

se
c

Time

flow 1 (controlled, 40 IOs/s)
flow 2 (increasing, 40 IOs/s)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 20 40 60 80 100 120 140 160 180 200

A
vg

 R
es

po
ns

e
T

im
e

(m
se

c)

Time

flow 1 (controlled, 100ms)
flow 2 (increasing, 100ms)

(a) IOs/sec obtained by Flows (b) Latency observed by Flows (c) IOs/sec obtained by Flows (d) Latency observed by Flows

Figure 13: Linux Micro benchmarks: Plots (a) and (b) show the bandwidth allocation, where flow 1 is unaffected by flow 2, which is
always backlogged. Plots (c) and (d) shows that flow 1 meets its bandwidth and latency requirements even when flow 2 increases its
rate from 40 IOPS until it is always backlogged.

Overall, we conclude that setting bandwidth allocations at the
block level does affect the application performance in the expected
manner: a higher bandwidth allocation yields a higher operation
rate at the application level. However, in order to control the oper-
ation rate of the application, an additional layer of control may be
needed to set and adjust the resource allocations appropriately.

6. CONCLUSIONS
We presented the pClock algorithm that allows multiple work-

loads to share storage, with each workload receiving the level of
service it requires. pClock allows each workload to specify its
throughput, burst size and desired latency, and guarantees that the
latency will be met so long as the workload does not exceed the
specified burst size and IO rate specifications. pClock has several
other desirable features, such the ability to allocate spare capacity
to the workloads or to background jobs. We show analytically that,
under certain idealized assumptions, a well-behaved workload will
never miss its deadlines. Since the assumptions made in modeling
the problem may not always hold in practice, we have demonstrated
using extensive simulation experiments and a real system imple-
mentation that our algorithm meets all of its goals. The algorithm is
light-weight to implement and efficient to execute. In future work,
we plan to explore how application-level QoS mechanisms interact
with control of the storage service. We also plan to study how stor-
age service QoS control interacts with low level scheduling, such
as disk scheduling and command queueing in disks and disk arrays.

Acknowledgments
We thank Richard Golding and Theodore Wong from IBM Al-
maden Research Center for their generous help with the Linux im-
plementation. The support of this research by the National Science
Foundation under Grant CNS-0541369 is gratefully acknowledged.

7. REFERENCES
[1] Amazon simple storage service (amazon s3).

http://www.amazon.com/gp/browse.html?node=16427261.
[2] The disksim simulation environment (version 3.0).

http://www.pdl.cmu.edu/DiskSim/.
[3] J. C. R. Bennett and H. Zhang. W F2Q: Worst-case fair weighted fair queueing.

In INFOCOM (1), pages 120–128, 1996.
[4] J. C. R. Bennett and H. Zhang. Hierarchical packet fair queueing algorithms.

IEEE/ACM Transactions on Networking, 5(5):675–689, 1997.
[5] J. Bruno, J. Brustoloni, E. Gabber, B. Ozden, and A. Silberschatz. Disk

scheduling with quality of service guarantees. In Proceedings of the IEEE
International Conference on Multimedia Computing and Systems, Volume 2.
IEEE Computer Society, 1999.

[6] D. D. Chambliss, G. A. Alvarez, P. Pandey, D. Jadav, J. Xu, R. Menon, and T. P.
Lee. Performance virtualization for large-scale storage systems. In Symposium
on Reliable Distributed Systems, pages 109–118, Oct 2003.

[7] R. L. Cruz. Quality of service guarantees in virtual circuit switched networks.
IEEE Journal on Selected Areas in Communications, 13(6):1048–1056, 1995.

[8] A. Demers, S. Keshav, and S. Shenker. Analysis and simulation of a fair
queuing algorithm. Journal of Internetworking Research and Experience,
1(1):3–26, September 1990.

[9] S. Golestani. A self-clocked fair queueing scheme for broadband applications.
In INFOCOMM’94, pages 636–646, April 1994.

[10] P. Goyal, H. M. Vin, and H. Cheng. Start-time fair queuing: A scheduling
algorithm for integrated services packet switching networks. Technical Report
CS-TR-96-02, UT Austin, January 1996.

[11] P. Goyal, H. M. Vin, and H. Cheng. Start-time fair queueing: a scheduling
algorithm for integrated services packet switching networks. IEEE/ACM Trans.
Netw., 5(5):690–704, 1997.

[12] A. G. Greenberg and N. Madras. How fair is fair queuing. J. ACM,
39(3):568–598, 1992.

[13] L. Huang, G. Peng, and T. cker Chiueh. Multi-dimensional storage
virtualization. In SIGMETRICS ’04/Performance ’04, pages 14–24, New York,
NY, USA, 2004. ACM Press.

[14] S. Iyer and P. Druschel. Anticipatory scheduling: A disk scheduling framework
to overcome deceptive idleness in synchronous I/O. In 18th ACM Symposium
on Operating Systems Principles, Oct. 2001.

[15] W. Jin, J. S. Chase, and J. Kaur. Interposed proportional sharing for a storage
service utility. In SIGMETRICS ’04/Performance ’04, pages 37–48, New York,
NY, USA, 2004. ACM Press.

[16] M. Karlsson, C. Karamanolis, and X. Zhu. Triage: Performance differentiation
for storage systems using adaptive control. Trans. Storage, 1(4):457–480, 2005.

[17] C. Lumb, A. Merchant, and G. Alvarez. Façade: Virtual storage devices with
performance guarantees. File and Storage technologies (FAST’03), pages
131–144, March 2003.

[18] R. McDougall. Filebench:application level file system benchmark.
http://www.solarisinternals.com/si/tools/filebench/index.php.

[19] T. S. E. Ng, D. C. Stephens, I. Stoica, and H. Zhang. Supporting best-effort
traffic with fair service curve. In Measurement and Modeling of Computer
Systems, pages 218–219, 1999.

[20] A. K. Parekh and R. G. Gallager. A generalized processor sharing approach to
flow control in integrated services networks: the single-node case. IEEE/ACM
Trans. Netw., 1(3):344–357, 1993.

[21] A. K. Parekh and R. G. Gallagher. A generalized processor sharing approach to
flow control in integrated services networks: the multiple node case. IEEE/ACM
Trans. Netw., 2(2):137–150, 1994.

[22] A. L. N. Reddy, J. Wyllie, and K. B. R. Wijayaratne. Disk scheduling in a
multimedia I/O system. ACM Trans. Multimedia Comput. Commun. Appl.,
1(1):37–59, 2005.

[23] H. Sariowan, R. L. Cruz, and G. C. Polyzos. Scheduling for quality of service
guarantees via service curves. In Proceedings of the International Conference
on Computer Communications and Networks, pages 512–520, 1995.

[24] P. J. Shenoy and H. M. Vin. Cello: a disk scheduling framework for next
generation operating systems. In ACM SIGMETRICS, pages 44–55. ACM
Press, 1998.

[25] D. Stiliadis and A. Varma. Latency-rate servers: a general model for analysis of
traffic scheduling algorithms. IEEE/ACM Transactions on Networking,
6(5):611–624, 1998.

[26] I. Stoica, H. Zhang, and T. S. E. Ng. A hierarchical fair service curve algorithm
for link-sharing, real-time, and priority services. IEEE/ACM Trans. Netw.,
8(2):185–199, 2000.

[27] S. Suri, G. Varghese, and G. Chandramenon. Leap forward virtual clock: A new
fair queueing scheme with guaranteed delay and throughput fairness. In
INFOCOMM’97, April 1997.

[28] J. Zhang, A. Sivasubramaniam, Q. Wang, A. Riska, and E. Riedel. Storage
performance virtualization via throughput and latency control. In MASCOTS,
pages 135–142, 2005.

[29] L. Zhang. VirtualClock: A new traffic control algorithm for packet-switched
networks. ACM Trans. Comput. Syst., 9(2):101–124.

24

