
Improving recoverability in multi-tier storage systems

Marcos K. Aguilera∗, Kimberly Keeton∗, Arif Merchant∗,
Kiran-Kumar Muniswamy-Reddy+, Mustafa Uysal∗

∗HP Labs, Palo Alto, CA, USA and +Harvard University, Cambridge, MA, USA

Abstract

Enterprise storage systems typically contain multiple stor-
age tiers, each having its own performance, reliability, and
recoverability. The primary motivation for this multi-tier
organization is cost, as storage tier costs vary consider-
ably. In this paper, we describe a file system called TierFS
that stores files at multiple storage tiers while providing
high recoverability at all tiers. To achieve this goal, TierFS
uses several novel techniques that leverage coupling be-
tween multiple tiers to reduce data loss, take consistent snap-
shots across tiers, provide continuous data protection, and
improve recovery time. We evaluate TierFS with analytical
models, showing that TierFS can provide better recoverabil-
ity than a conventional design of similar cost.

1 Introduction
The explosive growth of digital data prompts us to re-

think the way we design and use storage systems to keep
enormous volumes of data at a reasonable cost. Current
enterprise systems comprise multiple online storage tiers,
each with its own features and cost: high-end tiers use ex-
pensive, highly reliable disk arrays and typically provide
remote mirrors, snapshots, and daily backups; middle stor-
age tiers may use cheaper mid-range disk arrays and might
only provide snapshots and daily backups; and low-end tiers
might use inexpensive disk appliances protected by weekly
backups to decrease operational cost. Administrators place
data on each of these tiers according to the business value
and access characteristics of the data. Thus, business-critical
data is placed on the highest tier, while less-important infor-
mation is placed on lower tiers. However, when the admin-
istrator is constrained by limited space in the highest, most
expensive tiers, data may be placed in a lower tier than is
desirable.

Different storage tiers provide different levels of perfor-
mance, reliability, and recoverability. Recoverability is the
ability to recover data when there are problems, such as
operator mistakes, disk crashes, site failures, or disasters,
which are likely to occur within the lifetime of a system.
Better recoverability can be achieved through remote mir-
roring, snapshots, and frequent backups, which all come at

a cost.
In this paper, our goal is to improve the recoverability-

cost trade-off of storage systems, that is, to provide better
recoverability at a lower cost. We propose a multi-tier file
system called TierFS that employs a recoverability log to
boost the recoverability of lower tiers by using the highest
tier. The recoverability log stores an extra copy of updates
destined for a lower tier until the lower tier is protected by
a backup. In a conventional multi-tier storage system, data
stored in a lower tier typically suffers from a considerable
loss of recent updates if a recovery from backup is needed
(say, due to a failure), since the backups may be infrequent.
The recoverability log eliminates the backup-window data
loss, because recent updates can be recovered from the log
copy on the highest tier. By logging updates to all tiers and
keeping them around, the recoverability log can also pro-
vide continuous data protection, which offers users a fine-
grained set of recovery points—finer than the backup fre-
quency of each tier. Finally, the recoverability log enables
TierFS to take consistent snapshots of all tiers (to produce
a consistent backup of the file system) without blocking file
system writes. TierFS also provides a new mechanism to
improve recovery time, by applying the recovery log in the
background after restoring a backup copy and by using the
recovery log to facilitate coordinated recovery using both a
local, fast, but less up-to-date backup copy and a relatively
slow, but more up-to-date remote mirror. To the best of our
knowledge, TierFS is the first system that couples multiple
storage tiers to improve recoverability.

We evaluate TierFS with analytical models to determine
the overheads and benefits of using the recoverability log
and the parallel recovery technique. We find that TierFS
can provide a system with better recoverability than a con-
ventional system of similar cost.

The remainder of the paper is organized as follows. Sec-
tion 2 provides background on storage recoverability and
multi-tier storage systems. Section 3 outlines the design
of TierFS and introduces several mechanisms for coupling
tiers to enhance recoverability. Section 4 describes our eval-
uation methodology, and Section 5 presents results. We de-
scribe related work in Section 6, and conclude in Section 7.

1

arif
Text Box
International Conference on Dependable Systems and Networks (DSN-2007), Edinburgh, Scotland, June 2007.

2 Background
In this section, we first explain storage recoverability,

and provide background on the data protection techniques
used to provide recoverability. We then explain how these
techniques are used in tiered storage systems.

2.1 Recoverability metrics and techniques
Recoverability is the ability to recover from problems,

like user mistakes, disk crashes, or disasters. Recoverabil-
ity is measured using two metrics: recent data loss and re-
covery time. Recent data loss measures how much recent
data (measured in time) is lost when recovery is performed.
For example, if a disk gets backed up every day and the
disk fails, then recovery can result in loss of data of up to
one day. The best value of this metric is zero, which means
that all updates are recovered. Recovery time measures how
long the recovery process takes until data is available again.

Storage systems are designed to provide recoverability
of the primary copy of the application’s evolving dataset,
using techniques like backups, snapshots, continuous data
protection (CDP) and remote mirroring. A storage system
will typically have multiple point-in-time copies of the same
dataset, which capture the state of the data at different points
in its evolution. Techniques are often configured to create
point-in-time copies with varying frequency, which is re-
ferred to as recovery point granularity. Snapshots and back-
ups create discrete recovery points, while CDP creates con-
tinuous recovery points. Recovery point granularity deter-
mines the ability to restore to an earlier point-in-time copy,
often referred to as time-travel recoverability.

Backups are used to make relatively infrequent point-in-
time copies by copying the full dataset (full backups) or the
updates since the last backup (incremental backups). Back-
ups have been traditionally stored on tape; more recently,
decreasing disk costs have resulted in disk-based backup
systems, as well. To protect against site disasters, backup
copies must be transported to an offsite vault.

Snapshots capture the state of storage at a given point in
time, typically in a very space efficient way by using copy-
on-write and similar techniques. Like backups, snapshots
are useful to undo user mistakes and software errors. How-
ever, snapshots are less useful to recover from disk failures
or disasters because they share data with the primary copy;
so if the primary copy is lost, the snapshot is affected, too.
Snapshots are also useful to produce consistent online back-
ups: the system first takes a snapshot and then derives the
backup from the snapshot.

Continuous data protection (CDP) creates a continuous
set of recovery points, rather than just one every hour or
day, to permit finer grained time-travel recovery. A sim-
ple way to provide CDP is to create a copy of a file as it
is modified (e.g., using VMS file versioning or VersionFS
[10]). A more space-efficient way to provide CDP is to use
copy-on-write (e.g., Elephant [12] and CVFS [14]): when a

file is overwritten, the new data blocks are written at a new
location, but the old and new versions share all unmodified
blocks.

Storage devices may also have the capability to main-
tain remote mirror copies at multiple geographic locations,
typically at one or more remote sites. The geographic dis-
persion capability allows a storage tier to survive larger fail-
ure scopes (e.g., a site disaster). Synchronous mirroring en-
sures that both copies are always in sync, while with asyn-
chronous mirroring, the remote copy may lag behind by a
few seconds. Remote mirroring is provided by high-end and
some mid-range disk arrays.

2.2 Tiers of storage
Enterprises keep a huge amount of online data, ranging

from critical data required to run the business to emails kept
according to regulations to derived or historical information
for trend analysis. A variety of online storage alternatives
exist for storing these vast quantities of data, ranging from
high-end disk arrays with snapshot and remote mirroring
capabilities, to small disk appliances used to aggregate a
few disks together, which offer only limited data protection
(e.g., RAID). These alternatives differ in cost by as much as
an order of magnitude. As a result, enterprises use high-end
disk arrays very sparingly, only to keep the most important
data. They set up storage systems comprising multiple tiers
of storage, and allocate their online datasets to these storage
tiers based on the data’s business value and access charac-
teristics.

A sample multi-tier storage system might have three tiers.
At the highest (most expensive) tier, there are high-end disk
arrays with remote mirroring and frequent point-in-time snap-
shot capabilities. At the middle tier, there are mid-range
disk arrays with less frequent point-in-time snapshots and
without remote mirroring. And at the lowest tier, there are
inexpensive disks managed by software or firmware RAID.
Lower tiers with large capacity and/or small update rates
may be backed up less frequently than higher tiers, to re-
duce operational costs.

Leveraging distinct capabilities of multiple storage tiers
dates back to hierarchical storage systems (HSM), which
coupled disk systems with tape storage to transparently in-
crease the apparent storage capacity. For example, HPSS
[5] automatically moves infrequently-accessed files from a
higher tier (disk) to a lower tier (tape) or another archival
device, and then automatically moves data back to disk when
access is requested. HPSS allows files be read or written
only at the highest tier, and so if a file has been migrated
to a lower tier, it needs to be migrated back before it is ac-
cessed. This restriction exists for historical reasons, because
early HSM systems treated lower tiers as offline devices.

More recently, the VxFS file system introduced greater
flexibility in dealing with multiple storage tiers [6]. VxFS
allows users or administrators to define placement rules to

set of disks

= file
= recov. log

T
ie

rF
S tier 1

tier 2

tier 3

high-end disk array

primary
copy

snapshots

primary
copy

backup
copies

backup
copies

mid-range disk array

primary
copy backup

copies

high-end disk array

mirror

backup vault
(optional)

snapshots

snapshots

Figure 1. TierFS uses multiple storage tiers to pro-
vide high recoverability at low relative cost. It lever-
ages the highest tier—one with good recoverability—
to boost the recoverability of lower tiers.

indicate in which tier new files are created, and migration
rules to indicate when a file in one tier should be moved to
another tier. These policies can be based on a file’s name,
extension, creator, timestamps, and/or frequency of access.

3 TierFS design
TierFS, illustrated in Figure 1, couples multiple storage

tiers to provide a high level of recoverability across all stor-
age tiers. TierFS uses the tier with the highest recover-
ability and performance to store a recoverability log, which
contains a copy of updates destined for a lower tier until the
lower tier is protected by a backup. TierFS uses the recov-
erability log, along with the snapshot and backup facilities
of the individual tiers, to provide improved recent data loss
and faster recovery time for files stored in lower tiers, con-
sistent multi-tier file system backups, and continuous data
protection.

Each file or directory in TierFS has a home tier, where
the contents of the file are stored. The home of any file can
be any tier, and users are not required to know the home
tier of a file to access it (i.e., there is a single namespace).
TierFS can transparently migrate a file to a different tier if
desired, based on user or administrator control. Similar to
VxFS [6], in TierFS a file’s initial home tier and any sub-
sequent migration can be controlled by simple rules based
on file attributes such as owner, extension, and modification
and access time. The details of these mapping and migra-
tion rules are outside the scope of this paper.

The improved recoverability provided by TierFS enables
allocation of files to tiers to be based on considerations other

than recoverability, such as cost and performance. For ex-
ample, a cost-driven design might choose to place no files
at the highest tier, which reduces its size to what is needed
by the internal logs of TierFS. Another design might use the
highest tier (which is typically the fastest) to store files that
are frequently used in an application’s critical path to boost
performance. However, these files are not necessarily the
ones that need the highest recoverability.

The following sections explain several techniques that
TierFS uses to provide good recoverability for lower tiers.

3.1 Improving recent data loss
TierFS uses the highest tier to maintain a recoverability

log, which contains an extra copy of updates destined for a
lower tier until the lower tier is protected by a backup. This
technique, similar to file system journaling, improves the
recent data loss characteristics of lower tiers. When we re-
cover a lower tier from its most recent backup (or snapshot)
copy, we can replay the most recent entries in the recovery
log that are not reflected in the backup, in order to prevent
data loss. For this technique to work, we must ensure that
log entries are garbage collected only after (1) the updates
have been applied to the appropriate tier, and (2) since then,
the tier has been backed up.

If protection against site disaster is desired, TierFS fur-
ther delays garbage collection of the recovery log until the
backup has arrived at a remote vault, which can take a long
time. If the highest tier employs remote mirroring (as shown
in Figure 1), TierFS can take periodic snapshots of the mir-
rored log at the remote site, as an optimization. We can then
relax the above requirement and garbage collect the recov-
ery log when it has been snapshotted at the remote mirror.
The remote site serves as protection against disasters, in lieu
of the vault. The reason for the snapshot is to keep data at
the remote site after the log gets garbage collected. Only
the log (not the entire highest tier) needs to be snapshotted,
which is achieved by keeping the log in its own logical vol-
ume. Once the backup arrives at the vault, the log snapshot
at the remote site can be deleted.

We use a block-level log, which refers to operations on
physical blocks rather than files, to make the log idempo-
tent, so that it can be replayed without destroying data. Idem-
potency is important because TierFS does not always have
perfect control of the copying mechanisms in each tier. For
example, if a disk array at a lower tier keeps an asynchronous
remote mirror, the mirror may lag behind by a bounded
amount of time that is unknown by TierFS. If TierFS had to
recover using this mirror and the log were not idempotent, it
would have to replay the log from the first entry not yet ap-
plied to the mirror, which is unknown. With an idempotent
log, TierFS can replay the log conservatively, by starting
at the point corresponding to the largest lag allowed by the
disk array.

The benefit of the recoverability log is that the recent

data loss of all tiers becomes equal to the recent data loss of
the highest tier. However, there are some overheads. First,
each update is written twice: once to the log and then again
to the appropriate tier. TierFS partly offsets this overhead by
performing both updates in parallel, where the log update is
synchronous and the other update is asynchronous. Second,
the log takes up space. In theory, the log can become ar-
bitrarily large before it is garbage collected; however, our
evaluations show that the log size under real workloads is
reasonable.

3.2 Improving recovery time
We now turn our attention to recovery from failures. TierFS

uses two techniques to improve the time to recover a tier
(e.g., in the event of a disk array failure).

The first technique reduces the overhead of applying the
updates in the recoverability log. Recall that recovery of a
tier in TierFS comprises two steps: populating the tier with
the latest available backup and applying the changes in the
recoverability log that are not reflected in the backup. With
TierFS, only the first step contributes to recovery time: after
the first step, the tier is ready for use in TierFS (without any
recent data loss), because TierFS remaps reads from that
tier to the recovery log for the blocks that are in the log.
Therefore, replaying the recovery log can be done online as
a background task.

The second technique applies to a tier that has a remote
mirror as well as local backups (e.g., the highest tier). Re-
covery from a remote mirror requires copying the entire re-
mote volume into the local volume. Because the connection
to the remote site is provisioned to only carry recent data up-
dates, its bandwidth is typically small compared to that of
an archival device (such as disk or tape), sometimes by or-
ders of magnitude. Thus, transferring an entire volume from
the remote site to the local site can take a long time. Recov-
ering from a backup is faster, but the backup has less recent
data than the remote mirror copy. Thus, there is a trade-off
between recovery time and recent data loss. TierFS breaks
this trade-off by recovering the tier from backup and then
only transferring the most recent updates from the remote
site. TierFS uses the recoverability log to determine the
blocks that are changed but might not be reflected in the
latest backup. To do so, TierFS puts markers in the recover-
ability log to indicate when backups are made.

3.3 Consistent full-system backups
The recoverability log can also enable consistent full-

system backups of all tiers. While tiers are backed up at
different rates based on cost considerations, there is also
a desire to periodically perform full-system backups of all
tiers, for archival purposes. The challenge is to ensure that
the backup is consistent.

In a traditional, single-tier file system, backup consis-
tency comes from snapshots: a snapshot preserves the state

of the whole file system at a single time, which is then used
to populate the backup, even as the file system is chang-
ing. In TierFS, creating consistent backups poses an ad-
ditional challenge: how to synchronize snapshots between
tiers when each tier might implement its own snapshots.
The problem is that snapshots of different tiers could be
taken at slightly different times, even if they are requested
simultaneously, and a backup made from such snapshots
might be inconsistent.

If the recoverability log is extended to log updates to
all tiers, rather than just the lower tiers, it can help solve
the consistent backup problem. Before taking snapshots,
TierFS pauses the block-level writes to each tier at a point
when they form a consistent file system image (e.g., there
are no unattached inodes). TierFS can continue to accept
file system writes without blocking, though, because they
are logged in the recoverability log, even though the block-
level writes to each tier are paused. Once writes are paused,
TierFS takes a snapshot of each tier, without fear of incon-
sistency, even if the snapshots are taken at slightly different
times. TierFS uses standard techniques like copy-on-write
to implement snapshot capabilities for tiers that do not pro-
vide them natively.

3.4 Providing CDP
TierFS uses its recoverability log for yet another pur-

pose: to provide continuous data protection (CDP) by us-
ing the recoverability log and appropriate prior point-in-
time copies of each tier. The basic idea is to store up-
dates to all tiers in the recoverability log, and to retain and
protect them rather than garbage collecting them as soon as
a backup and/or offsite copy of the data is created, as de-
scribed in Section 3.1. To ensure log entries are available
for CDP, we modify the garbage collection mechanism of
Section 3.1 in the obvious way: a log entry is discarded only
after the lower tier has been updated, and both the log and
the lower tier have been backed up. In addition, if protec-
tion against site disasters is desired, both the log and lower
tier updates must have arrived at the vault or have been re-
motely snapshotted.

TierFS’s approach to CDP provides two advantages over
previous approaches. First, it makes it efficient to move the
voluminous amount of CDP information to backup tiers, by
simply copying the sequential log. Second, because log en-
tries are ordered by time, it is easier to manage CDP infor-
mation stored online or in a backup; for example, one can
delete CDP data for uninteresting periods by simply erasing
the appropriate log segments (if stored online) or by getting
rid of the appropriate backup archive (if stored in a backup).
As a result, it becomes feasible to preserve CDP informa-
tion for archival purposes.

However, using logs to provide CDP poses a difficulty:
if a block has not been modified for a long time then its
last log entry will be far in the past. This scenario creates a

problem for garbage collection and recovery, which we call
the 10-year log problem: if a file has not been modified for
10 years and a user overwrites it, then going back just a few
seconds before the overwrite requires a log that is 10 years
long! This problem could be avoided by keeping an undo
log in addition to the recoverability log of TierFS, but we
would prefer to maintain just one log. Furthermore, undo
logs have their own drawbacks: they are more expensive
to maintain, as writing new entries to the undo log requires
reading of the old information, and they are inefficient for
restoring to points far in the past, as they require all inter-
vening operations to be undone.

TierFS solves the 10-year log problem by using backup
or other point-in-time copies of each tier, which provide a
starting point from which to replay the log. Thus, to recover
the file system to some time t we first use a backup or other
point-in-time copy to recover the system to the latest avail-
able time t0 before time t. We then replay the log entries
from t0 to t. In other words, the log entries between two
backup copies enable CDP in that time range.

3.5 Availability and performance of tiers
Availability refers to the ability to mask failures, that is,

to continue normal operation as if failures never occurred.
While TierFS improves the recoverability of all tiers, each
tier keeps its original availability. Thus, in the period be-
tween a failure and its recovery, some of the tiers may be
available, while others are not. Because TierFS places all
information needed to access a file in the same tier (includ-
ing its inode and data blocks), files in available tiers will
continue to be available. For other files, TierFS will block
accesses until they have been recovered. This provides a
form of graceful degradation, similar to the DGRAID [13]
system. TierFS also places the root directory and other top-
level directories at the highest tier as an additional precau-
tion to make the top level of the name space accessible.

TierFS may improve performance of a tier when there
are bursts of writes, since writes are acknowledged as soon
as they are placed in the log at the highest tier. TierFS’s to-
tal write bandwidth is limited by the maximum write band-
width of the highest tier (e.g., high-end disk array band-
width or remote mirroring interconnect bandwidth). But
note that TierFS writes updates to the log sequentially, so
it uses write bandwidth at the highest tier efficiently. In
addition, instead of a single log, TierFS can keep several
logs—one for each tier—which are stored on separate vol-
umes and/or devices at the highest tier for greater band-
width. As for read bandwidth, TierFS will typically read
data from its home tier, unless a more up-to-date copy ex-
ists in the recoverability log. Thus, TierFS tends to preserve
the read bandwidth of each tier.

Category Metric Description

Recoverability recent data loss data loss on recovery
recovery time duration of recovery

Operational storage bandwidth under normal operation
requirements tape bandwidth under normal operation

remote bandwidth under normal operation
storage capacity data stored after a month
tape capacity data on tapes after a month
remote capacity remote site data after a month
vault capacity data at vault after a month

Table 1. Metrics for evaluation.

4 Evaluation
We evaluate TierFS’s recoverability, bandwidth require-

ments and capacity requirements under several workloads.
We compare TierFS against two alternative approaches: a
system that stores all its data on a single high-end storage
tier, and a conventional multi-tier file system that does not
employ our mechanisms to improve recoverability. We pro-
vide the details of our evaluation methodology (Section 4.1),
the metrics and the faults we consider (Section 4.2), the
alternative approaches (Section 4.3), and our experimental
setup (Section 4.4).

4.1 Methodology
We evaluate the recoverability of TierFS and the alterna-

tives we consider through analytical models. We extend the
dependability models of Keeton and Merchant [8] to derive
the data loss upon recovery for multi-tier systems. These
extensions model the behavior and overheads of the tech-
niques that TierFS uses to improve recoverability. We com-
bine these models with a recovery graph representation [7]
of the schedule of recovery operations to compute the re-
covery time under several failure scenarios and workloads,
as well as normal mode capacity and bandwidth utilization.
We use this model framework to evaluate the recovery time,
data loss upon recovery, and capacity and bandwidth uti-
lizations for all of the alternative approaches we consider.

4.2 Metrics and failure types
Our evaluation consists of two parts. The first part mea-

sures recoverability under different failure scenarios, and
the second part measures operational requirements under
normal system operation. Table 1 presents the metrics we
use for our evaluation.

The recovery metrics—recent data loss and recovery time—
are described in Section 2. We evaluate recovery under
three different types of failures. A storage device failure
causes complete data loss at one of the tiers. We assume
that the highest tier has sufficient redundancy that it is un-
likely to fail. A site failure causes complete data loss at all
tiers. A human error requires a recovery from a past point
in time, rather than the most recent version.

The meaning of recent data loss for a recovery from hu-

Parameter Tier 1 Tier 2 Tier 3
Online Bandwidth 13 GB/s 675 MB/s 256 MB/s
Remote Mirror Synchronous None None
Snapshot frequency Every 4 hours Daily None
Snapshots retained Last 12 Last 2 N/A
Backup frequency (full) Daily Weekly Weekly
Backup frequency (incr) None Daily None
Backups retained Last 28 days Last 28 days Last 28 days
Shipment to remote vault Weekly Weekly Weekly
Backups in vault Last 52 weeks Last 52 weeks Last 52 weeks
CDP backups retained† Last 28 days Last 28 days Last 28 days
CDP backups in vault† Last 52 weeks Last 52 weeks Last 52 weeks
† for TierFS+CDP system only

Table 2. Data protection techniques for the three stor-
age tiers in our evaluation.

man error is the difference between the time to which the
user wants to recover the system and the time to which re-
covery is possible.

We measure operational requirements through the resources
utilized by each system. We consider bandwidth and capac-
ity at each storage tier, as well as for the remote site. We
also consider capacity used at the vault.

4.3 Systems
We evaluate four different systems:

• Single-tier: This system stores all data in a single
high-end storage tier. This system is our benchmark
system; its drawback is its high cost.

• Basic multi-tier: This system stores data in multiple
tiers, but does not couple tiers together to improve
recoverability.

• TierFS: Our TierFS system couples multiple tiers to
improve recoverability. The recoverability log con-
tains updates to all but the highest tier, and the log is
garbage collected aggressively, as described in Sec-
tion 3.1.

• TierFS+CDP: In this TierFS variant, the recoverabil-
ity log contains and preserves updates to all tiers, to
enable CDP, as described in Section 3.4.

4.4 Experimental setup
We use a three-tier storage system for our evaluation,

as shown in Table 2. Tier 1, the highest tier in our setup,
consists of two high-end disk arrays that are remote mir-
rors of each other and connected using four OC3 links (155
Mbps each). This tier uses remote mirroring, snapshots, lo-
cal backups, and tape vaults for data protection. Tier 2 con-
sists of mid-range disk arrays that provide snapshots, local
backups, and tape vaults; but no remote mirrors for data
protection. Tier 3 consists of a disk appliance and uses only
infrequent backups and tape vaults. All three tiers employ
RAID-protected online storage. Additionally, all three tiers
share a single remote vault, which is located at the same site
as tier 1’s remote mirror.

We use two workgroup file server workloads for our eval-

Parameter Harvard trace Cello trace
Dates of trace 9-11/2001 9/2002
Capacity (GB) 450 1360
Avg. Access Rate (KB/s) 161 1028
Avg. Update Rate (KB/s) 103 799
Unique Update Rate (KB/s) 60 317
Peak:Avg. Update Ratio 1000 10
Peak:Avg. Access Ratio 1000 10

Table 3. Summary of the workload characteristics
used in our evaluation.

System Tier-2 failure Tier-3 failure Site failure

Single Tier — — 0
Basic multi-tier 48 hrs 192 hrs 384 hrs
TierFS 0 0 0
TierFS+CDP 0 0 0

Table 4. Recent data loss for the Harvard workload
under various failures.

uation representing research and software development work-
loads in an industrial research lab (Cello workload) and a
university (Harvard workload [3]).The Cello trace contains
I/O activity from a departmental server for a total of 254
users and the Harvard trace contains NFS activity of a Net-
work Appliance Filer for a total of 416 users. Table 3 sum-
marizes the characteristics of these two workloads.

The multi-tier storage system is used differently by each
system we evaluate. The single-tier system places all of its
data onto the highest tier. The remaining systems use all
three tiers to store file system data. They place 10% of all
data from a given file system on tier 1, the next 30% onto
tier 2, and the remaining 60% of the data on tier 3. This
allocation represents the importance and the expected use
of the data within the file system.

5 Experimental results
In this section, we present our results. First we evaluate

all systems for recoverability; both to recover to the most
recent version of the data and to recover to a past version,
i.e., time travel. We then look at the bandwidth and capac-
ity requirements of TierFS and the other alternatives. We
conclude this section with a discussion.

5.1 Recoverability
TierFS is designed to have zero recent data loss when

the system is recovered to its latest version. Table 4 shows
the data loss for failures of tiers 2 and 3, and a site failure
for the Harvard workload; results for the Cello workload
are very similar. As can be seen, Single-tier, TierFS, and
TierFS+CDP have zero loss, whereas the loss for the Basic
multi-tier system is considerable.

Figure 2 shows the recovery time for various systems on
the y-axis, under three types of failures, represented by the

x-axis. As can be seen, in both the Harvard and Cello work-
loads, recovery time for TierFS and TierFS+CDP is essen-
tially the same as for a Basic multi-tier file system, because
replaying the recoverability log occurs in the background.
For site failures, Single-tier performs much better than all
other systems, because with the other systems, recovery of
tiers 2 and 3 needs to wait for the arrival of backup tapes
from the vault (which takes 24 hours in our setup). Single-
tier can recover from the mirror over the network.

5.2 Time travel recoverability
In this section, we explore the time travel recoverability

of the various systems. Certain classes of failures, including
human errors, software bugs, and virus infections, require
the ability to recover the system to a point in the past. This
time travel recoverability is possible in systems that support
point-in-time copies and continuous data protection.

Figure 3(a) quantifies the recent data loss that the sys-
tems incur when recovering to a recovery target in the past
for the Harvard workload. We observed similar results for
the Cello workload. Where multiple tiers exhibit different
recent data loss values, we present the maximum value.

The Single-tier system experiences different amounts of
recent data loss, depending on how far in the past the re-
covery target is. Snapshots can recover the recent past with
minimal data loss (up to four hours, the granularity of the
snapshots); daily backups can recover the moderate past,
with data loss of up to a day; and the weekly vault copies
can recover the distant past, with up to a week of data loss.
Both the Basic multi-tier system and TierFS provide a uni-
form recent data loss of up to a week, due to the weekly
backup policy for tier 3. TierFS+CDP provides complete
recoverability, with zero data loss. We note that none of
the systems can recover to a point older than the retention
period of the vault (one year).

Figure 3(b) quantifies the time to recover to a point in the
past for the Harvard workload. We observed similar results
for the Cello workload. The Single-tier system achieves
very fast recovery for a snapshot, but takes several hours
to restore a backup copy, and over a day to restore a vaulted
copy (due to the delay to retrieve the vaulted tapes). The re-
maining systems (Basic multi-tier, TierFS, and TierFS+CDP)
take several hours to recover recent and moderately recent
targets; this recovery time is limited by the need to recover
a tape backup for tier 3. As with the Single-tier system,
recovery of the distant past takes over a day.

5.3 Bandwidth usage
Figure 4 shows the peak operational bandwidth of TierFS

compared to the alternatives. We focus on the tier 1 band-
width, since it is the most expensive. First, we observe
that the Single-tier system has a substantially higher peak
bandwidth at tier 1 than any other alternative. The Ba-
sic multi-tier system has the lowest peak bandwidth at tier

1, as we expect. The peak bandwidth of the TierFS and
TierFS+CDP systems ranges between a quarter and a third
of the Single-tier peak bandwidth. We note that these al-
ternatives have similar recoverabilities. The bandwidth re-
quirements of TierFS and TierFS+CDP are significantly higher
than that of the Basic multi-tier system, due to the band-
width requirements of maintaining the recoverability log.

5.4 Capacity usage
We now consider the storage space used by TierFS and

alternatives after one month of normal system operation, as
shown in Figure 5. The Single-tier system has the highest
capacity requirement in tier 1, because it stores all the data
there. In addition, it requires a large number of point-in-
time copies in order to preserve recoverability. The Basic
multi-tier design, on the other hand, uses the lowest capac-
ity in tier 1, but the total capacity over all tiers is similar
to the capacity usage of the Single-tier system. TierFS and
TierFS+CDP require tier 1 storage capacity that is interme-
diate between the Single-tier and the Basic multi-tier sys-
tems. The precise amount of storage required depends on
the workload, but we find that it is much smaller than the
Single tier system requires, in most cases. On the other
hand, as seen in the capacity requirements for the Cello
workload, the capacity requirements at the remote site can
be considerable for TierFS+CDP, approaching that of the
Single tier system. Note, however, that the TierFS+CDP
system offers lower time travel data loss than the Single tier
system, particularly if the desired recovery target is well in
the past.

The archival capacity requirements of the four alterna-
tives are shown in Figure 6. The Single-tier system has
a high capacity requirement at the tape library because it
keeps all its data in tier 1, which gets backed up frequently
to maintain recoverability of the data. The other alternatives
have similar (and lower) tape library requirements. The
Single-tier, Basic multi-tier and TierFS systems have sim-
ilar vault capacity requirements; however, the TierFS+CDP
system has a slightly higher vaulting requirement since it
vaults CDP data.

5.5 Discussion
We have compared four systems, the Single-tier system

that stores all the data on a single, highly recoverable stor-
age tier; the Basic multi-tier system that distributes data
over disk arrays with varying levels of recoverability, with-
out an attempt to give the data in low-recoverability tiers
additional protection; TierFS, which stores data in multiple
disk arrays, but adds mechanisms to protect the data stored
in low-recoverability tiers; and, finally, TierFS+CDP, a sys-
tem that additionally provides the ability to recover to any
point in time, in order to recover from software and human
errors. We find that the Single-tier system can provide high
recoverability, but the cost of such a system is very high,

��
��
��
��

����

������������

Single−tier
Basic multi−tier
TierFS
TierFS+CDP

��
��
��
��

��
��
��
�� ���

���
���
���
���
���

���
���
���
���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

���
���
���

���
���
���

���
���
���

���
���
���

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

 0

 5

 10

 15

 20

 25

 30

Site failsTier 3 failsTier 2 fails

R
ec

ov
er

y
tim

e
(H

rs
)

Failure scope

��
��
��
��

����

������������

Single−tier
Basic multi−tier
TierFS
TierFS+CDP

��
��
��
��

��
��
��
�� ���

���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

 0

 5

 10

 15

 20

 25

 30

Site failsTier 3 failsTier 2 fails

R
ec

ov
er

y
tim

e
(H

rs
)

Failure scope
(a) Harvard workload (b) Cello workload

Figure 2. Time to recover to the latest version.

R
ec

en
t

d
at

a
lo

ss
(H

rs
)

Recovery target (Hrs in past)

Basic multi-tier

TierFS

Single-tier

TierFS+CDP

R
ec

o
v

er
y

ti
m

e
(H

rs
)

Recovery target (Hrs in past)

Basic multi-tier

TierFS

Single-tier

TierFS+CDP

(a) Data loss (b) Recovery time

Figure 3. Data loss and recovery time to travel to past version for the Harvard workload. Results for the Cello workload
are similar.

Single−tier
Basic multi−tier
TierFS
TierFS+CDP

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

Tape Lib.RemoteTier 3Tier 2Tier 1

B
an

dw
id

th
 u

se
d

(M
B

/s
ec

)

Device

Single−tier
Basic multi−tier
TierFS
TierFS+CDP

 0

 10

 20

 30

 40

 50

 60

 70

Tape Lib.RemoteTier 3Tier 2Tier 1

B
an

dw
id

th
 u

se
d

(M
B

/s
ec

)

Device
(a) Harvard workload (b) Cello workload

Figure 4. Peak bandwidth used under normal system operation.

�
�
�
�

��

������

Single−tier
Basic multi−tier
TierFS
TierFS+CDP

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�

�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�

�
�
�

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�
�

�
�
�
�
�

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

�
�
�
�
�

�
�
�
�
�

��
��
��
��
��
��

��
��
��
��
��
��

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

RemoteTier 3Tier 2Tier 1

C
ap

ac
ity

 u
se

d
(G

B
)

Array Device

�
�
�
�

��

������

Single−tier
Basic multi−tier
TierFS
TierFS+CDP

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�

�
�
�
� ��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

�
�
�
�
�

�
�
�
�
�

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

 0

 200

 400

 600

 800

 1,000

 1,200

 1,400

 1,600

RemoteTier 3Tier 2Tier 1

C
ap

ac
ity

 u
se

d
(G

B
)

Array Device

(a) Harvard workload (b) Cello workload
Figure 5. Capacity usage after one month of normal system operation.

��
��
��
��

����

������������

Single−tier
Basic multi−tier
TierFS
TierFS+CDP

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��

��
��
��

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��

��
��
��

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

 0

 5,000

 10,000

 15,000

 20,000

 25,000

 30,000

VaultTape Lib.

C
ap

ac
ity

 u
se

d
(G

B
)

Device/location

��
��
��
��

����

������
��
��
��

Single−tier
Basic multi−tier
TierFS
TierFS+CDP

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���

���
���
���

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

��
��
��

��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

 0

 10,000

 20,000

 30,000

 40,000

 50,000

 60,000

 70,000

 80,000

 90,000

 100,000

VaultTape Lib.

C
ap

ac
ity

 u
se

d
(G

B
)

Device/location
(a) Harvard workload (b) Cello workload

Figure 6. Archival capacity usage after one year of normal system operation.

because it stores all its data on an expensive medium. The
Basic multi-tier system is much less expensive, but it is sub-
ject to substantial data loss in case of failures in the lower
tiers. TierFS enables us to store data in multiple tiers, and
enables recoverability comparable to the Single- tier sys-
tem, but requires a fraction of the capacity that Single-tier
uses on the highest storage tier. The only significant down-
side of TierFS compared to the Single-tier system is that,
in case of a site failure, the recovery time of TierFS is sub-
stantially higher because of the time to recover data from a
vault. TierFS+CDP goes a step further in recoverability, by
allowing recovery to arbitrary points in time, again with a
much lower cost than a Single-tier system.

We also evaluated scenarios where the bandwidth and ca-
pacity requirements are increased by a factor of ten for both
workloads. We observed the same trends across the systems
in recovery behavior for the various failure scenarios, and in
bandwidth and capacity usage.

6 Related work
The VxFS file system places files on multiple tiers and

uses user-defined rules to place and migrate files [6]. Unlike
TierFS, VxFS provides no mechanisms to improve recover-
ability of storage tiers.

There are many file systems that use logs, for purposes
other than improving recoverability. The log-structured file
system of Rosenblum and Ousterhout [11] uses sequential
logs to avoid scattered writes to disk, hence improving write
performance. Journaling file systems record file system
changes in a log, called the journal, before applying them to
the file system structures, to speed up file system recovery
after a crash. Upon recovery, replaying the journal obviates
the need for a full file system scan for inconsistencies. In
contrast, TierFS uses the log for improving recoverability
and providing continuous data protection for a less recover-
able tier. Unlike a log-structured file system, which stores
updates in the log as their final destination, with TierFS up-
dates must eventually be sent to the appropriate storage tier.
Thus, the recoverability log in TierFS is more similar to a
write-ahead log.

Versioning file systems allow users to recover older ver-
sions of files (e.g., VMS, AFS [9], Elephant [12], and
WAFL [4]). None of these file systems span multiple tiers,
and many of them do not provide continuous data protec-
tion, either because they only snapshot at specific points in
time (WAFL) or upon request (AFS), or because they do
not track metadata operations such as renames (VMS). The
only file systems that provide continuous versioning, as far

as we know, are Elephant [12], CVFS [14], VersionFS [10],
and the Wayback file system [2]. Of these, Elephant, CVFS,
and VersionFS use specialized data structures to keep track
of the common and distinct information of each version,
rather than using logs to keep old versions of data. Thus,
the old version’s data is scattered, which makes it inefficient
to transfer to archives or other tiers; data transfer, however,
is not a goal of these systems. In contrast, TierFS uses a
log to store the update history, which can be read sequen-
tially and transferred efficiently. The Wayback file system
[2] also uses logs, to store versioning information. TierFS
is different from Wayback in three aspects: (1) Wayback
uses undo logs, not redo logs; so, to create a log entry, Way-
back needs to read a file’s old data, which imposes extra
overhead, (2) Wayback uses a separate log for each file, and
logs are not stored sequentially one after the other, (3) in
Wayback, log entries are permanent, without any proposed
mechanisms for garbage collection, whereas in TierFS, old
log entries are optionally archived and eventually removed.

Continuous data protection is also available in products
from many companies [1]. These products operate either
at the block level (typically block devices on a storage area
network), file level (integrated with a file system), or ap-
plication level (e.g., integrated with an email server or a
database system). The idea is to tap into the stream of up-
dates, and then store those updates to allow subsequent re-
covery of arbitrary points in time within a protection win-
dow. In this respect, TierFS is similar to file-level CDP
products. The difference is that TierFS makes use of point-
in-time copies to improve the efficiency and flexibility of
CDP. For example, existing products can only provide CDP
within a recent time window, typically a few days, and there
is no way to archive CDP information.

AutoRAID [15] provides block-storage comprising two
tiers: the first one uses data mirroring for high performance,
and the second uses RAID-5 for space efficiency. The sys-
tem automatically migrates frequently-written blocks to the
higher tier and less frequently written blocks to the lower
tier to optimize performance. Unlike TierFS, AutoRAID
does not provide mechanisms to bridge the reliability lev-
els of its backing storage tiers, and couples tiers only for
performance and capacity trade-offs.

7 Conclusions
We present the design and evaluation of TierFS, a file

system that takes advantage of different storage tiers in an
enterprise system. TierFS maintains a recoverability log at
the highest tier to increase the recoverability of lower tiers.
The result is a multi-tier system that reduces recent data loss
to that of a single-tier system that uses only the highest tier,
while using significantly fewer resources at the highest tier.
TierFS uses the recoverability log in conjunction with snap-
shots and backups at the tiers to improve recovery time. The

recoverability log also enables consistent multi-tier backups
and CDP. Our results show that coupling the tiers can yield
substantial benefits over a conventional multi-tier system.

Acknowledgments. We thank Xiaozhou Li and the
anonymous reviewers for many useful comments.

References
[1] CDP buyers guide, 2005. Available at http://www.snia.org/

tech activities/dmf/docs/CDP Buyers Guide 20050822.pdf.
[2] B. Cornell, P. A. Dinda, and F. E. Bustamante. Wayback: a

user-level versioning file system for Linux. In Proceedings
of Usenix Annual Technical Conference, FREENIX Track,
pages 19–28, June 2004.

[3] D. Ellard, J. Ledlie, P. Malkani, and M. Seltzer. Passive NFS
tracing of email and research workloads. In Proceedings
of the Conference on File and Storage Technologies, pages
203–16, Mar. 2003.

[4] D. Hitz, J. Lau, and M. Malcolm. File system design for an
NFS file server appliance. In Proceedings of the USENIX
Winter Technical Conference, pages 235–246, Jan. 1994.

[5] HPSS user’s guide, 1992. http://www.hpss-
collaboration.org.

[6] G. Karche, M. Mamidi, and P. Massiglia. Using
dynamic storage tiering, Apr. 2006. Available at
http://www.symantec.com/enterprise/yellowbooks/index.jsp.

[7] K. Keeton, D. Beyer, E. Brau, A. Merchant, C. Santos, and
A. Zhang. On the road to recovery: restoring data after dis-
asters. In Proceedings of the European Systems Conference,
pages 235–48, Apr. 2006.

[8] K. Keeton and A. Merchant. A framework for evaluating
storage system dependability. In Proceedings of the Inter-
national Conference on Dependable Systems and Networks,
pages 877–886, June 2004.

[9] J. J. Kistler and M. Satyanarayanan. Disconnected operation
in the Coda File System. ACM Transactions on Computer
Systems, 10(1):3–25, Feb. 1992.

[10] K.-K. Muniswamy-Reddy, C. P. Wright, A. Himmer, and
E. Zadok. A versatile and user-oriented versioning file sys-
tem. In Proceedings of the Conference on File and Storage
Technologies, pages 115–128, Mar. 2004.

[11] M. Rosenblum and J. K. Ousterhout. The design and imple-
mentation of a log-structured file system. ACM Transactions
on Computer Systems, 10(1):26–52, Feb. 1992.

[12] D. S. Santry, M. J. Feeley, N. C. Hutchinson, A. C. Veitch,
R. W. Carton, and J. Ofir. Deciding when to forget in the Ele-
phant file system. In Proceedings of the ACM Symposium on
Operating Systems Principles, pages 110–123, Dec. 1999.

[13] M. Sivathanu, V. Prabhakaran, A. C. Arpaci-Dusseau, and
R. H. Arpaci-Dusseau. Improving storage system avail-
ability with D-GRAID. ACM Transactions on Storage,
1(2):133–170, May 2005.

[14] C. A. N. Soules, G. R. Goodson, J. D. Strunk, and G. Ganger.
Metadata efficiency in versioning file systems. In Proceed-
ings of the Conference on File and Storage Technologies,
pages 43–58, Mar. 2003.

[15] J. Wilkes, R. Golding, C. Staelin, and T. Sullivan. The HP
AutoRAID hierarchical storage system. ACM Transactions
on Computer Systems, 14(1):108–136, Feb. 1996.

