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Abstract

Fully distributed storage systems have gained popularity in the
past few years because of their ability to use cheap commaodity
hardware and their high scalability. While there are a num-
ber of algorithms for providing differentiated quality of service

to clients of a centralized storage system, the problem has not
been solved for distributed storage systems. Providing perfor-
mance guarantees in distributed storage systems is more com-
plex because clients may have different data layouts and access
their data through different coordinators (access nodes), yet the
performance guarantees required are global.

This paper presents a distributed scheduling framework. It is
an adaptation of fair queuing algorithms for distributed servers.
Specifically, upon scheduling each request, it enforces an extrBl€nts than others. Traditionally, these requirements have
delay (possibly zero) that corresponds to the amount of servic®een met by allocating separate storage for such appli-
the client gets on other servers. Different performance goals¢ations; for example, applications with high write rates
e.g., per storage node proportional sharing, total service promay be allocated storage on high-end disk arrays with
portional sharing or mixed, can be met by different delay func-large caches, while other applications live on less expen-
tions. The delay functions can be calculated at coordinator$ive, lower-end storage. However, maintaining separate
locally so excess communication is avoided. The analysis angtorage hardware in a data center can be a management
experimental results show that the framework can enforce perdightmare. It would be preferable to provide each ap-

formance goals under different data layouts and workloads.  plication with the service level it requires while sharing
storage. However, storage systems typically treat all /O

1 Introduction requests equally, which makes differentiated service dif-
. _ ~ ficult. Additionally, a bursty I/O workload from one ap-

The storage requirements of commercial and institutionapjication can cause other applications sharing the same

organizations are growing rapidly. A popular approachstorage to suffer.

for reducing the resulting cost and complexity of man-  5na selution to this problem is to specify the perfor-

agement is to consolidate the separate computing anghance requirement of each application’s storage work-
storage resources of various applications into a commof,aq and enable the storage system to ensure that it is

pool. The common resources can then be managed {Qqet  Thus applications are insulated from the impact
gether and shared more efficiently. Distributed storagey workioad surges in other applications. This can be

systems, such dsederated Array of BrickéFAB) [20],  4chieved by ordering the requests from the applications

Petal [16], and IceCube [27], are designed to serve agy, opyriately, usually through a centralized scheduler, to
large storage pools. They are built from a number Ofcoorginate access to the shared resources [5, 6, 24]. The
individual storage nodes, or bricks, but present a SiNgcneduler can be implemented in the server or as a sep-
gle, highly-available store to users. High scalability is arateinterposed request schedulg, 12, 17, 29] that

another advantage of distributed storage systems. Thgeais the storage server as a black box and applies the
system can grow smoothly from small to large-scale in-.asqurce control externally.

ztr?gatfrn;gﬁcf?:;i '::;]Sag;ts l'm_l'_trﬁg ggtg?ecsa&aec'r%g;sn ¢ Centralized scheduling methods, however, fit poorly
y ) ith distributed storage systems. To see this, consider

l‘c’oe;:;g:gnago:;greazsetor::(;j'rrlizusw add application Work'the typical distributed storage system shown in Figure 1.
A data centergserving a Iar.ge enterprise may suppor he sy;tem is composed of bricks; gach brick is a com-
thousands of applications. Inevitably, some of these ap: uter with a CPU, memory, ngtworkmg, and storage. In
plications will have higher.storage pe’rformance require-a symmetric system, each.bn.ck runs the same softvx_/are.
Data stored by the system is distributed across the bricks.

*This work was done during an internship at HP Laboratories.  Typically, a client accesses the data througtoardina-

Figure 1:A distributed storage system
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tor, which locates the bricks where the data resides and Client

performs the 1/O operation. A brick may act both as a
storage node and a coordinator. Different requests, even
from the same client, may be coordinated by different
bricks. Two features in this distributed architecture pre-
vent us from applying any existing request scheduling
algorithm directly. First, the coordinators are distributed.

A coordinator schedules requests possibly WithQUt thesigure 2: Data access model of a distributed storage sys-
knowledge of requests processed by other coordinatorgem pifferent clients may have different data layouts spread-

Second, the data corresponding to requests from a cliefy across different sets of bricks. However, coordinators know
could be distributed over many bricks, since a logicaly) gata layouts and can handle requests from any client.

volume in a distributed storage system may be striped,

replicated, or erasure-coded across many bricks [7]. OUfg|ated work. Section 3 describes our distributed fair

goal_ls to design a distributed scheduler that can prOV'd‘aueueing framework, two instantiations of it, and their

service guarantees regardless of the data layout. properties. Section 4 presents the experimental evalua-
This paper proposes a distributed algorithm to enforcejon of the algorithms. Section 5 concludes.

proportional sharingof storage resources amostgeams

of requests. Each stream has an assigreight andthe 2 Overview and background

algorithm reserves for it a minimum share of the system

capacity proportional to its weight. Surplus resources ar&Ve describe here the distributed storage system that our

shared among streams with outstanding requests, aldeamework is designed for, the proportional sharing prop-

in proportion to their weights. System capacity, in this erties it is intended to enforce, the centralized algorithm

context, can be defined in a variety of ways: for ex-that we base our work upon, and other related work.

ample, the number of I/Os per second, the number of

bytes read or written per second, etc. The algorithm is2

work-conserving: no resource is left idle if there is any ="

request waiting for it. However, it can be shown easily Figure 2 shows the configuration of a typical distributed
that a work-conserving scheduling algorithm for multi- storage system. The system includes a collection of stor-
ple resources (bricks in our system) cannot achieve proagebricks which might be built from commodity disks,
portional sharing in all cases. We present an extensiopUs, and NVRAM. Bricks are connected by a standard
to the basic algorithm that allows per-brick proportional network such as gigabit Ethernet. Access to the data on
sharing in such cases, or a method that provides a hybrighe bricks is handled by the coordinators, which present
between system-wide proportional sharing and per-briclg virtual disk or logical volumeinterface to the clients.
proportional sharing. This method allows total propor- |n the FAB distributed storage system [20], a client may
tional sharing when possible while ensuring a minimumaccess data through an arbitrary coordinator or a set of
level of service on each brick for all streams. coordinators at the same time to balance its load. Co-

The contribution of this paper includes a novel distrib- ordinators also handle data layout and volume manage-
uted scheduling framework that can incorporate manyment tasks, such as volume creation, deletion, extension
existing centralized fair queuing algorithms. Within and migration. In FAB, the coordinators reside on the
the framework, several algorithms that are extensions toricks, but this is not required. We consider local area
Start-time Fair Queuing [8] are developed for different distributed storage systems where the network latencies
system settings and performance goals. To the best afre small compared with disk latencies. We assume that
our knowledge, this is the first algorithm that can achievethe network bandwidths are sufficiently large that the I/O
total service proportional sharing for distributed storagethroughput is limited by the bricks rather than the net-
resources with distributed schedulers. We evaluate thevork.
proposed algorithms both analytically and experimen- The data layout is usually designed to optimize prop-
tally on a FAB system, but the results are applicable toerties such as load balance, availability, and reliability. In
most distributed storage systems. The results confirnFAB, a logical volume is divided into a number ség-
that the algorithms allocate resources fairly under vari-ments which may be distributed across bricks using a
ous settings — different data layouts, clients accessingeplicated or erasure-coded layout. The choice of brick-
the data through multiple coordinators, and fluctuatingset for each segment is determined by the storage system.
service demands. Generally, the layout is opaque to the clients.

This paper is organized as follows. Section 2 presents The scheduling algorithm we present is designed for
an overview of the problem, the background, and thesuch a distributed system, making a minimum of as-

Coord

Brick Brick Brick

1 Distributed Storage Systems



SYMBOLS DESCRIPTION Stream f Stream g
oF Weight of streary
Py Streamf’s i-th request
DA Streamf’s i-th request to brickd
cost(-) Cost of a single request BEA Sk
cost Max request cost of streayf
cost';' 4" Max cost on brickA of f Figure 3:Distributed data. Streamf sends requests to brick
W (t1,t2) Aggregate cost of requests served A only while streamy sends requests to bothand B.

from f during interval[t; , t2)
batchcost Total cost of requests in between ally depends on the stream characteristics, eogt,;"*".
(Py.a) Y4 andp’ ,, includingp’ , The time intervallt, ;] in (1) may be any time dura-
batchcostP4" | Max value Ofbatchcost(pl]} ) tion. This cprresponds to a “use it or Ios_e it” policy, i.e.,
A() Arrival time of a request a stream will not suffer durl_ng one time interval for con-
S() Start tag of a request suming surplus resources in another interval, nor will it
() Finish tag of a request benefit later from gnder-uuhzmg resources.
() Virtual ime at timet . In the case of dlstrlbut_ed data storage, we ne_ed to de-
delay(") Delay value of a request fine what is to be proportionally shared. Let us first look

at the following example.
Table 1:Some symbols used in this paper.

ExaMpPLE 1. Figure 3 is a storage system consisting
sumptions. The data for a client may be laid out in anof two bricks A and B. If streamsf andg are equally
arbitrary manner. Clients may request data located ofveighted and both backlogged.at how should we al-
an arbitrary set of bricks at arbitrary and even fluctuatinglocate the service capacity of briek? |
rates, possibly through an arbitrary set of coordinators.

There are two alternatives for the above example, which
2.2 Proportional Sharing induce two different meanings for proportional sharing.

The first issingle brick proportional sharingi.e., ser-
The algorithms in this paper support proportional sharingjice capacity of brick4 will be proportionally shared.
of resources for clients with queued requests. Each clienfiany existing proportional sharing algorithms fall into
is assigned a weight by the user and, in every time interthjs category. However, streagralso receives service at
val, the algorithms try to ensure that clients with requestsyrick 3, thus receiving higher overall service. While this
pending during that interval receive service proportionalappears fair because stregmoes a better job of balanc-
to their weights. ing its load over the bricks than streafn note that the

More precisely, I/O requests are grouped into serviceyata layout may be managed by the storage system and

classes calledtreamseach with a weight assigned; e.g., opaque to the clients; thus the quality of load balancing
all requeStS from a client could form a Single stream. AlS mere|y an accident. From the clients’ point of view,
stream ishackloggedf it has requests queued. A stream streamf unfairly receives less service than streanThe
[ consists a sequence of requqé}stpf;. Each request  gther alternative isotal service proportional sharingn
has an associated service costt(p}). For example, this case, the share of the service streameceives on
with bandwidth performance goals, the cost might be thebrick A can be increased to compensate for the fact that
size of the requested data; with service time goals, restreamyg receives service on brick, while f does not.
guest processing time might be the cost. The maximunThis problem is more intricate and little work has been
request cost of streahis denotecbost’];’“b“. The weight  done onit.

assigned to strearfiis denotedy; only the relative val- Itis not always possible to guarantee total service pro-
ues of the weights matter for proportional sharing. portional sharing with a work-conserving scheduler, i.e.,
Formally, if W (t1,t2) is the aggregate cost of the re- where the server is never left idle when there is a request
quests from streanfi served in the time intervdt,, 22},  queued. Consider the following extreme case.
then the unfairness between two continuously back-
logged streamg andg is defined to be: EXAMPLE 2. Streamf requests service from brick
only, while equally weighted streagis sending requests
Wit ta) _ Wyt 1) (1) to A and many other bricks. The amount of service
i g obtains from the other bricks is larger than the capacity

A fair proportional sharing algorithm should guaran- of A. With a work-conserving scheduler, it is impossible
tee that (1) is bounded by a constant. The constant usue equalize the total service of the two streams. &



If the scheduler tries to make the total service receivedS(le;) and thefinish tagF(p§) as follows:
by f andg as close to equal as possikjevill be blocked

at brick A, which may not be desirable. Inspired by the Sy = maxq{u(A(p})), F(p}‘l)},i >1 (2
example, we would like to guarantee some minimum ser- 4 cost(pt)

vice on each brick for each stream, yet satisfy total ser- F(py) = S} + 7f,i >1 3)
vice proportional sharing whenever possible. 5

In this paper, we propose a distributed algorithmhereA(p?) is the arrival time of request., andu(t) is
framework under which single brick proportional shar- {4 virtual time at: F(p?c) = 0,v(0) = 0.

ing, totgl service .propqrtional'sharing, angl total service SFQ cannot be directly applied to storage systems,
proportional sharing with a minimum service guaranteegjnce storage servers are concurrent, serving multiple re-

are all possible. We note that, although we focus on diSqUests at a time, and the virtual timé) is not defined.

tributed storage systems, the algorithms we propose mayi, et al. [12] extended SFQ to concurrent servers by
be more broadly applicable to other distributed systemsdeﬁning the virtual time as the maximum start tag of
requests in service (the last request dispatched). The
) resulting algorithm is calledepth-controlled start-time

2.3 The centralized approach fair queuingand abbreviated to SFQ), whereD is the
I_n selecting an approach towards a distributed_ propor%ﬁ;g ?ﬁ ep ;rr]ecr); t[rlz]s;%rgvg\j/: 32{'?#&5 ;;I:/g\r/]i dS ei% atgf_fm
_tlonal Sha“”? _scheduler, we must take four requwem_ent?ogged workloads with proportionate service, albeit with
into account: i) the scheduler must be work-conserving: looser bound on the unfairness
resources that backlogged streams are waiting for shoulg '
never be idle; ii) “use it or lose it", as described in the THeoREM 1. During any interval [t1,t2], the dif-
previous section; iii) the scheduler should accommodatderence between the amount of work completed by an
fluctuating service capacity since the service times of IOSFQ(D) server for two backlogged streanfsand g is
can vary unpredictably due to the effects of caching, sebounded by:
guentiality, and interference by other streams; and iv) mag ma
reasonable computational complexity—there might be With,ts) _ Walh,to) < (COStf + o5t > *
thousands of bricks and clients in a distributed stor- |~ 7 %o o1 Z
age system, hence the computational and communication (D+1) )
costs must be con3|dered.. i i While there are more complex variations of SFQ [12]

There are many centrghzgd scheduling algorithms thafn ot can reduce the unfairness of SEQ(for simplicity,
could be extended to distributed systems [3, 4, 8, 28,\¢ se SFQD) as the basis for our distributed schedul-
30, 17, 14, 9]. We chose to focus on the Start-timejng gigorithms. Since the original SFQ algorithm cannot
Fair Queuing (SFQ) [8] and its extension SEQ([12] e girectly applied to storage systems, for the sake of
because they come closest to meeting the requwemenpgadab“ity' we will use “SFQ” to refer to SFQY in the
above. We present a brief discussion of the SFQ angsmainder of the paper.
SFQ(D) algorithms in the remainder of this section.

SFQ is a proportional sharing scheduler for a single
server; intuitively, it works as follows. SFQ assigns a2'4 Related Work
start timetag and dinish timetag to each request cor- Extensive research in scheduling for packet switching
responding to the normalized times at which the requestetworks has yielded a series of fair queuing algorithms;
should start and complete according to a system notion oee [19, 28, 8, 3]. These algorithms have been adapted
virtual time. For each stream, a new request is assignego storage systems for service proportional sharing. For
a start time based on the assigned finish time of the preexample, YFQ [1], SFQD) and FSFQD) [12] are
vious request, or the current virtual time, whichever ishased on start-time fair queueing [8]; SLEDS [2] and
greater. The finish time is assigned as the start time plusARC [29] use leaky buckets; CVC [11] employs the vir-
the normalized cost of the request. The virtual time istyal clock [30]. Fair queuing algorithms are popular for
set to be the start time of the currently executing requestwo reasons: 1) they provide theoretically proven strong
or the finish time of the last completed request if there isfairness, even under fluctuating service capacity, and 2)
none currently executing. Requests are scheduled in thihey are work-conserving.
order of their start tags. It can be shown that, in any time However, fair gueuing algorithms are not convenient
interval, the service received by two backlogged work-for real-time performance goals, such as latencies. To
loads is approximately proportionate to their weights. address this issue, one approach is based on real-time
More formally, the requegi} is assigned thetarttag  schedulers; e.g., Facade [17] implements an Earliest



Deadline First (EDF) queue with the proportional feed-tion problem is solved in each round, which makes the
back for adjusting the disk queue length. Anothermethod computationally expensive. The centralized con-
method is feedback control, a classical engineering techtroller makes it unsuitable for use in fully distributed
nigue that has recently been applied to many computindpigh-performance systems, such as FAB.
systems [10]. These generally require at least a rudimen- To the best of our knowledge, the problem of fair
tary model of the system being controlled. In the case okcheduling in distributed storage systems that involve
storage systems, whose performance is notoriously difboth distributed schedulers and distributed data has not
ficult to model [22, 25], Triage [14] adopts an adaptive been previously addressed.
controller that can automatically adjust the system model
based on input-output observations. 3 Proportional Sharing in Distributed
There are some frameworks [11, 29] combining the Storage Systems
above two objectives (proportional sharing and latency
guarantees) in a two-level architecture. Usually, the firsiVe describe a framework for proportional sharing in dis-
level guarantees proportional sharing by fair queueingributed storage systems, beginning with the intuition,
methods, such as CVC [11] and SARC [29]. The sec-followed by a detailed description, and two instantiations
ond level tries to meet the latency goal with a real-timeof the method exhibiting different sharing properties.
scheduler, such as EDF. Some feedback from the second
level to the first level scheduler is helpful to balance the N .
two objectives [29]. All of the above methods are de-3'1 An intuitive explanation
signed for use in a centralized scheduler and cannot beirst, let us consider the simplified problem where the
directly applied to our distributed scheduling problem. data is centralized at one brick, but the coordinators may
Existing methods for providing quality of service in be distributed. An SFQ scheduler could be placed either
distributed systems can be put into two categories. That coordinators or at the storage brick. As fair scheduling
first category is the distributed scheduling of a single resrequires the information for all backlogged streams, di-
source. The main problem here is to maintain informa-rect or indirect communication among coordinators may
tion at each scheduler regarding the amount of resourcke necessary if the scheduler is implemented at coordi-
each stream has so far received. For example, in fainators. Placing the scheduler at bricks avoids the prob-
gueuing algorithms, where there is usually a system virlem. In fact, SFQD) can be used without modification
tual timew(t) representing the normalized fair amount of in this case, provided that coordinators attach a stream
service that all backlogged clients should have receivedD to each request so that the scheduler at the brick can
by time ¢, the problem is how to synchronize the vir- assign the start tag accordingly.
tual time among all distributed schedulers. This can be Now consider the case where the data is distributed
solved in a number or ways; for example, in high capac-over multiple bricks as well. In this case, SFQ sched-
ity crossbar switches, in order to fairly allocate the band-ulers at each brick can guarantee only single brick pro-
width of the output link, the virtual time of differentinput portional sharing, but not necessarily total service pro-
ports can be synchronized by thecess buffeinside the  portional sharing because the scheduler at each brick sees
crossbar [21]. In wireless networks, the communicationonly the requests directed to it and cannot account for the
medium is shared. When a node can overhear packagesrvice rendered at other bricks.
from neighboring nodes for synchronization, distributed = Suppose, however, that each coordinator broadcasts all
priority backoff schemes closely approximate a singlerequests to all bricks. Clearly, in this case, each brick
global fair queue [18, 13, 23]. In the context of storagehas complete knowledge of all requests for each stream.
scheduling, Request Window [12] is a distributed schedEach brick responds only to the requests for which it
uler that is similar to a leaky bucket scheduler. Servicegs the correct destination. The remaining requests are
for different clients are balanced by the windows issuedreated asvirtual requests and we call the combined
by the storage server. Itis not fully work-conserving un-stream of real and virtual requestvatual stream see
der light workloads. Fig. 4. A virtual request takes zero processing time but
The second category is centralized scheduling of muldoes account for the service share allocated to its source
tiple resources. Gulati and Varman [9] address the probstream. Then the SFQ scheduler at the brick guaran-
lem of allocating disk bandwidth fairly among concur- tees service proportional sharing of backlogged virtual
rent competing flows in a parallel I/0O system with multi- streams. As the aggregate service cost of a virtual stream
ple disks and a centralized scheduler. They aim at the opequals the aggregate service cost of the original stream,
timization problem of minimizing the unfairness among total service proportional sharing can be achieved.
different clients with concurrent requests. 1/O requests The above approach is simple and straightforward, but
are scheduled in batches, and a combinatorial optimizawith large-scale distributed storage systems, broadcast-



_Virtual requests v, - has a priority queue for all streams and orders all requests

fA A

) [AB[CAJA[C[C[B] -.. ABICJAJAIC[C[B] - by some priority, e.g., start time tags in the case of an
Brick A Virtual stream ! stream f SFQ scheduler. On the other hand, each coordinator has
T [ABIC[AJA[C[CB] - +-coordinator a separate queue for each stream, where the requests in a
Brick B virtual stream gqueue may have different destinations.

@ [AIBIC[AJAlCIE[B] - When we apply SFQ to the framework, each request
Brick C  virtual stream has a start tag and a finish tag. To incorporate the idea

) presented in the previous section, we modify the compu-
Figure 4:The naive approach. The coordinator broadcasts tation of the tags as follows:
every request to all bricks. Requests to incorrect destination
bricks arevirtual and take zero processing time. Proportional
scheduling at each local brick guarantees total service propor-

tional sharing. S(pl}-,A) — max

n delay(p} ) } 5)
o

O oAl 2A oA -

A[B]CJAJA[C[CB] -

Brick A “delay” ! stream f* i _ i COSt(p},A)
*--coordinator F(pf’A) o S(pf A ¢f (6)
) 1[B] 5[B] -.-
Brick B
& 2[c] 2[c] o] - .
Brick C The only difference between SFQ formulae (2-3) and

Fi 5. _ those above is the new delay function for each request,
igure 5:The improved approach. Only the aggregate cost \ hich s calculated at coordinators and carried by the

of virtual requests is communicated, indicated by the num- - .
; . equest. The normalized delay value translates into the
ber before each request (assuming unit cost of each requesq%

Broadcasting is avoided yet total service proportional sharin mount of time ,by which the start tag should be shifted.
can be achieved. ow the delay is computed depends upon the propor-

tional sharing properties we wish to achieve, and we will

ing is not acceptable. We observe, however, that the SF@iscuss several delay functions and the resulting sharing
scheduler requires only knowledge of the cost of eactProperties in the sections that follow. We will refer to the
virtual request, the coordinators may therefore broagmodified Start-time Fair Queuing algorithm as Distrib-
cast the cost value instead of the request itself. In aguted Start-time Fair Queuing (DSFQ).

dition, the coordinator may combine the cost of consec- In DSFQ, as in SFQD), v(t) is defined to be the start
utive virtual requests and piggyback the total cost infor-tag of the last request dispatched to the disk before or
mation onto the next real request; see Fig. 5. The comat timet¢. There is no global virtual time in the system.
munication overhead is negligible because, in generalEach brick maintains its own virtual time, which varies
read/write data rather than requests dominate the comat different bricks depending on the workload and the
munication and the local area network connecting bricksservice capacity of the brick.

usually has enough bandwidth for this small overhead.  \vg note that the framework we propose works with
The piggyback cost information on each real requespther fair scheduling algorithms [28] as long as each
is called thedelayOf the request, because the modified stream has its own clock such that the de|ay can be ap-
SFQ scheduler will delay processing the request accorchjied; for example, a similar extension could be made to
ing to this value. Different delay values may be used forthe Virtual Clock algorithm [30] if we desire proportional
different performance goals, which greatly extends theservice over an extended time period (time-averaged fair-
abl“ty of SFQ schedulers. This erXIbIIIty is Captured in ness) rather than the “use it or lose it” property (instan_
the framework presented next. taneous fairness) supported by SFQ. Other options be-
tween these two extreme cases could be implemented in
this framework, as well. For example, the scheduler can
constrain each stream’s time tag to be within some win-

We propose the distributed fair queuing framework dis-dow of the global virtual time. Thus, a stream that under-
played in Fig. 6; as we show later, it can be used for totaytil@zes its share can get extra service later, but only to a
proportional sharing, single-brick proportional sharing, limited extent.

or a hybrid between the two. Assume there are streams If the delay value is set to always be zero, DSFQ
f,9,...and bricksA, B, .... The fair queueing scheduler reduces to SFQ and achieves single brick proportional
is placed at each brick as just discussed. The schedulsharing. We next consider other performance goals.

3.2 Distributed Fair Queuing Framework



Coordinator | zero time. Note that SFQ holds its fairness property even
&, | FCFSqueue when the service capacity varies [8]. In our case, the
. ; server capacity (processing speed) varies from normal, if
! dc]ay;;]'ucs f[he request is to b_e serviced_on the same brick, to infinity
“+1 caleulated here if the request is virtual and is to be serviced elsewhere.
***** ' : Intuitively, since the brickA sees all the requests jh
******* (and their costs) as a part of the virtual stream, the SFQ
e scheduler a# factors in the costs of the virtual requests
‘ served elsewhere in its scheduling, even though they con-
sume no service time at. This will lead to proportional
T sharing of the total service. The theorem below formal-
izes the bounds on unfairness usingTAL-DSFQ.

/
B
B

Figure 6:The distributed fair queuing framework THEOREM 2. Assume strearnfi is requesting service
_ _ _ on N bricks and streany on N, bricks. During any
3.3 Total Service Proportional Sharing interval [t1,t2] in which f and g are both continuously

] o ) . backlogged at some bricK, the difference between the
We describe how the distributed fair queueing frame-total amount of work completed by all bricks for the two
work can be used for total proportional sharing whenstreams during the entire interval, normalized by their
each stream uses one coordinator, and then argue that thweights, is bounded as follows:
same method also engenders total proportional sharing

with multiple coordinators per stream. Wit te) _ Wo(t, ta)
¢f ‘by
3.3.1 Single-Client Single-Coordinator < (D + Dsro) * Ny + 1)002%
f

We first assume that requests from one stream are always cost 4
processed by one coordinator; different streams may or ((D+ Dsrq) * Ng +1) P
may not have different coordinators. We will later extend batchcost™ e mazw

: . - atchcost’s 4 batchcos g A
this to the multiple coordinator case. The performance (Dsrq +1) 3 + S (8)
goal, as before, is that the total amount of service each ! 7
client receives must be proportional to its weight. where D is the queue depth of the disland D¢ is

~ As described in Section 3.1, the following delay func- the queue depth of the Start-time Fair Queue at the brick.
tion for a request from streani to brick A represents PrRoOOF The proof of this and all following theorems
the total cost of requests sent to other bricks since the : ;

: . ¢an be found in [26]. O
previous request to brick.

The bound in Formula (8) has two parts. The first part
is similar to the bound of SFQ@J) in (4), the unfairness

When this delay function is used with the distributed due to server queues. The second part is new and con-
scheduling framework defined by formulae (5-7), we calltributed by the dl_stnbuted data. If the majority of re-
the resulting algorithnToTAL-DSFQ The delay func-  9uests of streanfi is processed at the bac_klo_gged server,
tion (7) is the total service cost of requests sent to othefN€batchcost i is small and the bound is tight. Other-
bricks since the last request on the brick. Intuitively, WiSe, if f gets a lot of service at other bricks, the bound
it implies that, if the brick is otherwise busy, a request!S l00se. . _
should wait an extra time corresponding to the aggregate AS We showed in Example 2, however, there are sit-
service requirements of the preceding requests from theations in which total proportional sharing is impos-
same stream that were sent to other bricks, normalize§/ble with work conserving schedulers. In the theo-
by the stream’s weight. rem above, this corresponds to the case \_Nth an infinite

Why ToTAL-DSFQ engenders proportional sharing Qatchcost;’j%, anq hence the bound is |r_1f|n|te. To_ dej
of the total service received by the streams can be exlineate more precisely when total proportional sharing is
plained using virtual streams. According to the formulaePOSSible undeToTaL-DSFQ we characterize when the

(5-7), TOTAL-DSFQis exactly equivalent to the archi- totql service rates of the streams are proportional to their
tecture where coordinators send virtual streams to th&€ights. The theorem below says that, underAL-
bricks and bricks are controlled by the standard SFQDSFQ if a set of streams are backlogged together at a
This virtual stream contains all the requestyjrbut the 1)t there are multiple disks (the normal casé),is the sum of the
requests that are not destined férare served atl in queue depths of the disks.

delay(pic’A) = batchcost(p},A) — cost(p},A) @)




set of bricks, then either their normalized total service J O
rates over all bricks are equal (thus satisfying the total Brick A 11A] ...
q ( fying (.

delay
whose normalized service rates are equal and the remain- BriEijB o 7B stream/
der receive no service at the backlogged bricks because
they already receive more service elsewhere. = 1@ 1[g -
Let Rf(tl,tg) = Wf(tl,tg)/(¢f * (tg — tl)) be Brick C 2
the normalized service rate of stregfrin the duration . ) .
(t1,t2). If the total service rates of streams are pI,O_Flgure 7: Effect of multlp_le _cc_)ordlnators un_der_ TOTAL -
portional to their weights, then their normalized service 2SFQ- Delay value of an individual request is different from
rates should be equal as the time interal ¢, goes Fig. 5, but the total amount of delay remains the same.
to infinity. Suppose streanf is backlogged at a set
of bricks, denoted as s, its normalized service rate
at.S is denoted afls g(t1,t2), and Ry other (t1,t2) de-
notes its normalized total service rate at all other bricks
Ry (t1,t2) = Ry s(ti,t2) + Ry other(t1,t2). We drop
(t1,t2) hereafter as we always consider interital ¢5).

proportionality requirement), or there are some streams

- BEEE .

*-coordinator

total proportional sharing in this setting, except in some
unusual cases.

We motivate the analysis with an example. First, let
us assume that a stream accesses two coordinators in
round-robin order and examine the effect on the delay
function (7) through the example stream in Fig. 5. The
result is displayed in Fig. 7. Odd-numbered requests are
processed by the first coordinator and even-numbered re-
quests are processed by the second coordinator. With one
coordinator, the three requests to bri¢kave delay val-
ues 0, 2 and 0. With two round-robin coordinators, the
delay values of the two requests dispatched by the first
coordinator are now 0 and 1; the delay value of the re-
quest dispatched by the second coordinator is 1. Thus,
although individual request may have delay value differ-

S, let u”s first SERJ‘LS = szgf; = RfﬁS :hor?ng ent from the case of single coordinator, the total amount
try to allocate the resources treamf; has the high- of delay remains the same. This is because every virtual

est priority since its delay is the smallest. Thus the SFQrequest (to other bricks) is counted exactly once.
scheduler will increasdiy, s until Ry, = Rp, other- We formalize this result in Theorem 4 below, which
Now both f, and f, have the same total service rate andg, s essentially, that streams backlogged at a brick re-
the same highest priority. Brick sétwill then increase ceive total proportional service so long as each stream

Ry, s andRy, s equally untilRy, = Ry, = Rf, other-  yses a consistent set of coordinators (i.e., the same set of
In the end, either all the streams have the same total S€loordinators for each brick it accesses)

vice rate, or it is impossible to balance all streams due Formall

L . . . . Y,
to the limited service capacity of all bricks . In the
latter case, the firsk streams have equal total service
rates, while th.e_ remaining streams are blocked f9r S€leach substrean has itsbatchcost*y. Let us first as-
Mot Intgmvely, this is the best we can do_ with a sume thabatchcost’**} is finite for all substreams, i.e.,
work-conservmg scheduler to equalize normalized Ser'requests tod are distributed among all coordinators.
vice rates.

In Section 3.4 we propose a modification TOTAL- THEOREM 4. Assume strearyi accesses coordina-
DSFQthat ensures no stream is blocked at any brick. tors such that each one receives substregims.., f.,
respectively, and streagmaccesses: coordinators with
substreamgy, ..., g.,, respectively. During any interval
[t1,t2] in which f and g are both continuously back-
So far we have assumed that a stream requests servitgged at brick4, inequality (8) still holds, where
through one coordinator only. In many high-end systems,
however, it is preferable for high-load clients to distrib-

THEOREM 3. Under TOTAL-DSFQ if during (¢4,
ta), streams{f1, f2,...f,} are backlogged at a set of
bricks S, in the order Ry, oiher < Ry, other <
Ry, other, @Sty —t; — o0, €itherRy, = Ry, = ...Ry,
or 3k € {1,2,..n — 1}, such thatRy = ..Ry <
Rfk+1,0th€7‘ andeHhs = -~-an,S =0.

The intuition of Theorem 3 is as follows. At brick set

assume strearfisends requests through
coordinatorg’y, Cs, ..., C),, and coordinato€’; receives
a substream of denoted ag;. With respect to brick4,

3.3.2 Single-client Multi-coordinator

batcheost'y" = maz{ batchcost’ny, ...

ute their requests among multiple coordinators in order batchcost' " } 9)
to balance the load on the coordinators. In this section, batchcosty's" = max{ batchcost]}}, ...
we discuss the single-client multi-coordinator setting and batchcost™ %} (10)

the corresponding fairness analysis foDTAL-DSFQ
In summary, we find thatoTAL-DSFQdoes engender An anomalous case arises if a stream partitions the



bricks into disjoint subsets and accesses each partitioWe can see, for example, that setthﬁ@i" = ¢y yields
through separate coordinators. In this case, the requestsdelay of zero, and the algorithm then reduces to sin-
served in one partition will never be counted in the delaygle brick proportional sharing that guarantees minimum
of any request to the other partition, and the total serviceshareg; for streamf, as expected.
may no longer be proportional to the weight. For ex- By combining delay function (11) with the delay func-
ample, requests tB in Fig. 7 have smaller delay values tion (7) for TOTAL-DSFQ we can achieve an algorithm
than the ones in Fig. 5. This case is unlikely to occur withthat approaches total proportional sharing while guaran-
most load balancing schemes such as round-robin or unteeing a minimum service level for each stream per brick,
formly random selection of coordinators. Note that theas follows.
algorithm will still guarantee total proportional sharing
if differentstreams use separate coordinators. delay(pjc, 4) =min { batchcost(péc’ A) — cost(p}’ A)s

More interestingly, selecting randomly among mul- bp/dmin — 1
. . A
tiple coordinators may smooth out the stream, and re- _
sult in more uniform delay values. For example, if 1= ¢y
batchcost(p} ) in the original stream is a sequence of
i.i.d. (independent, identically distributed) random vari-
ables with large variance such thatchcost’;'4" might
be large, it is not difficult to show that with indepen-
dently random mapping of each request to a coordina;

j i i N . .
tor, batchcost(py, 4) is also a sequence of i.i.d. random o ieo sharey?™ is still guaranteed. On the other
variables with the same mean, but the variance decreas?'%md if the amount of service a streafn receives

as number of coordinators increases. This means th%tn other bricks between requests to bridkis lower
under random selection of coordinators, while the aver-

L . . han (¢¢/¢7"™ —1)/(1 — ¢ ) * cost(p 4), the delay
age del_ay IS S.t'“ the same (thus service rate is the Same$uncti(or{ /béfhaves )s/ir(‘nilarlyj 20 equza(tighA)(7), and hence
the variance in the delay value is reduced and therefor:ﬁ1e sharing properties in this case should be similar to

the unfairness bound is tighter. We test this obsewatioq.OTAL_DSFQ i.e., total proportional sharing

through an empirical study later. Empirical evidence (in Section 4.3) indicates that
HYBRID-DSFQ works as expected for various work-
3.4 Hybrid Proportional Sharing loads. However, there are pathological workloads that
can violate the total service proportional sharing prop-
erty. For example, if a stream using two bricks knows its
data layout, it can alternate bursts to one brick and then
the other. UndelToTAL-DSFQ the first request in each

* cost(ph 1) (12)

The DSFQ algorithm using the delay function (12) de-
fines a new algorithm called YBRID-DSFQ Since the
delay undeHyYBRID-DSFQis no greater than the de-
lay in (11), the service rate at every brick is no less
than the rate under (11), thus the minimum per brick

UnderTOTAL-DSFQ Theorem 3 tells us that a stream
may be blocked at a brick if it gets too much service
at other bricks. This is not desirable in many cases

We would like to guarantee a minimum service rate for . .
burst would have received a large delay, corresponding

each stream on every brick so the client program caqo the service the stream had received on the other brick
always make progress. Under the DSFQ frameworkduring the preceding burst, but kyBRID-DSFQ the

l.e., formulae (5-6), this means that the delay must bedelay is truncated by the minimum share term in the de-

bounded, using a different delay function than the OneIay function. As a result, the stream receives more ser-

used mTOTAL_DSFQ. We next deyelop a delay function vjce than its weight entitles it to. We believe that this can
that guarantees a minimum service share to backloggeé . . : : -
e resolved by including more history in the minimum

streams on each brick. . .
. . share term, but the design and evaluation of such a delay
Let us assume that the weights assigned to streams are  ion i
unction is reserved to future work.

normalized, i.e.0 < ¢y < 1 andzf ¢; = 1. Sup-
pose that, in addition to the weight;, each streanf is . .
assigned a brick-minimum weigldi:';”", corresponding 4 Experimental Evaluation

to the minimum service share per brick for the stréam. \we evaluate our distributed proportional sharing algo-
We can then show that the following delay function will yithm in a prototype FAB system [20], which consists

guarantee the required minimum service share on each six bricks. Each brick is an identically configured

brick for each stream. HP ProLiant DL380 server with 2x 2.8GHz Xeon CPU,
, bp/dmin — 1 , 1.5GB RAM, 2x Gigabit NIC, and an integrated Smart

delay(p} 4) = 1f7 * cost(p 4) (11)  Array 6i storage controller with four 18G Ultral320, 15K

— 95 rpm SCSI disks configured as RAID 0. All bricks are

2Setting the brick-minimum weights requires knowledge of the ruhning SUSE 9-2_ Linux, kem_el 2_.6.8-24.10-smp. Each
client data layouts. We do not discuss this further in the paper. brick runs a coordinator. To simplify performance com-



parisons, FAB caching was turned off, except at the disk + stream f

Ievel 3 g4 stream g
A . é ..... -t /\/\/_/\,\_/,/\/\//\/\A/J\\/
The workload generator consists of a number of 3 MV”/V
clients (streams), each running several Postmark [15] in- gz P et
stances. We chose Postmark as the workload generator ™ el ‘ ‘ ‘ ‘
because its independent, randomly-distributed requests  ° Bumber of Postmack threads of stréam g %

give us the flexibility to configure different workloads

for demonstration and for testing extreme cases. Each

Postmark thread has exactly one outstanding request ing 02

the system at any time, accessing its isolated 256MB 3vo.15

logical volume. Unless otherwise specified, each vol-

ume resides on a single brick and each thread generate

random read/write requests with file sizes from 1KB to

16KB. The number of transactions per thread is suffi- %

ciently large so the thread is always active when it is on.

Other parameters of Postmark are set to the default val-

ues. Figure 8: Proportional sharing on one brick. ¢f:¢y=1:2;
With our work-conserving schedulers, until a streamlegend in (a) also applies to (b).

is backlogged, its 10 throughput increases as the num-

ber of threads increases. When it is backlogged, on th@ayout so that each Postmark thread accesses only one
other hand, the actual service amount depends on thrick. Streamf and streany both have 30 threads on
scheduling algorithm. To simplify calculation, we target prick A throughout the experiment, meanwhile, an in-
throughput (MB/sec) proportional sharing, and define thecreasing number of threads frogris processed at brick
cost of a request to be its size. Other cost functions suclB. Postmark allows us to specify the maximum size of
as |0/sec or estimated disk service time could be used age random files generated, and we tested the algorithm

(a) throughputs for two streams

01 P

ge latel

0.05 -

SN S
1

ave l‘g)

5 10 15 20
number of Postmark threads of stream g

(b) latencies for two streams

well. with workloads using two different maximum random
file sizes, 16KB and 1MB.
4.1 Single Brick Proportional Sharing Figure 9(a) shows that as the number of Postmark

threads from stream directed to brickB increases, its

We first demonstrate the effect ®©TAL-DSFQontwo  throughput from brickB increases, and the share it re-
streams reading from one brick. Streghtonsistently ceives at brickA decreases to compensate. The total
has 30 Postmark threads, while the number of Postmarkhroughputs received by streanfsand g stay roughly
threads for strearp is increased from 0 to 20. The ra- equal throughout. As the streaptbecomes more unbal-
tio of weights betweerf andg is at 1:2. As the data is anced between brickd and B, however, the throughput
not distributed, the delay value is always zero and this ilifference between streanfsand g varies more. This
essentially the same as SHQ)([12]. can be related to the fairness bound in Theorem 2: as

Figure 8 shows the performance isolation between thehe imbalance increases, so déeschcost™4*, and the
two clients. The throughput of streagis increasing and  bound becomes a little looser. Figure 9(5) uses the same
its latency is fixed untiy acquires its proportional share data layout but with a different file size and weight ratio.
at around 13 threads. After that, additional threads ddAs g gets more service oB, its throughput rises o3
not give any more bandwidth but increase the latencyfrom 0 to 175 MB/s. As a result, the algorithm increases
On the other hand, the throughput and latency of streanf’s share on the shared brick and its throughput rises
f are both affected by. Onceg gets its share, it has no from 40 MB/s to 75 MB/s, whileg’s throughput on4

further impact onf. drops from 160 MB/s to 125 MB/s. In combination the
throughput of both streams increases, whole maintaining
4.2 Total Service Proportional Sharing aliérato. _
The experiment in Figure 10 has a data layout with de-
Figure 9 demonstrates the effectiveness TaHTAL- pendencies among requests. Each thregaitesses all

DSFQfor two clients. The workload streams have ac- three bricks, while strearfiaccesses one brick only. The
cess patterns shown in Fig. 3. We arranged the dateesource allocation is balanced when streahas three
or more threads on the shared brick. Abas a RAID-

30ur algorithms focus on the management of storage bandwidth‘o data Iayout the service rates on the other two bricks
a full exploration of the management of multiple resources (including !

cache and network bandwidth) to control end-to-end performance i€if€ limited by the rate on the shared brick. This exper-
beyond the scope of this paper. iment shows thafoTAL-DSFQ correctly controls the
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Figure 9: Total service proportional sharing. f’s data is ~ Figure 11:Total service proportional sharing with multi-

on brick A only; g has data on both brickd and B. Asg  coordinator, ¢s:¢g=1:1

gets more service on the bricks it does not share witthe

algorithm increaseg’s share on the brick they do share; thus servation in Section 3.3.2 that multiple coordinators may
the total throughputs of both streams increase. smooth out a stream and reduce the unfairness.

(b) Four coordinators

4.3 Hybrid Proportional Sharing

24 . -_‘-,mewmxrm«rm‘wm«www The result ofHYBRID-DSFQ is presented in Fig. 12.
2 e o 7:::23 one brick The workload is the same as in the experiment shown
Ep) ‘VJ/ stream g, total in Figures 3 and 9: strearhaccesses bricd only, and
= /N goT T - streamg accesses botH and B. Streamsf andg both
U : : : . have 20 Postmark threads oh andg has an increas-

5 10 15 .
number of Postmark threads of stream g on one brick

ing number of Postmark threads éh We wish to give
) streamg a minimum share of /12 on brick A when it
Figure 10:Total service proportiona_l sharing with s_tri_ped is backlogged. This Correspond5¢t§”" = 1/12; based
data. qﬁf:qbg:l:l. g _has RAID-O_ logical volume striping on on Equation 12, the delay function foris
three bricks;f’s data is on one brick only.
. . . delay(p;A) = min { batchcost(p;A) - cost(p;A)7

total share in the case where requests on different bricks 10 % cost(pi_y)}
are dependent. We note that in this example, the sched- 9.4
uler could allocate more bandwidth on the shared brick syream¢ is served om4 only and thus the delay is al-
to streany in order to improve the total system through- \yays zero.
putinstead of maintaining proportional service; however, \yith HYBRID-DSFQ the algorithm reserves a min-
this is not our goal. imum share for each stream, and tries to make the to-

Figure 11 is the result with multiple coordinators. The tal throughput as close as possible without reallocating
data layouts and workloads are the same as in the expethe reserved share. For this workload, the service capac-
iment shown in Figures 3 and 9: two bricks, stregm ity of a brick is approximately 6MB/sec. We can see in
accesses only one, and streamaccesses both. The only Fig. 12(a) that if the throughput of streagron brick B
difference is that streamaccesses both brické and B is less than 4MBHYBRID-DSFQ can balance the to-
through two or four coordinators in round-robin order.  tal throughputs of the two streams. #geceives more

Using multiple coordinators still guarantees propor-service on brick3, the maximum delay part iHYBRID-
tional sharing of the total throughput. Furthermore, aDSFQtakes effect ang gets its minimum share on brick
comparison of Fig. 9, 11(a), and 11(b) indicates that asd. The total throughputs are no longer proportional to
the number of coordinators increases, the match betweeahe assigned weights, but is still reasonably close. Fig-
the total throughputs received lfyandg is closer, i.e., ure 12(b) repeats the experiment with the streams select-
the unfairness bound is tighter. This confirms the ob-ing between two coordinators alternately; the workload
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Figure 12:Two-brick experiment using HYBRID -DSFQ
Figure 13: Fluctuating workloads. Streamsf and g both

and data layout are otherwise identical to the single cohave the same number of Postmark threads on biicland
ordinator experiment. The results indicate tH¥BRID- streamg has 10 additional Postmark threads on brigk In

. . . . ddition, there is a streamthat has 10 on/off threads on brick
DSFQwork igned with multipl rdinator 2 '
SFQworks as designed with multiple coordinators too B that are repeatedly on together for 10 seconds and then off for

) 10 seconds. The weights are equgl:: ¢y : ¢ =1:1: 1.
4.4 Fluctuating workloads

First we investigate howoTAL-DSFQresponds to sud- firms several hyptheses. FigL!re 14(b) i§ the result on
den changes in load by using an on/off fluctuating work- Standard FAB without any fair scheduling. Not sur-
load. Figure 13 shows the total throughputs of the thredrisingly, the throughput curves are similar to the thread
streams. Steamg and g are continuously backlogged Curves in Fig. 14(a) except wheq the server is saturgted.
at brick A and thus the total throughputs are the samefigure 14(c) shows that single brick proportional sharing
When streant is on, some bandwidth on brick is oc-  Provides proportional service on brick but not neces-
cupied byh (h’s service is not proportional to its weight Sarily the total service. At time 250, the service dn
because of insufficient threads it has and thus it is notS NOt proportional becaugehas minimum threads aA
backlogged on brickB). As a result,g's throughput and is not backlogged. Figure 14(d) displays the effect of
drops. Thenf’s throughput follows closely after a sec- total service_proportional shgring. The total service rates
ond, because part gfs share ond is reallocated tg to match well in general. At times around 65, 100, 150,
compensate its loss aB. Detailed throughputs af on and 210, the rates deviate because one stream gets too
each brick is not shown on the picture. We also see thafuch service on other bricks, and its service/bdrops
as the number of threads (and hence the SFQ depth) iflose to zero. ThuFoTAL-DSFQ cannot balance the
creases, the sharp dropgis throughput is more signifi- total service. At time arounc_i 230-260, the service rates
cant. These experimental observations agree with the urife not close because streanis not backlogged, as was
fairness bounds oMOTAL-DSFQshown in Theorem 2, the case in Fig. 14(c). Finally, Fig. 14(e) confirms the
which increase with the queue depth. ef_“fect of hybrid proportional sharing. Comparing with
Next we examine the effectiveness of different propor-Fig- 14(d), HYBRID-DSFQ proportional sharing guar-
tional sharing algorithms through sinusoidal workloads.2ntées minimum share whaTAL-DSFQdoes not, at
Both streamg andg access three bricks and overlap on the cost of slightly greater deviation from total propor-
one brick only, brick4d. The number of Postmark threads tional sharing during some periods.
for each stream on each brick is approximately a sinu-
soidal function with different frequency; see Fig. 14(a).5 Conclusions
To demonstrate the effectiveness of proportional shar-
ing, we try to saturate brickl by setting the number of In this paper, we presented a proportional-service
threads on it to a sinusoidal function varying from 15 scheduling framework suitable for use in a distributed
to 35, while thread numbers on other bricks take valuestorage system. We use it to devise a distributed sched-
from 0 to 10 (not shown in Fig. 14(a)). The result con- uler that enforces proportional sharing of total service
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(e) Hybrid proportional sharing

Figure 14:Sinusoidal workloads ¢:¢,=1:1. The legend in
(a) applies to all the figures.

between streams to the degree possible given the work-
loads. Enforcing proportional total service in a distrib-
uted storage system is hard because different clients can
access data from multiple storage nodes (bricks) using
different, and possibly multiple, access points (coordina-
tors). Thus, there is no single entity that knows the state
of all the streams and the service they have received. Our
scheduler extends the SFEQ) [12] algorithm, which
was designed as a centralized scheduler. Our sched-
uler is fully distributed, adds very little communication
overhead, has low computational requirements, and is
work-conserving. We prove the fairness properties of
this scheduler analytically and also show experimental
results from an implementation on the FAB distributed
storage system that illustrate these properties.

We also present examples of unbalanced workloads
for which no work-conserving scheduler can provide
proportional sharing of the total throughput, and attempt-
ing to come close can block some clients on some bricks.
We demonstrate a hybrid scheduler that attempts to pro-
vide total proportional sharing where possible, while
guaranteeing a minimum share per brick for every client.
Experimental evidence indicates that it works well.

Our work leaves several issues open. First, we as-
sumed that clients using multiple coordinators load those
coordinators equally or randomly; while this is a rea-
sonable assumption in most cases, there may be cases
when it does not hold — for example, when some co-
ordinators have an affinity to data on particular bricks.
Some degree of communication between coordinators
may be required in order to provide total proportional
sharing in this case. Second, more work is needed to de-
sign and evaluate better hybrid delay functions that can
deal robustly with pathological workloads. Finally, our
algorithms are designed for enforcing proportional ser-
vice guarantees, but in many cases, requirements may be
based partially on absolute service levels, such as a spec-
ified minimum throughput, or maximum response time.
We plan to address how this may be combined with pro-
portional sharing in future work.
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