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Abstract— Countering Distributed Denial of Service (DDoS)
attacks is becoming ever more challenging with the vast resources
and techniques increasingly available to attackers. In this paper,
we consider sophisticated attacks that are protocol-compliant,
non-intrusive, and utilize legitimate application-layer requests
to overwhelm system resources. We characterize application-
layer resource attacks as either request flooding, asymmetric,
or repeated one-shot, on the basis of the application workload
parameters that they exploit. To protect servers from these
attacks, we propose a counter-mechanism that consists of a
suspicion assignment mechanism and a DDoS-resilient scheduler,
DDoS Shield. In contrast to prior work, our suspicion mechanism
assigns a continuous value as opposed to a binary measure to each
client session, and the scheduler utilizes these values to determine
if and when to schedule a session’s requests. Using testbed
experiments on a web application, we demonstrate the potency of
these resource attacks and evaluate the efficacy of our counter-
mechanism. For instance, we mount an asymmetric attack which
overwhelms the server resources, increasing the response time of
legitimate clients from 0.1 seconds to 40 seconds. Under the same
attack scenario, DDoS Shield improves the victims’ performance
to 1.5 seconds.

I. INTRODUCTION

Distributed Denial of Service (DDoS) attacks pose an ever
greater challenge to the Internet with increasing resources
at the hands of the attackers. Recent studies estimate that
farms of compromised hosts, popularly known as “botnets,”
are as large as 60,000 machines [9][22]. Moreover, the SYN
flood attack, the most popular DDoS attack to date, is giving
way to sophisticated application-layer (layer-7) attacks. In one
instance, an online merchant employed the “DDoS mafia” to
launch an HTTP flood towards his competitors’ web sites by
downloading large image files when a regular SYN flood failed
to bring the site down [11].

Many prior attacks have targeted network bandwidth around
Internet subsystems such as routers, Domain Name Servers, or
web clusters. However, with increasing computational com-
plexity in Internet applications as well as larger network
bandwidths in the systems hosting these applications, server
resources such as CPU or I/O bandwidth can become the
bottleneck much before the network [23]. Anticipating a future
shift in DDoS attacks from network to server resources, we
explore the vulnerability of Internet applications to sophisti-
cated layer-7 attacks and develop counter-attack mechanisms.
In particular, our contributions are (i) classification and experi-
mentation with new application-layer attacks, (ii) development
of a mechanism to assign suspicion measures to sessions
for scenarios with a potentially small and variable number
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of requests per session, and (iii) design and experimental
evaluation of DDoS Shield, a technique that provides DDoS
resilience by using suspicion measures and server load to
determine if and when to schedule requests to a server.

In studying new classes of attacks, we consider a well-
secured system that has defenses against both (1) intrusion
attacks, i.e., attacks which exploit software vulnerabilities such
as buffer overflows and (2) protocol attacks, i.e., attacks that
exploit protocol inconsistencies to render servers inaccessible
(e.g., hijacking DNS entries or changing routing). In such
a scenario, the only way to launch a successful attack is
for attackers to evade detection by being non-intrusive and
protocol-compliant, and yet overwhelm the system resources
while posing as legitimate clients of the application service.
Hence, the only system attributes available for the attacker to
exploit are those for the application workload.

We first explore the entire range of exploitable workload
parameters and characterize layer-7 resource attacks into three
classes: (1) request flooding attacks that send application-
layer requests at rates higher than that of normal sessions; (2)
asymmetric attacks that send high-workload request types; and
(3) repeated one-shot attacks in which the attacker spreads its
workload across multiple sessions instead of multiple requests
per session and initiates sessions at rates higher than normal.
For example, an HTTP flood can stress server resources as an
asymmetric attack if the attack sessions send requests involv-
ing high-computation database queries. We study these classes
via testbed measurements of attacks on servers and their hosted
web applications. We show that dynamic content presents a
substantial heterogeneity in request processing times among
request types which can be exploited to initiate asymmetric
attacks. While the above attack classes are known to exist
for HTTP floods that stress the network, our work is the first
to demonstrate vulnerability to these attack classes for server
resources and to implement and compare them experimentally.

Since the attackers mimic legitimate requests, attack ses-
sions are indistinguishable from legitimate sessions via sub-
layer-7 techniques. For instance, if the attackers use valid
IP addresses from botnets, both server and network attacks
would pass undetected by ingress-filtering approaches which
check for spoofed source addresses. Further, the server attacks
would pass undetected by mechanisms that only detect net-
work anomalies. Thus, we design a comprehensive suspicion
assignment mechanism to detect layer-7 misbehavior across
the parameters of session arrivals, session request arrivals and
session workload profiles. In contrast to traditional anomaly
detectors which output binary decisions while bounding the
detection and false-positive probabilities, we assign a contin-
uous measure of suspicion to a session which is updated after



every request. We establish a set of soundness principles that
a metric must obey in order to assign suspicion values con-
sistently across workloads with differing numbers of requests
per session.

Next, we design a counter-mechanism, DDoS-Shield, that
uses the suspicion assignment mechanism as an input to
a scheduler designed to thwart attack sessions before they
overwhelm system resources. The DDoS-resilient scheduler
incorporates the suspicion assigned to a session and the
current system workload to decide when and if a session is
allowed to forward requests. We develop scheduling policies
Least Suspicion First (LSF) and Proportional to Suspicion
Share (PSS) that incorporate suspicion into the scheduling
decision. As a baseline for comparison, we implement and
study suspicion-agnostic policies such as per-session Round
Robin and First Come First Serve among all requests. We
also demonstrate the importance of limiting the aggregate rate
(over all sessions) at which the scheduler forwards requests to
the application system, and we develop an online algorithm to
set this rate.

Finally, we mount the three classes of attacks on an ex-
perimental testbed hosting an online bookstore implemented
using a web server tier, application tier and database tier. We
emulate legitimate client workload through an e-commerce
benchmark [1]. Using this testbed, we perform a number of
experiments to characterize the potency of the attack classes
and evaluate the efficacy of DDoS-Shield. Our findings are the
following:

• Asymmetric workload attacks are more potent compared
to request flooding attacks, since they stress the servers
significantly more in comparison.

• The repeated one-shot variant of asymmetric attacks are
the most potent of the three attack classes due to their
ability to get a much larger query flood towards the
backend database tier.

• Experimental evaluation of DDoS-Shield indicates that
both the scheduling policy and scheduler service rate
are critical for an effective counter-DDoS mechanism.
The best performance is obtained under the suspicion-
aware schedulers, LSF and PSS, when the scheduler
service rate is appropriately limited to approximately 15
requests/second.

• Our experiments indicate that 100 legitimate clients that
have an average response time of 0.1 seconds under no
attack, are delayed to response times of 3, 10 and 40 sec-
onds under the request flooding, asymmetric and repeated
one-shot attacks, respectively. Furthermore, the efficacy
of DDoS-Shield is evident in that the performance under
each of these attacks is improved to 0.5, 0.8 and 1.5
seconds, respectively.

The remainder of this paper is organized as follows: In
Section II, we describe the victim, attacker, and defense
models we use to study layer-7 attacks. In Section III, we
describe our experimental testbed and characterize the per-
formance impact on legitimate client sessions due to the
three attack classes. In Section IV and V we present the
design of the suspicion assignment mechanism and DDoS-
resilient scheduler respectively and present their experimental
evaluation. Finally, we discuss related work in Section VI and
conclude in Section VII.

II. ATTACKER, VICTIM AND DEFENSE SYSTEM MODELS

In this section, we (a) describe the attacker model for
effecting the protocol-compliant, non-intrusive layer-7 attacks,
(b) present the victim system on which we quantify the
performance impact of these attacks and (c) outline a defense
model, DDoS Shield, for detecting and circumventing these
new attack classes.

A. Attacker Model

The goal of the attacker is to overwhelm one or more
server resources so that the legitimate clients experience high
delays or lower throughputs thereby reducing or eliminating
the capacity of the servers to its intended clients. The attacker
uses the application interface to issue requests that mimic
legitimate client requests, but whose only goal is to consume
server resources. We assume that the application interface
presented by the servers is known (e.g., HTTP, XML, SOAP)
or can be readily discovered (e.g., UDDI or WSDL).

We consider session-oriented connections to the server e.g.,
HTTP/1.1 session on a TCP connection with the server. We
assume that the attacker has commandeered a very large
number of machines distributed across a wide-range of geo-
graphical areas, organized into server farms popularly known
as “botnets.” For initiating a TCP session, an attacker can
either use the actual IP address of the machine or spoof an
address different from any of the addresses in the botnet.
Thus, we do not make any assumptions regarding the set of
IP addresses accessible by the attacker, and the attacker can
potentially use a different IP address for each new session
initiated.

We assume that the system has sufficient capacity to support
a number of concurrent client sessions much larger than the
number of machines N . Thus, if the attacker were to initiate
normal sessions concurrently from each of the N machines
from the botnet, the system could serve the sessions within
acceptable response times.

Using the workload parameters that the attacker can exploit
to effect layer-7 attacks, we characterize these attacks into the
following three classes:

• Request Flooding Attack: Each attack session issues
requests at an increased rate as compared to a non-
attacking session.

• Asymmetric Workload Attack: Each attack session
sends a higher proportion of requests that are more taxing
on the server in terms of one or more specific resources.
The request rate within a session is not necessarily higher
than normal. This attack differs from the request-flooding
attack in that it causes more damage per request by selec-
tively sending heavier requests. Moreover, this attack can
be invoked at a lower request rate, thereby requiring less
work from the attacker and making detection increasingly
difficult.

• Repeated One-Shot Attack: This attack class is a degen-
erate case of the asymmetric workload attack, where the
attacker sends only one heavy request in a session instead
of sending multiple heavy requests per session. Thus,
the attacker spreads its workload across multiple sessions
instead of across multiple requests in a few sessions. The
benefits of spreading are that the attacker is able to evade
detection and potential service degradation to the session
by closing it immediately after sending the request.



The asymmetric request flooding attack and its variants
exploit the heterogeneity in processing times for different
request types. The attacker can obtain the information about
server resources consumed by different legitimate request
types through monitoring and profiling. For this paper, we
assume the worst case scenario that the attacker knows the
full profiling data, and therefore can select requests such
that the amount of server resources consumed per request
is maximized. However, in general, this type of information
can only be obtained through profiling and timing the server
responses from outside. For instance, to obtain the average
server processing time per requested page, the attacker uses
a web-crawler to obtain the total (network+server) delay in
processing a request.

B. Victim Model

We consider a general victim model consisting of a multi-
resource pool of servers. In experiments, we focus on an e-
commerce application hosted on a web cluster, which consists
of multiple-tiers for processing requests, as shown in Figure 1.
We define an e-commerce session as an HTTP/1.1 session over
a TCP socket connection that is initiated by a client with the
web server tier. HTTP/1.1 sessions are persistent connections
and allow a client to send requests and retrieve responses from
the web-cluster without suffering the overhead of opening a
new TCP connection per request. Each request in a session
may generate additional processing in the application and the
database tiers, depending on the request (or request type). We
assume that a request consumes varying amount of resources
from each tier (possibly none), consisting of CPU, memory,
storage, and network bandwidth. Recall that the goal of the
attacker is to push resource usage in one of the tiers to its
maximum limit, so that the system capacity for serving clients
is diminished.

Internet

Servers
Web/Application

Servers
Database

Content Distribution Networks
(DNS or Akamai)

Reverse Proxy/

Load Balancers

Web Load Balancers

Database

Fig. 1. Victim system model: web cluster hosting a web application.

A legitimate HTTP/1.1 session consists of multiple requests
sent during the lifetime of the session. Requests are either
sent in a closed-loop fashion, i.e., the client sends a request
and waits for the response before sending the next request, or
they are pipelined, i.e., the client could send multiple requests
without waiting for their response and thus have more than
one request outstanding with the server. A page is typically
retrieved by sending one main request for the textual content
and several embedded requests for the image-files embedded

within the main page. Main requests are typically dynamic
and involve processing at the database tier while embedded
requests are static since they only involve processing at the
web-cluster tier.

A client request is processed as follows: First, the client’s
initial request for a connection is routed by a client-side
redirection mechanism such as DNS Round-Robin or Akamai
to a reverse-proxy server. The reverse proxy server parses the
request’s URL and routes the request to a web server typically
according to a load-balancing policy (e.g., using round robin
or more sophisticated policies as in [5]). If the request is for
a static web page or an image file, a server in the web tier
serves the requested page. If the request is for an e-commerce
functionality, it is served by an application script such as
PHP, JSP or Javascript. Such requests typically consist of one
or more database queries, the results of which are collated
together to produce the response page (dynamic requests).
Each database query emanating from a dynamic request is
forwarded to a database server using a load-balancing strategy
[2][23].

Each of the tiers in the system consist of multiple resources:
computation, storage and network bandwidth, which are lim-
ited in amount. We assume that all tiers continuously monitor
the resources in the tier and periodically generate resource
utilization reports as well as overall system statistics at the
application layer such as throughput and response time. The
system is said to be under a resource attack when a surge in
a resource’s usage is accompanied by reduction in throughput
and increase in response time without a DDoS attack detected
at lower layers.
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Fig. 2. Defense system model: DDoS-Shield

C. Defense Model

In this paper, we introduce a counter-DDoS mechanism
to protect the application from layer-7 DDoS attacks and
provide adequate service to legitimate clients even during an
attack. The defense model consists of a DDoS-Shield which is
integrated into the reverse-proxy and thus intercepts attack re-
quests from reaching the web-cluster tiers behind the reverse-
proxy. The DDoS-Shield examines requests belonging to every
session, parses them to obtain the request type and maintains
the workload- and arrival-history of requests in the session.
Figure 2 shows the system architecture for DDoS-Shield that
consists of: (1) Suspicion assignment mechanism which uses
the session history to assign a suspicion measure to every
client session i as described in Section IV; and (2) DDoS-
resilient scheduler that decides which sessions are allowed
to forward requests and when depending on the scheduling
policy and the scheduler service rate, as discussed further in
Section V.



III. VULNERABILITY TO ATTACKS

In this section, we characterize the effectiveness of the
layer-7 DDoS attacks in overwhelming the server resources on
our e-commerce application. We first quantify the variation in
processing times for different requests and then mount each
of the three classes of layer-7 DDoS attacks to demonstrate
the potency of each attack class.

A. E-Commerce Testbed

The example e-commerce application that we consider is
an online bookstore hosted on a multi-tiered architecture
consisting of three web servers and one database server. We
use Apache to implement the web server, PHP scripting to
implement the application logic, and MySQL to implement
the database server. The networking infrastructure consists of
100 Mbps links for both the access links to the system and for
the connections between tiers. The servers are Intel Pentium
IV 2.0 GHz processor machines running Linux 2.4.18 kernel
with 512 MB SDRAM and a 30 GB ATA-66 disk drive.
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Fig. 3. Processing times for different dynamic content requests in online
bookstore application.

Recall that the effectiveness of an asymmetric workload
attack arises from large differences in processing times of
different request types. To explore whether this is possible for
our online bookstore implementation, we profiled the process-
ing times of individual request types to identify requests with
high resource consumption on the server. Figure 3 shows the
response times perceived across different types of requests for
the online-bookstore application on our experimental system.
We note that the most expensive request is about 8 times
more expensive than the least. Expensive request types such as
“BestSellers” involve heavy CPU processing on the database
server since they initiate queries that involve table join oper-
ations across multiple tables followed by a sort operation to
obtain a list of top-selling books.

Next, we attempt to quantify the potency of various layer-7
DoS attacks in our system. We use the following metrics to
measure the potency of an attack: (1) CPU utilization on the
web and database tiers – the main resource being attacked in
our experiments; (2) average response time of requests as an
indication of the slow down a legitimate client will experience;
and (3) average throughput in requests/second achieved per
normal client session. We also quantify the ease of mounting
a layer-7 DoS attack at the attacker end point by: (1) the
number of unique IP addresses required and; (2) the aggregate
bandwidth needed to launch the attack.
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Fig. 4. Probability of occurence of a request type in a client session for
browsing, shopping and ordering sessions. Browsing sessions send only 5%
requests for pages that involve write queries to the database server, while
shopping and ordering sessions send an increasing percentage of such requests.

We emulate the workload of a legitimate client session
using the session types shown in Figure 4 based on the
TPC-W benchmark [1]. In each experiment, we use 100
HTTP/1.1 sessions, 33% in each of browsing, shopping and
ordering profiles, to represent the legitimate client population.
Legitimate clients generate new sessions using an exponential
distribution with mean of 0.2 seconds. Requests are submitted
to the web servers using exponentially distributed think times
with a mean of 7 seconds between receiving a response and
issuing the next request.

B. Attack Potency

We now quantify the potency of each of the three attacks
in our e-commerce testbed. We generate these attacks as
follows: First, a regular request flooding attack is mounted
by decreasing the think-times between requests to values
lower than the normal 7 seconds. For maximal potency, we
decrease the think-times to 0, thereby, generating the requests
as fast as possible. Second, the asymmetric workload attack
is generated by using one of the expensive request types,
BestSellers. We mount this attack with the normal think-
time of 7 seconds between requests first, and then combine
it with the request flooding attack by reducing the think-
times to 0. For each experiment involving request flooding
or asymmetric request flooding attacks, we vary the number
of attack sessions from 0 to 300 sessions to simulate “no
attack” and “large attack” scenarios respectively. Similar to
the behavior of legitimate sessions, each attack session sends
requests in a closed loop fashion, i.e., by waiting for the
response for previous request before initiating the next request.
We also implement and compare against an open loop variation
of these attacks, wherein the attacker only waits for a pre-
configured time varied in the range [0-7] seconds, between
issuing two consecutive requests.

Finally, the repeated one-shot attack is mounted by repeat-
edly generating single request sessions for the BestSellers
script using inter-arrival time between sessions smaller than
the legitimate mean 0.2 seconds. In this attack, the attacker
opens a session, closes it immediately after sending one
request (hence, one-shot) and opens yet another session af-
ter waiting for a pre-configured inter-session time (hence,
repeated).



 0

 2

 4

 6

 8

 10

 12

 0  50  100  150  200  250  300A
v
e

ra
g

e
 r

e
s
p

o
n

s
e

 t
im

e
 o

f 
n

o
rm

a
l 
s
e

s
s
io

n
s
 (

s
e

c
)

Number of additional sessions

Normal sessions
Request flooding attack
Asymmetric request flooding attack

(a) Average response time (sec)

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0  50  100  150  200  250  300

A
v
e

ra
g

e
 t

h
ro

u
g

h
p

u
t 

p
e

r 
 n

o
rm

a
l 
s
e

s
s
io

n
 (

re
q

u
e

s
ts

/s
e

c
)

Number of additional sessions

Normal sessions
Request flooding attack
Asymmetric request flooding attack

(b) Throughput (requests/sec)

 0

 2

 4

 6

 8

 10

 0  50  100  150  200  250  300

A
tt

a
c
k
e

rs
 r

e
q

u
e

s
t 

b
a

n
d

w
id

th
 (

M
b

p
s
)

Number of additional sessions

Request flooding attack
Asymmetric request flooding attack (open-loop)
Asymmetric request flooding attack (closed-loop)

(c) Attacker request bandwidth (Mbps)

 0

 20

 40

 60

 80

 100

 0  50  100  150  200  250  300

A
v
e

ra
g

e
 C

P
U

 l
o

a
d

 
 o

n
 d

a
ta

b
a

s
e

-t
ie

r

Number of additional sessions

Normal sessions
Request flooding attack
Asymmetric Request flooding attack

(d) Database CPU load

 0

 20

 40

 60

 80

 100

 0  50  100  150  200  250  300

A
v
e

ra
g

e
 C

P
U

 l
o

a
d

 
 o

n
 w

e
b

-t
ie

r

Number of additional sessions

Normal sessions
Request flooding attack

Asymmetric Request flooding attack

(e) Web Server CPU load

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0  50  100  150  200  250  300

A
g

g
re

g
a

te
 r

e
s
p

o
n

s
e

 b
a

n
d

w
id

th
 (

M
b

p
s
)

Number of additional sessions

Normal sessions
Request flooding attack
Asymmetric request flooding attack

(f) Aggregate response traffic (Mbps)

Fig. 5. Effect of most potent request flooding attack (attacker think-time=0 seconds) and asymmetric request-flooding attack (attacker uses “BestSellers”
script and think-time=0 seconds) on 100 normal sessions. The x-axis refers to the number of additional sessions used in an attack. The baseline case is
“Normal sessions” which corresponds to the additional attack sessions behaving exactly as the normal sessions.

Figure 5 shows the results from the experiments designed to
quantify the potency of request flooding and the asymmetric
workload attacks. Our results in Figure 5(a) indicate that the
response time of normal sessions increases from 0.1 seconds
under normal load to as high as 3 and 10 seconds when there
are 300 attack sessions in the request flooding and asymmetric
request-flooding attacks respectively. Thus, assuming that user
patience for downloading a web page is 5 seconds [6], an
asymmetric attack would also drive legitimate users away from
the web site. Figure 5(b) shows that the throughput of each
normal session in terms of requests completed per second
per session also drops drastically from 0.14 to 0.065 and
0.042 under request flooding and asymmetric request-flooding
attacks respectively. We will later see that the special form of
this attack, the repeated one-shot attack, is much more potent.

An important characteristic of the potent asymmetric work-
load attack is that it is inherently a low-rate attack as it
requires a fewer number of attack sessions to cause damage
equivalent to a request flooding attack. Figure 5(c) shows
that an attacker can cause similar damage using a closed
loop asymmetric workload attack at a rate of 0.4 Mbps
compared to using a request flooding attack at a rate of ≈ 4
Mbps, representing an order of magnitude higher bandwidth
consumption on the attacker side. A low-rate attack is harder
to detect than a request flooding attack, thereby complicating
the defenses. Also, all attacks are quite easy to implement
since (1) they require access to approximately 300 unique
IP-addresses, easily obtainable using current-day server farms

or botnets and (2) the maximum aggregate bandwidth needed
to launch an attack is 5 Mbps upstream for requests and 26
Mbps downstream for response traffic, easily achievable using
current-day access networks.

Figure 5(d) and Figure 5(e) illustrate why asymmetric
request-flooding attack is more potent than normal request
flooding: the CPU of the database server quickly becomes a
bottleneck under the asymmetric workload attack. In contrast,
the normal request flooding attack never makes the database
CPU the bottleneck and only succeeds in increasing the web
server CPU loads to as high as 70%. In the online-bookstore
implementation, the database server is more sensitive to heavy
loads than the web server, as a result, the asymmetric request-
flooding attack delays normal sessions significantly more.

We note that none of the attacks we used overwhelm the 100
Mbps network-access link to the cluster. Figure Figure 5(f)
shows that the aggregate bandwidth used at the network is
between 8 Mbps and 31 Mbps. The bandwidth consumption
of asymmetric workload attack is significantly lower as the
database server quickly becomes a bottleneck and limits the
bandwidth usage.

Figure 5(a) also shows that the increase in response times
is not caused by the system being overloaded due to too many
client sessions; the slowdowns are directly attributable to the
system doing more work as a response to attack requests.
Observe that the response times for the normal sessions are
almost constant at 100 msec when the attackers behave exactly
like normal sessions, i.e., have the same workload as well as
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Fig. 6. Variations in attacker strategies. The figures show the performance impact on 100 normal sessions. In (a), the attacker uses 200 attack sessions to
launch a request flooding (browsing profile) and asymmetric request flooding (BestSellers script) attack, while varying the request inter-arrival times as [0-7]
seconds. In (b), the attacker uses 300 attack sessions sending requests as fast as possible, while varying the attack workload. In (c), the attacker opens one
session at a time, sending one BestSellers request per session and varies the inter-session time from [0-0.5] seconds.

think-time profiles (as represented by the “normal sessions”
line).

We now look at the potency of the repeated one-shot attack,
a special form of the asymmetric workload attack. Figure 6(c)
shows that in the most potent form of the attack, when the
attacker opens a new session immediately after closing the
previous session, the response time per normal client session
increases to as high as 40 seconds, a slowdown by four orders
of magnitude. It is the most potent form from amongst the
attacks we studied and underlines the efficiency of asymmetric
workload attacks. The repeated one-shot attack is successful in
sending a larger query flood towards the database server, since
after being blocked on a session, the attacker opens yet another
session and sends another request which translates into more
queries towards the database server. This query flood leads
to much higher queuing delays at the database server which
explains the higher potency for repeated one-shot attacks. This
behavior is depicted in Figure 7, where 90% of queries arrive
within 10 msec of the previous query for the repeated one-shot
attack, compared to 80% for the asymmetric workload attack.

Finally, it may appear that an attack that pipelines requests
without waiting for their responses would cause more damage
than the attack which sends its requests in a closed-loop.
However, Apache web servers only service one request per
session at a time. Hence, even though an attack session may
send multiple requests, they end up waiting in Apache’s per-
session queue, until Apache has completely serviced the last
request, which may involve sending database queries and
receiving their responses. As a result, attackers that generate
requests in an open-loop without waiting for the responses to
arrive are only slightly more effective than closed-loop attack
sessions. Moreover, these open loop attacks are higher rate
attacks and hence easily detectable compared to closed loop
attacks. Observe from Figure 5(c), that an asymmetric open
loop attack sends ≈ 4 Mbps of request traffic compared to the
much lower 0.4 Mbps by an equivalent closed loop attack, for
similar damage.

C. Attacker Strategies

Since the most potent attacks are also the most deviant from
normal behavior and hence most easily detectable, the attacker
may employ lower-potency attacks to evade detection and

hence guarantee success. Next, we assess the damage caused
by these lower-potency attacks.

• Variable request-arrival rate: Instead of sending requests
as fast as possible (attack think-time=0 sec), the attacker
decreases its request-rate. Observe from Figure 6(a), that
the asymmetric request-flooding attack still causes similar
damage to the normal sessions even when the attack
sessions send requests at periods as large as 7 seconds.
This validates our hypothesis that asymmetric attacks are
more potent due to their workload-asymmetry rather than
rate-asymmetry.

• Variable session workload: Instead of sending only the
heaviest BestSellers requests in a session, the attacker
morphs its sessions into profiles increasingly similar to
the normal profiles. Thus, with reference to Figure 3,
suppose an attacker selects the following request types
in decreasing order of processing times: BestSellers
> NewProducts > Home > ProductDetail > Search.
We investigate the following attacker strategies: (1) B:
100% BestSellers requests; (2) B-N : equal number of
BestSellers and NewProducts requests and similarily; (3)
B-N -H; (4) B-N -H-P ; (5) B-N -H-P -S. Figure 6(b)
shows the damage caused to 100 normal sessions by
300 attack sessions. In each experiment, the attack ses-
sions send requests as fast as possible using one of
the workload profiles mentioned above. As observed,
the damage decreases consistently as the attack sessions
dilute the proportion of the heaviest BestSellers requests,
approaching the potency of the normal request flooding
attacks which have the same workload profile as the
legitimate clients.

• Variable inter-session arrival time: In the repeated one-
shot attack, the attacker may emulate slower inter-session
rates by increasing the waiting time between closing
and opening the next session. Figure 6(c) shows that
the attack potency decreases consistently with increasing
inter-session time between attack sessions. Furthermore,
when the attack session uses the same inter-arrival time
as normal sessions (0.2 seconds), there is no performance
degradation.
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request-flooding corresponds to 300 attack sessions with request think-time
of 0 seconds, generating BestSellers requests. The repeated one-shot attack
corresponds to an attack session being opened immediately (0 seconds) after
closing the previous session.

IV. SUSPICION ASSIGNMENT

Because attackers cannot be distinguished from non-
malicious clients with 100% certitude, our objective is to
provide a mechanism to tag each session with a continuous
measure of suspicion. In our architecture, this value is then
used by a request scheduler to determine if and when to service
a particular request.

We formulate the suspicion-assignment problem by first
performing measurements to characterize the set of distribu-
tions that define legitimate behavior. We then calculate the
suspicion of a session on the basis of the probability that it was
generated from one of the legitimate distributions. Recall from
Section III that attacks succeed by altering either of the session
parameters of session inter-arrival time, request inter-arrival
time or session workload-profile. Thus, we design suspicion
assignment techniques to assign a suspicion measure to a ses-
sion with respect to each of these parameters. These individual
values are then combined into one suspicion measure for the
session.

First, we describe an offline phase in which we build
legitimate client behavior profiles using system logs, which
are assumed to be un-influenced by attacks. Next, we describe
suspicion assignment techniques corresponding to each of the
three kinds of deviations from normal behavior, followed by
an algorithm to combine their outputs. Finally, we conclude
by presenting testbed results to evaluate the performance of
our suspicion assignment techniques.

A. Legitimate Client Profiles

In this phase, we extract information from system logs
to build profiles for legitimate client behavior with respect
to session inter-arrival times, request inter-arrival times, and
session workload profile. The system logs store the number of
requests per session and the resources consumed by a request
for each of the resources: CPU, disk and network bandwidth.
We assume stationarity in the system logs. This assumption
can be relaxed and the time-of-day effects can be incorporated
using standard techniques from time-series analysis.

• Session Inter-Arrival Distribution: We extract the ag-
gregate session inter-arrival times to obtain the empirical
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P (Xn ≤ x) with varying session lengths or sample sizes n.

distribution A. Due to our workload generator, A is
exponential with mean 0.2 seconds.

• Request Inter-Arrival Distribution: First, we extract all
sessions of length smaller than or equal to n requests.
Next, we use the request inter-arrival times of these
sessions and obtain an empirical distribution of request
inter-arrival times: Xn. This is done for all values of
n = [2, 60] as shown in Figure 8. With increasing sample
size n, Xn tends to an exponential distribution with mean
of 7 seconds, corresponding to the distribution used in our
workload generator.

• Session Workload Profile: Using the resource con-
sumption for a request for each resource type (CPU,
disk, network), we use a standard centroid-clustering
algorithm [7][20] to obtain workload profiles for legit-
imate sessions as follows: First, requests with similar
resource consumption for a resource are grouped into
several request-resource classes. Next, sessions with a
similar proportion of requests per request-resource class
are grouped into several session types.
Recall that in our system, the attacks overwhelm the CPU
resources on the database tier. Hence, we extract the
database CPU clock cycles consumed by each request
from the logs and cluster requests with similar CPU uti-
lization. Starting with all the requests from the logs, each
defining its own cluster, we group requests with similar
CPU utilization at every iteration to obtain a decreasing
number of clusters. This is done until a normalized ratio
between the inter- and intra-cluster distances [7] reaches
a local maxima, thus obtaining a set of r request types:
∪r

i=1{ai}; identified by their average CPU utilization.
Similarly, sessions defined as a histogram on the set
∪r

i=1{ai} of request classes, are clustered to obtain an
optimal set of c session types: ∪c

j=1{Gj}.
In our example online-bookstore implementation, the
clustering algorithm groups requests into 14 request
classes. Incidentally, each of these request classes also
corresponds to a particular type of page that was be-
ing requested, e.g., Home and BestSellers. Sessions are
clustered into 3 session types, identified as: browsing,
shopping and ordering (see Figure 4).

B. Detection of Session Arrival Misbehavior

Recall that a repeated one-shot attack’s potency is due to the
higher than normal session arrival rates. Hence, detection of



these attacks is based on detecting increases in session inter-
arrival times. Upon the arrival of a new session i, we first
calculate the difference between its arrival time and that of the
last session: αi. Then, using the distribution A for legitimate
session arrival times, we assign it a seed suspicion fsession(i)
as the probability that we would have observed a session inter-
arrival time less than αi: fsession(i) = 1 − P (A ≤ αi).

This method has high false positives since a legitimate ses-
sion that arrives in between two consecutive one-shot sessions
would also be assigned a high seed suspicion. However, in the
latter half of this section, we present an algorithm to reduce
the performance impact due to these false positives.

C. Detection of Request Arrival Misbehavior

A request flooding attack succeeds by sending requests at
rates higher than normal. Hence, detection of these attacks
is based on detecting decreases in inter-arrival time between
successive requests in a session.

On observing the nth request in a session, we assign its
suspicion as follows: (1) calculate the mean inter-arrival time
µ over n requests seen in the session so far; (2) use sample
distribution Xn shown in Figure 8 to assign suspicion as:
frequest(i) = 1−P (Xn ≤ µ). Thus, the suspicion measure for
an attack-session which sends requests once every 1 seconds
would be 0.8 after 5 observations, quickly increasing to 0.92
after 10 observations.

D. Detection of Session Workload Misbehavior

Recall that in asymmetric attacks, the attacker exploits
heterogeneity in the server processing times of requests and
selectively sends more requests towards the heavy request
classes. Thus, a system under attack would see sessions with a
higher than normal proportion of requests for certain request
classes. Hence, detection of asymmetric attacks is based on
detecting deviations in the workload profile of sessions.

Given, a set ∪c
j=1{Gj} of c ideal session types, detection

of workload misbehavior is formulated as an online estimation
of the probability that the requests belonging to a session is
distributed as one of the legitimate or ideal session types Gj .
Initially, we assume there is only one ideal session-type G.
Due to the discrete number of request types, an equivalent
problem is observing a series of throws of a dice with r
faces and generating distribution G, and estimating whether
the observed series is generated from the distribution G.

Given an ideal session type G, a suspicion measure assigns
suspicion numbers to a session s by using (1) the length of
the session n and (2) the deviation d of the session from ideal
behavior as captured by a distance metric between the session
type and the ideal type. Next, we develop a framework for
soundness of a workload suspicion measure to ensure consis-
tency in assignment of suspicions across workload deviations.

A desirable distance metric disassociates session length
(corresponding to the number of requests observed) from
deviation and assigns sessions which have the same deviation
from ideal type, an equal distance, irrespective of their lengths.
The other properties that we desire in a distance metric are
that distance grows with deviation from the ideal type and
distance between a type and itself is 0. We develop an intuitive
Residue Factor (RF) distance metric, as a function of the
number of times a session behaves well, i.e., follows the ideal
type and the times it does not. To illustrate the generality of
our suspicion assignment methodology in allowing for the use

of any appropriate distance metric, we also consider a well-
known metric from information theory, the Kullback Leibler
(KL) distance [10].

Let σ = ∪r
i=1{ai} denote the set of r request classes.

Denote a session s as a histogram on the number of requests
n(ai) seen per request class: s = ∪r

i=1{n(ai)}. Similarly,
define a session type T (s) as a histogram on the fraction

of requests N(ai) = n(ai)
n

seen per request type: T (s) =
∪r

i=1{N(ai)}; where n is the total number of requests seen

in the session: n =
r∑

i=1

n(ai). Further, define the ideal session

type G = ∪m
i=1{G(ai)}, where G(ai) denotes the fraction of

requests of request type ai and
r∑

i=1

G(ai) = 1.

1) Distance Metrics: We define Residue Factor (RF) dis-
tance by extracting the greatest common factor (gcf) of G
present in session s: gcf = min

i
�n(ai)/G(ai)�. Now, define

residue res =
r∑

i=1

{n(ai) − gcf G(ai)}.

Definition 1: The RF-distance metric between a session s
and ideal type G is defined as:

RF (s||G) =
res

gcf
(1)

Intuitively, the greatest common factor and residue represent
the subtypes within session s that are good and bad with
respect to the type G. Hence, the RF-distance penalizes a type
for deviating away from G (as captured by the residue) while
rewarding it in proportion to the length for which it was well-
behaved (as captured by gcf ). We handle the case where there
is no good subtype, i.e., gcf = 0 separately.

Definition 2: The KL distance between the session type
T (s) characterizing a session s and the ideal distribution G
is defined as:

KL(T (s)||G) =
∑

ai∈σ

N(ai) log
N(ai)

G(ai)
. (2)

Observe that both KL-distance and RF-distance metrics
are not distance metrics in the strict sense because they
don’t obey the triangle inequality. We illustrate these metrics
with an example on two request classes: σ = {0, 1} and a
Bernoulli ideal distribution G having probabilities (0.5,0.5).
If a session s has the same type as G, then both distance
metrics assign distance 0. In contrast, sessions originating from
a Bernoulli (0.8, 0.2) distribution and having types such as
(4, 1), (8, 2)...k(0.8, 0.2) are assigned KL-distance of 0.193
and RF-distance of 1.5, irrespective of length. Moreover, their
distance is less (on average) than that assigned to sessions
originating from Bernoulli (0.9, 0.1) distributions, in which
case the average KL-distance is 0.368 and RF-distance is 4.

2) Soundness: A suspicion measure f is said to be sound,
and hence consistent in assigning suspicion across workload
misbehavior, if it obeys the following properties:

• Zero-Distance Property: A session s with the same type
as the ideal session type is always assigned a suspicion
number of 0, irrespective of its length n.

T (s) = G =⇒ f(s) = 0 ∀n ∈ [1,∞) (3)



That is, if a session has the same type as the ideal, its
deviation from the ideal type is 0, and hence its suspicion
is 0.

• Distance-Proportionality Property: Amongst all ses-
sions of the same length n, a session which deviates more
from the ideal session type is assigned a higher suspicion.
Thus, given two sessions s1 and s2 of lengths n1 and n2

and distances from ideal type d1 and d2 respectively:

n1 = n2, d1 > d2 =⇒ f(s1) > f(s2) (4)

That is, greater deviation from the ideal type signifies
greater suspicion.

• Length-Proportionality Property: If two sessions have
the same type which is different from the ideal type,
then the session with greater length is assigned higher
suspicion. Thus, given two sessions s1 and s2 of lengths
n1 and n2 and distances from ideal type d1 and d2

respectively:

T (s1) = T (s2) 
= G, n1 > n2 =⇒ f(s1) > f(s2)
(5)

That is, with an increased number of observations, the
suspicion metric converges towards its true value.

There are several possible measures f which satisfy the
properties of soundness. We next consider a class of suspicion
measures which are derived directly from the properties of
soundness, and hence correct, while also being computation-
ally efficient.

3) Length Distance Product (LDP) Measure:

Definition 3: Define a Length Distance Product (LDP)
measure as one which assigns suspicion to a session s of type
T (s) as the product of its length and distance from the ideal
type G. Substituting by the two distances of KL-distance and
RF-distance considered in this paper, we have the following
equivalent measure definitions:

fKL
L (s) = nKL((T (s)||G)

fRF
L (s) = nRF (S||G)

(6)

If there are multiple ideal distributions or types: ∪c
j=1{Gj},

each of them equally likely then the LDP measure is defined
with respect to the distribution which is the closest in terms
of distance:

fKL
L (s) = n min

j
(KL( (T (s)||Gj) ))

fRF
L (s) = n min

j
(RF ( (s||Gj) ))

(7)

Since by definition the LDP measures are proportional to
distance and length, it is easy to see that they obey all the
properties of soundness. The suspicion values assigned by
LDP measures are no longer bounded between 0 and 1, but it
is easy to normalize them with a large number.

Our online bookstore implementation consists of three ideal
distributions: Gbrowsing , Gshopping and Gordering as shown
in Figure 4. Figure 9 shows the average KL-distance of a
browsing session with respect to Gbrowsing with increasing
number of requests n. Note that the KL-distance of a legit-
imate session with its ideal distribution converges to 0 with
increasing number of requests n.
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Fig. 9. Mean of KL-distance of “browsing”, “shopping” and “ordering”
sessions with increasing sample-sizes n.

4) Assignment of Net Suspicion: We next describe an
algorithm to aggregate the suspicion measures across the
various misbehaviors into one suspicion measure per session.
Given a session s, denote the seed suspicion that was assigned
to this session on its arrival by fsession(s). As the session
proceeds in sending requests, after observing n requests,
it is assigned a suspicion measure by each of the request
arrival and workload misbehavior detectors as: fn

request(s)
and fn

L(s). Thus, using a suspicion weighting parameter
0 ≤ β ≤ 1, we define the net suspicion measure fn(s) as
follows:

fn(s) = fsession(s) ∗ (β fn
L(s) + (1 − β) fn

request(s)) (8)

Note that net suspicion is within 0 and 1, and has the following
desirable features:

• As discussed earlier, there is a high false-alarm rate in the
session arrival misbehavior detector, and hence legitimate
sessions which get caught between successive one-shot
attack sessions may be flagged with a high seed suspicion.
Hence, if the session was really legitimate, then it would
obey the workload and request-arrival profiles and hence
would get a chance to improve its suspicion. In contrast,
if the session is part of a repeated one-shot attack then it
will be given a high seed suspicion enabling the system
to service it with lower priority.

• The suspicion of a session with respect to workload- or
request-arrival suspicion is weighted by the parameter
0 ≤ β ≤ 1, which is set depending on which of
the two suspicion measures has potential for greater
damage to the system. We illustrate with an example:
consider two sessions i and j with suspicion values
(fL, frequest) as (0.2, 0.8) and (0.8, 0.2) respectively. If
workload-misbehavior is considered more potent, then
weighing them with β > 0.5 would consider session
i more suspicious. Similarly, if request misbehavior is
considered more potent, then setting β < 0.5 would
consider session j as more suspicious. We chose to weigh
both misbehaviors equally, and hence β = 0.5 in our
system.

5) Performance of Suspicion Assignment: We next provide
numerical results for the performance of the suspicion as-
signment techniques on attacks launched against the online-
bookstore implementation. Figure 10 shows the behavior of
suspicion measure with an increasing number of requests in
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Fig. 10. Average suspicion of a normal or attack session with increasing number of requests seen in the session.

a session. Notice that the scheme obeys the properties of
soundness in that the suspicion of a session either converges
to 0 or 1 with more observations, depending on whether the
session is legitimate or malicious. We make the following
observations:

• In either request flooding or asymmetric attacks, the
attack sessions can be distinguished from normal sessions
after 4 requests on average enabling counter-DDoS mech-
anisms to quickly punish attack sessions.

• Normal sessions converge to suspicion of 0 with respect
to request-arrival and workload after 17 and 57 requests
respectively as seen from Figure 10(a),(b).

• A request flooding attack session sending requests at
think-times of 0 seconds is detected with certitude of 1.0
after 5 requests on an average. Moreover, the lower the
attack rate i.e., the higher the value of think-time used by
an attack session, the more observations needed to detect
it with certainty.

• An asymmetric attack session sending BestSeller requests
is detected with suspicion value 1.0 after 8 requests on
average. Moreover, if the attacker morphs its identity by
mixing other request types in an attack session, then
the number of observations needed to detect the attack
session with certainty increases.

• Attack sessions involved in repeated one-shot attack
of highest potency (inter-session time=0) are assigned
seed suspicion of 0.95 on an average. Normal sessions
also start with similar seed suspicions but the effect of
high initial suspicion is diluted by the lower suspicions
assigned to them by the request-arrival and workload
suspicion assignments.

V. SCHEDULER DESIGN FOR DDOS-SHIELD

In this section, we present the DDoS-resilient scheduling
policy of DDoS-Shield, which combines the continuous mea-
sure of suspicion assigned by our suspicion mechanism with
the current system workload to decide whether and when a
session is allowed to forward requests (see Figure 2). The
DDoS-resilient scheduler is integrated into the reverse proxy,
and can thus intercept requests belonging to malicious sessions
before they overwhelm system resources.

A. Aggregate Scheduling Rate and Eligibility

The maximum aggregate rate at which the scheduler for-
wards requests to the web cluster is a configurable parameter

termed the scheduler service rate: r requests/second. We
will show that an appropriate setting of rates yields higher
performance. However, setting the rate too low results in an
under-utilized backend whereas setting it too high results in all
requests (including malicious ones) being sent to the backend.

Scheduled

Send Embedded−Requests

Receive response for Main−Request

Send Embedded−Requests

Scheduler
Eligible for

Send Main−Request

All Embedded−Only
Allow Allow

Fig. 11. State Diagram for a session in scheduler queue

Each session has a backlog queue for requests which haven’t
been forwarded to the web cluster, and requests are dropped
using a Drop-Tail policy when the length of the queue exceeds
a configurable parameter per-session queue length: l. At rate
r, the scheduler picks a session from amongst the eligible
sessions and forwards its Head-of-Line (HoL) request to the
web cluster.

We determine the eligibility criterion for a session by
allowing only one outstanding main request per session. Recall
that main requests are typically requests for the dynamic page
and are followed by embedded requests for static content,
typically image files that are embedded in the page. Thus,
a session is considered eligible for scheduling only if its last
main request has been serviced by the web cluster and the
response sent to the client. This is in agreement with the
behavior of the Apache web server, which also services only
one main request per session at any time.

Figure 11 shows the state diagram for a session in the
scheduler queue. A new session starts in the state Allow All
and once it is scheduled by the scheduler, its main request
is forwarded to the web tier, after which the session’s state
is changed to Allow Embedded-Only. In accordance with the
HTTP/1.1 specification for pipelining, any embedded requests
sent by the client are forwarded to the web tier, irrespective of
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Fig. 12. Effect of various scheduling policies and scheduler service rates on 100 normal sessions, in the presence of 300 additional attack sessions. In
(a) we show performance under most-potent request flooding attack while (b) and (c) show performance under most-potent asymmetric attack. The baseline
case, “Normal sessions” corresponds to the scenario where the additional attack sessions behave exactly as normal sessions. Observe that best performance is
obtained by the suspicion aware schedulers (LSF and PSS) when the service rate is in the following ranges: (a) [15-50] and; (b,c) [13-17] requests/second.

whether the main request has been serviced or not. However,
if we receive another main request, it is kept waiting in
the session queue. Hence, with respect to a client which
sends pipelined main requests, DDoS shield is still HTTP/1.1
compliant, in that requests now wait in the reverse proxy server
queue instead of Apache queue. On receiving the response
for the main request, the session is made eligible for being
scheduled again, by changing its state to Allow All, after which
the HoL main request in this session’s queue can be forwarded
when the session is scheduled again.

B. Scheduling Policies

We introduce the following scheduling policies to protect
the system from DDoS attacks:

• Lowest Suspicion First (LSF) Scheduler: The cost-
optimal scheduler is one which obtains a schedule such
that for the N eligible sessions in the system at any time,
each with suspicion metric as pi, their average response
time di realizes the following objective function:

min

N∑

i=1

(1 − pi)(di) (9)

Intuitively, this objective function maximizes the sum
total of suspicion values (pi) for requests queued at the
DDoS scheduler so that those with low suspicion are
forwarded to the web cluster. Thus, the cost-optimal
scheduler is a strict-priority scheduler which selects the
top sessions after sorting them in decreasing order as:
(1 − p1) ≥ (1 − p2) · · · ≥ (1 − pN ).

• Proportional to Suspicion Share (PSS) Scheduler: The
cost-optimal scheduler may result in starving sessions
with high suspicion value pi. Hence we also design a
max-min fair algorithm with the fairness objective of
assigning forwarding-rates ri to sessions in proportion
to their confidence probabilities 1 − pi:

ri

rj

=
1 − pi

1 − pj

(10)

As a baseline for comparison, we also implement two
schedulers that are agnostic to suspicion measures: (i) First-
Come First-Serve (FCFS) which schedules the session with

the earliest arrived HoL request from amongst all the eligible
sessions and (ii) Round Robin which schedules requests one
per session in round-robin order only among eligible sessions.

Next, we propose an online algorithm to set the scheduler
service rate r of the scheduler as a function of the sum of
confidence probabilities of the active sessions at any time.
Assume there are N eligible sessions at the scheduler at time
t. Denote the 95%ile of the throughput in terms of completed
requests/second achieved by a legitimate session under no
attacks as r95. The scheduler service rate r is adjusted ev-
ery update-interval using an Exponential Weighted Moving
Average function: r = α ∗ r + (1 − α) ∗ rnew. The rate rnew

is the sum of the individual session-rates: rnew =
∑N

i ri,
each of which is obtained as a linear function of the session’s
suspicion value as follows: ri = (1 − pi)r95.

C. Performance Evaluation

We first establish that a counter-DDoS mechanism needs
both scheduling and a properly set aggregate service rate to
be effective. We then compare the suspicion-aware scheduling
policies, LSF and PSS against the suspicion-agnostic policies,
Round Robin and FCFS. The per-session queue length is fixed
at 100 requests. We also compare the performance of the
scheduling algorithms against two baseline scenarios: (1) No
Attack when there are 0 attack sessions; and (2) No Defense
when all the attack sessions are present but no defense strategy
is used, i.e., the scheduler is FCFS with per-session queue
lengths set to infinity.

1) Request-flooding Attack: Figure 12 depicts the average
response time for normal sessions as a function of the maxi-
mum rate that the scheduler forwards the aggregate. We first
consider the most potent request-flooding attack using 300
attack sessions on 100 normal sessions in Figure 12(a).

• The strategy of using both scheduling and limiting the
aggregate service rate is critical to achieving DDoS
resilience. The best performance is obtained on using a
LSF or PSS scheduler with scheduler service rate set in
the range [15-50] requests/second for flooding attack and
[13-17] for asymmetric attack.

• DDoS-Shield is effective in thwarting the request flood-
ing attack, as evident from the fact that performance
improves to 0.5 seconds from the 3 seconds under no



defense. Further, note that DDoS-Shield’s performance
also compares favorably with that when there are no
attacks (0.1 seconds). Thus, the performance impact due
to false positives (legitimate sessions being delayed) or
false negatives (malicious sessions being admitted) is
limited.

• The LSF and PSS schedulers perform the best, with LSF
slightly better. The Round-Robin and FCFS schedulers
are agnostic to suspicion values and admit too many
malicious sessions leading to significantly lower perfor-
mance. Round-Robin is still better than FCFS since in
comparison it schedules more non-attacking sessions in
every round.

• Performance is non-monotonic with the scheduler ser-
vice rate as discussed above. Moreover, all scheduling
algorithms converge to an average response time of 2.2
seconds at service rates greater than 100 requests/second.
Even then, limiting session queues improves perfor-
mance.

• When the online rate-setting algorithm is used along
with the LSF scheduling policy, we obtain similar per-
formance improvements at approximately 0.5 seconds.
The average service rate set by online rate setting was
17 requests/second when α = 0.3 and the rate is updated
every 10 seconds.

2) Asymmetric Attack: DDoS-Shield improves the perfor-
mance under the most-potent asymmetric attack from 10
seconds to 0.8 seconds, as seen from Figure 12(b). Note that
under asymmetric attacks, the performance of DDoS-Shield
is much more sensitive to admittance of attack sessions. At
service rates higher than 17 requests/sec, the response times
increase sharply for even the best scheduling algorithms (LSF,
PSS), with their performance becoming similar to that of
the baseline schedulers. The reason is that at high service
rates, a slight increase in admittance of attack sessions drives
the server CPU loads to as high as 100%, as depicted in
Figure 12(c).

3) Repeated One-shot Attack: Similarly, for repeated one-
shot attacks, DDoS-Shield improves the performance under
the most-potent attack (inter-session time=0 seconds) from 40
seconds to 1.5 seconds. The best performance is achieved
using LSF scheduler at service rates of approximately 15
requests/second.

4) Moderate Potency Attacker Strategies: Recall from our
discussions in Section IV that lower potency attacks are more
difficult to detect than high potency attacks. Hence, to demon-
strate the efficacy of DDoS-Shield in thwarting moderate
potency attacks, we evaluate the performance under varying
request flooding and varying asymmetric attack strategies.
Using the scheduling policy LSF and the service rate set at
15 requests/second, DDoS-Shield maintains the performance
of normal sessions at 0.8 seconds, even when the attack rate
was varied by changing the think-time over [0 − 7] seconds.
Similarly, DDoS-Shield maintains the performance of normal
sessions at 0.5 seconds, even when 300 attack sessions morph
their workload profile by employing lighter requests alongside
the heavy BestSellers requests. Finally, DDoS-Shield main-
tains performance at 1.5 seconds, even when the repeated
one-shot attack is varied by changing the attacker inter-session
times.

The success of DDoS-Shield in thwarting moderate potency
attacks as well as high potency ones, is due to the suspicion

assignment mechanism being able to differentiate between
legitimate and malicious sessions rapidly. Recall from Fig-
ure 10(a) that even though lower-rate or lower-intensity attacks
are detected with certitude much later than their high potency
counterparts, on average they are assigned higher suspicion
than normal sessions after only 4 requests. Hence, they are
quickly given lower priority service by the LSF scheduler
compared to the legitimate sessions.

VI. RELATED WORK

CERT[8] classifies denial of service attacks in three broad
categories: 1) attacks aimed at consumption of scarce re-
sources such as network bandwidth or CPU; 2) attacks aimed
at destruction or alteration of configuration information; and 3)
attacks aimed at physical destruction or alteration of network
components. This paper focuses on a class of attacks in the
first category, namely attacks mounted at the application layer
(layer-7) with attackers posing as legitimate clients of the
service. The attack classes we consider overwhelm server
resources in the web cluster and hence are distinct from earlier
attacks that have primarily targeted network connectivity. Most
recent examples of network attacks mimicked flash crowds
using zombie clients [11][15].

A. Detecting DDoS attacks

The first step in thwarting a DDoS attack is to detect it.
Existing detection mechanisms operate at the network level
to detect DDoS floods in the network [3], [17], [19], [24].
For example, the anomaly detection system in [17] assigns
every packet a score based on the probability of it being
a legitimate packet given the attribute values it carries. In
contrast, there are other mechanisms which detect anomalies in
the traffic distribution instead of traffic volumes [18]. However,
the attacks we consider in this paper cannot be detected by
such tools as our attacks may not necessarily deviate the
network statistics in either volume or distribution.

Other detection mechanisms attempt to catch intrusions both
at the network and the host level [25]. While the attacks in this
paper do not rely on intrusions at the victim, effective intrusion
detection makes it difficult for the attackers to commandeer
client machines, and hence could only act as a first-step
defense with reference to our attacks.

Distinguishing a DDoS attack from a flash crowd has also
proven difficult. Two properties to make the distinction are
identified in [13]: (1) a DoS event is due to an increase in the
request rates for a small group of clients while flash crowds
are due to increase in the number of clients; and (2) DoS
clients originate from new client clusters1 as compared to
flash crowd clients which originate from clusters that had been
seen before the flash event. These characteristics may not help
distinguish the attacks discussed in this paper since (1) it is
difficult to associate the amount of resources consumed to a
client machine and (2) botnets consisting of geographically
wide-spread machines are increasingly likely to belong to
known client clusters. In contrast, our suspicion assignment
mechanism observes the behavior of the clients to detect
suspicious activity.

Our suspicion assignment mechanism relies on statistical
methods. However, our problem formulation differs from sim-
ilar techniques, such as sequential hypothesis testing [14][26]

1A Client cluster is defined as a group of topologically close clients,
identified via BGP routing tables.



in two respects: First, we define only one hypothesis for
legitimate behavior, and the hypothesis for malicious behavior
is interpreted as anything which does not follow the legitimate
hypothesis. Thus, not relying on an alternate hypothesis for the
attackers gives our scheme the ability to detect misbehaviors
not seen yet. Second, unlike sequential tests which output
binary decisions of legitimate or malicious while bounding de-
tection and false-positive probabilities, we output a continuous
measure of suspicion. This gives our scheme the ability to start
penalizing misbehaving sessions as soon as their suspicion
becomes distinct from that of legitimate sessions.

B. Counter-DDoS Mechanisms

In [15], Kandula et al. design a system to protect a web
cluster from DDoS attacks by (1) designing a probabilistic
authentication mechanism using CAPTCHAs (acronym for
“Completely Automated Public Turing test to tell Computers
and Humans Apart”) and (2) designing a framework that
optimally divides the time spent in authenticating new clients
and serving authenticated clients. Unfortunately, requiring all
users to solve graph puzzles has the possibility of annoying
users and introducing additional service delays for legitimate
users. This also has the effect of denying web crawlers access
to the site and as a result search engines may not be able
to index the content. Finally, new techniques may render the
graphical puzzles solvable using automated methods [21]. The
DDoS-Shield does not depend on Turing tests; instead, it
uses statistical methods to detect attackers and employs rate-
limiting through request scheduling as the primary defense
mechanism.

The technique of rate-limiting unwanted or hostile traffic has
often been used as a counter-measure against DDoS attacks.
For example, network packets deemed suspicious could be
dropped [17] or rate-limited [12]. The class-based queuing
scheme used in [16] uses a load balancer to block or limit
service to client IP addresses depending on their bandwidth
consumption patterns. At the infrastructure level, schemes for
routers to cooperatively block malicious traffic were proposed
in [4]. Likewise, the scheme proposed in [27] rate limits
incoming traffic while timing out flows and forcing them to
retransmit several times in order to be successful. This scheme
is based on the assumption that attackers would run out of
bandwidth earlier than legitimate users, an assumption that is
not necessarily valid for the attacks that we consider in which
a moderate request rate can generate an overwhelming server
workload. Such techniques are all geared towards countering
high bandwidth flows reminiscent of today’s DDoS attacks. In
contrast, by rate limiting the work a server cluster performs,
we can prevent attacks on both network bandwidth as well as
those that are aimed at other types of system resources, such
as CPU or storage.

VII. CONCLUSIONS

In this paper, we explored the vulnerability of systems to
sophisticated layer-7 DDoS-attacks which are both protocol-
compliant as well as non-intrusive. These attacks mimic legit-
imate clients and overwhelm the system resources, thereby
substantially delaying or denying service to the legitimate
clients. We developed a framework to classify these resource
attacks as one of request flooding, asymmetric workload,
repeated one-shot attacks or combinations there-of, on the
basis of the application workload parameters that they exploit.

Since these resource attacks are un-detectable via sub-layer-7
techniques, we developed DDoS-Shield, a counter-mechanism
which assigns a suspicion measure to a session in proportion
to its deviation from legitimate behavior and uses a DDoS-
resilient scheduler to decide whether and when the session is
serviced. Using a web application hosted on an experimental
testbed, we demonstrated the potency of these attacks as well
as the efficacy of DDoS-Shield in mitigating their performance
impact.

REFERENCES

[1] TPC-W: Transaction Processing Council . http://www.tpc.org.
[2] C. Amza, A. Cox, and W. Zwaenepoel. Conflict-aware scheduling for

dynamic content applications. In Proceedings of the 4th USENIX Sym-
posium on Internet Technologies and Systems (USITS’03), Seattle,WA,
March 2003.

[3] Service provider infrastructure security: detecting, tracing, and mitigat-
ing network-wide anomalies. http://www.arbornetworks.com, 2005.

[4] K. Argyraki and D.R. Cheriton. Active internet traffic filtering: Real-
time response to denial-of-service attacks. In Proc. of USENIX Annual
Technical Conference, April 2005.

[5] M. Aron, D. Sanders, P. Druschel, and W. Zwaenepoel. Scalable
content-aware request distribution in cluster-based network servers. In
Proceedings of the USENIX 2000 Annual Technical Conference, June
2000.

[6] N. Bhatti, A. Bouch, and A. Kuchinsky. Integrating user-perceived
quality into web server design. In Proceedings of the 9th International
World Wide Web Conference, Amsterdam, Netherlands, May 2000.

[7] T. Calinski and J. Harabasz. A dendrite method for cluster analysis.
Communications in Statistics, 3:1–27, 1974.

[8] http://www.cert.org, 2005.
[9] President’s Information Technology Advisory Com-

mittee. Cyber security: A crisis of prioritization.
www.hpcc.gov/pitac/reports/20050301 cybersecurity/cybersecurity.pdf.

[10] Cover and Thomas. ”Elements of Information Theory”. Wiley, 1991.
[11] California Central District. United states vs jay echouafni et al.

(operation cyberslam). www.usdoj.gov/criminal/fraud/websnare.pdf.
[12] A. Garg and A. L. N. Reddy. Mitigating denial of service attacks using

qos regulation. In Proceedings of International Workshop on Quality of
Service (IWQoS), 2002.

[13] J. Jung, B. Krishnamurthy, and M. Rabinovich. Flash crowds and denial
of service attacks: Characterization and implications for CDNs and web
sites. In Proceedings of the International World Wide Web Conference,
pages 252–262. IEEE, May 2002.

[14] J. Jung, V. Paxson, A. W. Berger, and H. Balakrishnan. Fast portscan
detection using sequential hypothesis testing. In Proceedings of IEEE
Symposium on Security and Privacy, Oakland, May 2004.

[15] S. Kandula, D. Katabi, M. Jacob, and A. W. Berger. Botz-4-sale: Surviv-
ing organized ddos attacks that mimic flash crowds. In Proceedings of
Symposium on Networked Systems Design and Implementation (NSDI),
Boston, May 2005.

[16] F. Kargl, J. Maier, and M. Weber. Protecting web servers from distributed
denial of service attacks. In World Wide Web, pages 514–524, 2001.

[17] Y. Kim, W. C. Lau, M. C. Chuah, and H. J. Chao. Packetscore: Statistics-
based overload control against distributed denial-of-service attacks. In
Proceedings of Infocom, HongKong, 2004.

[18] A. Lakhina, M. Crovella, and C. Diot. Mining anomalies using traffic
feature distributions. In Proceedings of ACM SIGCOMM, Philadelphia,
2005.

[19] Mazu profiler. http://www.mazunetworks.com, 2005.
[20] G. W. Milligan and M. C. Cooper. An examination of procedures for

determining the number of clusters in a data set. Pyschometrika, 50:159–
179, 1985.

[21] G. Mori and J. Malik. Recognizing objects in adversarial clutter: Break-
ing a visual captcha. IEEE Computer Vision and Pattern Recognition,
2003.

[22] The Honeynet Project and Research Alliance. Know your enemy:
Tracking botnets. http://www.honeynet.org.

[23] S. Ranjan, R. Karrer, and E. Knightly. Wide area redirection of dynamic
content in internet data centers. In Proceedings of IEEE INFOCOM,
Hong Kong, 2004.

[24] L. Ricciulli, P. Lincoln, and P. Kakkar. TCP SYN flooding defense. In
Proceedings of CNDS, 1999.

[25] Tripwire enterprise. http://www.tripwire.com, 2005.
[26] A. Wald. Sequential Analysis. J. Wiley and sons, New York, 1947.
[27] M. Walfish, H. Balakrishnan, D. Karger, and S. Shenker. DoS: Fighting

Fire with Fire. In 4th ACM Workshop on Hot Topics in Networks
(HotNets), College Park, MD, November 2005.


