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ABSTRACT
We describe a new class of utility-maximization scheduling prob-
lem with precedence constraints, the disconnected staged schedul-
ing problem(DSSP). DSSP is a nonpreemptive multiprocessor dead-
line scheduling problem that arises in several commercially-important
applications, including animation rendering, protein analysis, and
seismic signal processing. DSSP differs from most previously-studied
deadline scheduling problems because the graph of precedence con-
straints among tasks within jobs is disconnected, with one compo-
nent per job. Another difference is that in practice we often lack
accurate estimates of task execution times, and so purely offline
solutions are not possible. However we do know the set of jobs
and their precedence constraints up front and therefore some off-
line planning is possible.

Our solution decomposes DSSP into an offline job selection phase
followed by an online task dispatching phase. We model the former
as a knapsack problem and explore several solutions to it, describe
a new dispatching algorithm for the latter, and compare both with
existing methods. Our theoretical results show that while DSSP is
NP-hard and inapproximable in general, our two-phase scheduling
method guarantees a good performance bound for many special
cases. Our empirical results include an evaluation of scheduling
algorithms on a real animation-rendering workload; we present a
characterization of this workload in a companion paper. The work-
load records eight weeks of activity on a 1,000-CPU cluster used to
render portions of the full-length animated feature film Shrek 2in
2004. We show that our improved scheduling algorithms can sub-
stantially increase the aggregate value of completed jobs compared
to existing practices. Our new task dispatching algorithm LCPF

performs well by several metrics, including job completion times
as well as the aggregate value of completed jobs.
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1. INTRODUCTION
We describe a new class of scheduling problem with precedence

constraints, the disconnected staged scheduling problem(DSSP).
DSSP is a nonpreemptive multiprocessor deadline scheduling prob-
lem; we seek to maximize the aggregate value of jobs that com-
plete by a specified deadline. It arises in many commercially-
important applications, including protein sequence matching [6],
certain classes of fast Fourier transform computations [45, 46],
seismic signal processing workloads [22, 21], and distributed data
processing in Google [14].

Our interest in DSSP began with the practical problem of schedul-
ing computer animation rendering jobs for commercial entertain-
ment. Each job represents a brief excerpt from a film and consists
of several stages that must be processed in order (e.g., physical
simulation, model baking, frame rendering, and film clip assem-
bly). Each stage in turn consists of computational tasks that may
be run in parallel; all tasks in a stage must finish before any task
in the next stage can start. A job completes if and only if all of
its tasks complete; otherwise, no film clip is produced. Precedence
constraints exist among tasks within a job, but not among tasks in
different jobs. The graph of precedence constraints is therefore dis-
connected, with one component per job. Jobs run overnight and
yield value only if they complete before the artists who submitted
them return the following morning. Side constraints in addition to
precedence constraints may be present, e.g., fair-share constraints
may limit daily or weekly CPU consumption by different teams of
artists. Demand frequently exceeds available CPU capacity, mak-
ing it impossible to complete all submitted jobs by the deadline.
The set of jobs is known in advance but their computational de-
mands (e.g., the run times of tasks) are not precisely known. Pure
offline solutions are therefore not possible, but existing online so-
lutions do not exploit the knowledge that is available in advance.

Existing scheduling practices rely on priority schedulers, which
by themselves are not well suited to DSSP due to the semantic



weakness of ordinal priorities. Priorities can express the relative
importance of jobs, e.g., “job A is more important than B, and
B is more important than C.” Sums and ratios of ordinal priori-
ties are not meaningful, however, so they cannot express “B and
C together are 30% more valuable than A.” Poor decisions can
result when demand exceeds capacity: Given two equal-priority
jobs and sufficient capacity to finish only one of them, a prior-
ity scheduler may dispatch tasks from both jobs onto processors
and fail to complete either job by the deadline. Further difficulties
can arise if fair-share constraints are enforced during dispatching
by “instantaneous fair-share” mechanisms [40]. Such mechanisms
can preclude value-maximizing dispatching decisions by enforcing
the constraint on fine time scales when it need only be enforced on
longer time scales.

The fundamental problem in both cases (overload and side con-
straints) is that priority schedulers make job selectiondecisions as
by-products of task dispatchingdecisions. Dispatching decisions in
turn rely on ordinal priorities whose semantics cannot express es-
sential features of DSSP. Our approach is to assign to jobs comple-
tion rewardswhose sums and ratios are meaningful, and to perform
job selection and task dispatching separately.

This paper presents both theoretical and empirical results. We
first formalize DSSP as an optimization problem in which we seek
to maximize aggregate reward. We show that this problem is NP-
hard even in the offline case where all task run times are known,
and even for restricted variants. We therefore propose a tractable
two-phase solution. The first phase, job selection, chooses a set
of jobs that maximizes aggregate reward, satisfies side constraints,
and is likely to finish on time. The second phase, task dispatch-
ing, can therefore concentrate exclusively on finishing jobs by the
deadline. For job selection, we explore methods ranging from sim-
ple greedy heuristics to a sophisticated mixed integer programming
(MIP) formulation. For task dispatching, we consider a wide range
of dispatcher policies including a novel policy based on the critical
path lengths of jobs.

Our theoretical results show that our two-phase solution frame-
work is an approximation algorithm whose performance depends
on the critical path lengths of jobs. Our empirical results are based
on an eight-week trace of 2,388 jobs and 280,011 tasks collected in
a 1,000-CPU production system that rendered part of the Dream-
Works feature film Shrek 2in 2004. Trace-driven simulations show
that task dispatching algorithms differ markedly in terms of aggre-
gate reward and several secondary desiderata; our new dispatching
algorithm excels by all measures. Both our theoretical and em-
pirical results show that, remarkably, fine-grained knowledge of
individual task execution times is unnecessary if we have coarse-
grained estimates of the aggregate computational demand of jobs.

The rest of this paper is organized as follows. We describe DSSP

formally and analyze its computational complexity in Section 2.
We describe our two-phase scheduling method in Section 3 and
analyze its worst-case performance in Section 4. We present our
simulation results in Section 5, review related work in Section 6,
and conclude in Section 7.

2. PROBLEM STATEMENT
Formally, DSSP consists of J jobs, indexed j ∈ 1 . . .J. Job j con-

tains Gj stages, indexed g∈ 1 . . .Gj . The set of tasks in stage g of
job j is denoted Sg j. Stages encode precedence constraints among
tasks within a job: no task in stage g+1 may begin until all tasks in
stage g have completed; stages represent a special case of “series-
parallel” precedence constraints [8, 38]. No precedence constraints
exist among tasks in different jobs, i.e., the directed acyclic graph
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Figure 1: Job, task, and stage structure for two jobs. j = job, g
= stage, i = task. j ,i are unique.
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Figure 2: A schedule for the jobs in Figure 1.

(DAG) of task precedence constraints is disconnected, with one
component per job.

The execution time (or “length”) of task i is denoted Li . The
total processing demand of job j , denoted T1( j), is the sum of task

lengths over all tasks in the job, T1( j) ≡ ∑
Gj

g=1 ∑i∈Sg j
Li . T1( j) is

the minimum time required to complete the job j if it runs on a
single processor. By contrast, the critical path lengthof a job is the
amount of time that is required to complete the job on an unlimited

number of processors; it is denoted T∞( j) ≡ ∑
Gj

g=1 maxi∈Sg j{Li}.
Figure 1 illustrates the stage and task structure of two jobs, and
their critical path lengths.

There are P identical processors. At most one task may occupy
a processor at a time, and tasks may not be preempted, stopped/re-
started, or migrated after they are placed on processors. A job
completes when all of its tasks have completed, and we receive
a reward if the job completes by global deadline D. Let Cj denote
the completion time of job j in a schedule. Let Rj denote its com-
pletion reward. Our goal is to dispatch tasks onto processors in
such a way that the final schedule maximizes the aggregate reward
RΣ ≡ ∑J

j=1UD(Cj ), where UD(Cj ) = Rj if Cj ≤ D and UD(Cj ) = 0
otherwise. This objective function is sometimes called “weighted
unit penalty” [8]. Note that jobs with T∞( j) > D have UD(Cj ) = 0.
The definition of UD(Cj ) can be extended to allow rewards between
zero and Rj for jobs that complete after the deadline; we have con-
sidered this generalization but do not present results in this paper
due to space limitations.

Finally, we are not required to complete all of the jobs; indeed,
an optimal schedule may discard one or more jobs. Figure 2 illus-



trates a final schedule containing the two jobs from Figure 1; job 2
completes before the deadline but job 1 does not.

2.1 Computational Complexity
In this section we present computational complexity results for

two DSSP variants: 1) the generalcase, in which completion re-
wards Rj are arbitrary and tasks have arbitrary execution times;
and 2) the unweighted unit execution timecase in which Rj = 1 for
all jobs j and Li = 1 for all tasks.

Our first result shows that general DSSP is not merely NP-hard
but also NP-hard to approximate within any polynomial factor, as-
suming that P �= NP.

THEOREM 1. GeneralDSSP is NP-hard to approximate within
any polynomial factor.

PROOF. Let ROPT
Σ denote the aggregate reward obtained by an

optimal algorithm. If Theorem 1 is false, then there exists a poly-
nomial time algorithm A with output A, such that ROPT

Σ ≤ adAd +
· · ·+a1A+a0, where d is the degree of the polynomial and ad, . . . ,a0
are constant coefficients. Consider the special case where there are
only two processors and we have a single job (J = 1) with a single
stage and completion reward R> a0. Both the optimal algorithm
and A will output either R or 0. If ROPT

Σ = R and A = 0, then
R≤ a0, a contradiction. Thus if the optimal algorithm can sched-
ule the job, A can also schedule it. However, for the special case
where the total processing time for the job equals 2D, this problem
is equivalent to the classic partition problem, which is known to
be NP-complete [27]. Thus, it is NP-hard to approximate general
DSSP within a polynomial factor.

We further prove that even the special case of DSSP with unit re-
wards and unit execution times is strongly NP-complete. A problem
is strongly NP-complete if it remains NP-complete when all input
coefficients are polynomially bounded. If a problem is strongly NP-
complete, no pseudo-polynomial time algorithm can solve it unless
P = NP [17].

THEOREM 2. UnweightedDSSP with unit task execution time
is strongly NP-complete.

PROOF. The proof is through a simple reduction from
3D-Matching, one of the original problems proven by Karp to be
NP-complete in the strong sense [27]. Suppose we are given a 3D-
Matching instance where M ⊆ X×Y×Z, with |X|= |Y|= |Z|= J.
For each triple (xa,yb,zc) ∈ M, we construct a job with 3J stages.
Each stage has only one task, except for stages a,J+b, and 2J+c,
each of which has two tasks. All the tasks have unit execution
time. Let D = 3J. Let the number of machines be J+1. Each job
takes 3(J + 1) time in total, thus the scheduler can satisfy at most
J jobs. If J jobs are satisfied, then it corresponds to a solution for
3D-Matching.

Theorems 1 and 2 show that DSSP is hard to solve, in particu-
lar it is strongly NP-complete even with unit job rewards and unit
task lengths. Moreover, with arbitrary rewards and task lengths,
even polynomial-factor approximation of the optimal solution is
NP-hard. Section 3 introduces a two-phase scheduling method of
DSSP, and Section 4 analyzes its worst-case performance. Our anal-
ysis assumes that jobs have unit completion rewards but permits
arbitrary task execution times. We show that performance depends
on the ratio of jobs’ critical path lengths to the global deadline;
relatively short critical paths yield near-optimal performance. We
also establish an alternative performance bound that depends on the
number of processors rather than on critical path lengths.

3. TWO-PHASE SCHEDULING
Our approach decomposes DSSP into two tractable phases, an

offline job selection phase followed by an online task dispatching
phase. We present algorithms for both phases. The job selection
phase chooses a subset of jobs to execute. The task dispatching
phase places tasks from the selected jobs onto processors.

Our two-phase approach has several advantages. First, each phase
requires only estimates of T1( j) and T∞( j) for each job j . We do not
require task execution times Li . In practical applications, includ-
ing animation rendering at DreamWorks, estimates of T1 and T∞
for jobs are more readily available than individual task execution
times. Second, job selection can be expressed as a straightforward
problem for which efficient optimal solvers exist. Side constraints
(e.g., fair share) can be addressed during the job selection phase,
and therefore they do not interfere with task dispatching decisions
in the second phase.

3.1 Phase 1: Job Selection
The goal of job selection is to select a subset of jobs with max-

imal aggregate completion reward such that their total processing
demand does not exceed available capacity. Let binary decision
variable xj = 1 if job j is selected and xj = 0 otherwise. P is the
number of processors. Our selection problem is the following inte-
ger program:

Maximize ∑J
j=1 xjRj (1)

subject to ∑J
j=1 xjT1( j) ≤ r ·PD (2)

The summation in objective Equation 1 assumes that all selected
jobs can be scheduled, regardless of their T∞; jobs with T∞( j) > D
have UD(Cj ) = 0 and may be discarded before job selection. PD in
the right-hand side of Equation 2 is the total amount of processor
time available between t = 0 and t = D. The selection parameter
r allows us to select a set of jobs whose total processor demand
is less than or greater than the total available. The final schedule
after task dispatching typically achieves less than 100% utilization
because precedence constraints force idleness as shown in Figure 2.
Intuitively, r should be set to slightly less than 1. r is a tunable
parameter; Theorem 4 suggests an exact formula for r .

This selection problem is a classic 0-1 knapsack problem, one
of the NP-hard combinatorial optimization problems solvable in
practice. It admits both pseudo-polynomial-time exact solutions
and fully-polynomial-time approximation schemes; a wide range
of solvers exist [28]. We implemented three kinds of solvers.

1. The very simple classic greedy heuristic works well for many
DSSP instances.

2. “Dynamic programming (DP) by profits” is one of the sim-
plest optimal knapsack algorithms.

3. A solver based on commercial mixed integer programming
(MIP) software also yields optimal solutions and handles more
constraints than a knapsack solver.

We discuss these approaches below in terms of their solution qual-
ity and resource demands. Because all three approaches yield solu-
tions in under one second for our DSSP instances, we do not present
timing results.

The greedy knapsack algorithm considers jobs in nonincreasing
order of R: T1 ratio, selecting jobs as long as doing so does not vio-
late the capacity constraint of Equation 2. This algorithm can yield
selections that are arbitrarily far from optimal, but a slight exten-
sion can guarantee a solution that is 1/2 as good as optimal; further
extension improves the solution to 3/4 of optimal [28, p. 34]. The
asymptotic time and memory requirements of greedy selection are



dominated by sorting jobs. DP by profits is only slightly more so-
phisticated than the extended greedy algorithm, but it guarantees
an optimal solution. Our straightforward implementation requires
O(J∑J

j=1 Rj) time and memory; more complex implementations
can reduce both requirements. DP by profits can also be converted
to a fully-polynomial-time approximation scheme simply by scal-
ing down completion rewards [28, p. 41]. A limitation of DP by
profits and other simple knapsack solvers is that they cannot easily
address elaborate side constraints.

General integer programming produces the same optimal solu-
tions as DP by profits for the basic knapsack problem, but can
also handle a wide range of side constraints. A MIP selector is
also easy to modify when requirements change, as often occurs
in production environments. Our MIP solver is implemented in
GAMS/CPLEX [24] and is intended for production use. It ad-
dresses several complex side constraints specific to animation ren-
dering that we do not discuss here. General-purpose MIP solvers
employ algorithms with exponential worst-case asymptotic time
and memory complexity, but in practice they often perform quite
well.

3.2 Phase 2: Task Dispatching
Once a subset of jobs has been selected, a dispatcher places their

tasks on processors. We employ a non-delay (or “work-conserving”)
dispatcher that places runnable jobs onto idle processors whenever
one of them is available. The end result is a schedule that contains
idle time due only to precedence constraints. For nonpreemptive
scheduling problems like DSSP, such a schedule is not in general
optimal [38]. For online DSSP, however, task lengths Li are not
known in advance and therefore we cannot compute a final sched-
ule offline. We must use a runtime dispatcher of some kind, and
non-delay dispatchers are simple and perform well in practice.

Given an idle processor and several runnable tasks, a dispatcher
policy chooses one of the tasks. We implemented and empirically
evaluated over two dozen dispatcher policies. In this paper we re-
strict attention to a handful of the best performers.

RANDOM: choose a runnable task at random
FIRST: visit jobs in job-ID order and choose the first runnable task

encountered
PRIORITY: choose a runnable task from the highest priority job
STCPU (shortest total CPU time): choose a runnable task from the

job with minimal T1( j)
LCPF (longest critical path first): choose a runnable task from the

job with maximal T∞( j)
CPA (critical path algorithm): choose the runnable taskwith the

greatest weight as defined below

CPA (also known as HLFET [32, 1]) computes for each task a weight
equal to the length of the longest path from that taskto an exit node
in the DAG of task precedence constraints. It then chooses tasks
whose weight is greatest. Note that all of the above policies except
RANDOM and CPA first choose a job and then choose a runnable
task from it. We find that policies like STCPU and LCPF that take
into account the properties of jobs usually outperform policies that
consider task properties alone. Finally, we evaluated variants such
as “choose maximal T1( j)” and “choose minimal T∞( j)”; these do
not perform well.

LCPF is a new dispatcher policy that takes advantage of the dis-
connected precedence DAG of DSSP. In the special case where each
job contains exactly one task, LCPF is identical to the well-known
longest job first(LJF) policy. However, when jobs contain multiple
tasks, LJF is no longer well defined. To the best of our knowledge,
LCPF has not been described or evaluated previously.

Note that CPA uses properties of tasksto make dispatching deci-
sions while LCPF uses critical path length, which is a property of
jobs. To build intuition for the difference, consider the two jobs
of Figure 1. Given these jobs and a single processor, LCPF will
choose tasks from job 1 until it is finished before choosing any task
from job 2. By contrast, CPA will alternate between tasks from both
jobs, and both jobs will finish at roughly the same time. Another
important practical difference is that CPA requires estimates of task
execution times Li for each task, whereas LCPF requires only an
estimate of critical path length T∞( j) for each job. In practice, e.g.
at DreamWorks, the latter are more readily available.

4. ANALYSIS
This section presents worst-case performance analysis of our

two-phase scheduling methods for DSSP with variable task execu-
tion times and unit rewards. Our first method, MAXK, is an offline
algorithm that requires knowing task execution times Li for task
dispatching simulation. Our second method uses a greedy selec-
tion algorithm with anydispatching policy, including those that do
not require task execution times. We show that the second method
achieves the sameapproximation bound as MAXK, even though it
requires far less information and is more widely applicable. The
theoretical results of this section shed further light on what charac-
teristics make DSSP difficult.

Our solutions can be applied to fully general DSSP instances, but
our approximation bounds apply only to unit rewards; Theorem 1
shows that approximation is hard in the general case. Throughout
this section we assume that Rj = 1 for all jobs j .

4.1 The MAXK Approximation Algorithm
MAXK is an offline algorithm that computes the maximum value

K such that the K jobs with the highest R : T1 ratio can be com-
pleted by the deadline. Given a value K, MAXK simply simulates
dispatching all tasks of the selected jobs to check whether all of
them complete by the deadline; linear or binary search can be used
to find the maximal value of K. The value of K may depend on the
dispatcher policy used; it is possible to evaluate several policies and
choose the one that maximizes K. Regardless of the dispatcher pol-
icy used, the simulation must use task lengths Li to create a sched-
ule that takes precedence constraints into account.

We now prove that MAXK computes near-optimal schedules for
unweighted DSSP. Our approximation bounds depend on the max-
imum critical path length over all jobs, denoted Tmax

∞ . They are
stated in terms of the aggregate reward obtained by the optimal al-
gorithm, i.e., the number of jobs completed, denoted OPT.

THEOREM 3. Algorithm MAXK can schedule at least

max
{(

1− Tmax
∞
D

(
1− 1

P

))
OPT−1,OPT− (P−1)

}
jobs.

PROOF. Suppose that MAXK selects k jobs. Then for the first
k + 1 jobs, a final non-delay schedule results in some tasks fin-
ishing after deadline D. We consider a schedule that results from
dispatching all of the tasks from the first (k+1) jobs, and bound its
total idle time.

We construct a precedence chain of tasks τp ≺ τp−1 ≺ ·· · ≺ τ1
from the schedule with the following property: whenever there is
an idle processor, another processor is executing one of the tasks in
this chain. This technique applies to an arbitrary task dependency
DAG [18]. We show how to construct such a precedence chain
below.

Let τ1 denote a task which exceeds the deadline D, and let [t1, t ′1]
denote the time interval for this task to run. Now look at the first
time unit [t, t +1] with t +1 ≤ t1 when any of the processors is idle.



If there is no such value t, {τ1} is the chain of tasks required and
we are done. If such a t exists, then at time slot t, τ1 is not runnable.
This implies that some other task τ2 which τ1 depends on finishes
execution after time t. Let [t2, t ′2] denote the execution time interval
for task τ2, then t ′2 ≥ t +1. By the construction of t, there is no idle
processor between [t + 1, t1]. Because t + 1 ≤ t′2, there is no idle
processor between [t′2, t1]. Similarly, look at the first idle time for
any of the processors before τ2 starts execution. This way, we can
construct a task precedence chain τp ≺ τp−1 ≺ ·· · ≺ τ1. Let [ti , t ′i ]
denote the execution time interval for task τi . Then there is no idle
space between [0, tp], and there is no idle space between [t′i+1, ti ],
for any index 1 ≤ i < p.

Let L denote the sum of task lengths for all the tasks in the above
task dependency chain. Then the total idle space in the time interval
[0,D] is bounded by (P−1)L. Because L ≤ Tmax

∞ , therefore

k+1

∑
j=1

T1( j) > PD− (P−1)Tmax
∞ . (3)

Because jobs have unit completion rewards in the unweighted
case, MAXK sorts jobs in order of increasing total processing-time
demand, i.e., T1(1) ≤ T1(2) ≤ ·· · ≤ T1(J). Equation 3, together
with the fact that T1( j)’s are sorted ascending, implies that

(k+1)·λ
∑
j=1

T1( j) > PD, for λ =
PD

PD− (P−1)Tmax
∞

.

It is clear that OPT < (k+1) ·λ. This implies that

k >
1
λ

OPT−1 =
(

1− Tmax
∞
D

(
1− 1

P

))
OPT−1. (4)

Recall that the total idle space in the time interval [0,D] is bounded
by (P−1)L, where L is the sum of task lengths for all the tasks in
the task dependency chain constructed above. Because the jobs are
sorted by increasing T1, T1(k+ 1) ≥ L. If the algorithm selects
(P− 1) extra jobs, then the total processing time will exceed PD.
In other words, if we select the first k+1+(P−1) jobs, their total
processing time will exceed the total system capacity PD. The opti-
mal algorithm selects a set of jobs with total capacity not exceeding
PD, thus we have

OPT < k+1+(P−1), i.e. k≥ OPT− (P−1). (5)

Theorem 3 now follows by combining Equations 4 and 5 to-
gether.

The theorem implies that MAXK is close to optimal if Tmax
∞ is

relatively small compared to D. It also establishes another perfor-
mance bound, which is independent of maximal critical path length,
and it shows that MAXK gives a good approximate solution to off-
line unweighted DSSP if the number of processors is small relative
to the number of requests that can be completed by an optimal al-
gorithm. This is likely to be true if average job processing demand
∑ j T1( j)/J is small relative to global deadline D.

4.2 General Two-Phase Solutions
Our next result shows that two-phase solutions that do not re-

quire individual task lengths also guarantee good results in the un-
weighted case if Tmax

∞ is relatively small compared to D. In fact,
ignorance of task lengths does not worsen our scheduling solution
in the worst case if we have T1( j).

THEOREM 4. The two-phase scheduling method using a greedy
knapsack selector with r= 1− (1− 1/P)(Tmax

∞ /D) and any non-

delay dispatcher completes(1− Tmax
∞
D (1− 1

P))OPT−1 jobs before

the deadline. If all jobs have critical path less than D/2, then the
algorithm can schedule at least1

2 OPT−1 jobs.

PROOF. Suppose that the selection algorithm chooses the first k
jobs. Then we have the following:

k

∑
j=1

T1( j) ≤ rPD = PD− (P−1)Tmax
∞ (6)

k+1

∑
j=1

T1( j) > rPD = PD− (P−1)Tmax
∞ (7)

We claim that the algorithm is able to schedule the first k jobs
successfully using any non-delay scheduling policy. Otherwise,
there exists an instance where a non-delay scheduling policy results
in a final schedule for the first k jobs such that the time to finish all
the tasks exceeds D. Consider the schedule for this dispatching in-
stance. As in the proof of Theorem 3, we can argue that the total
idle space for the time interval [0,D] is bounded by (P− 1)Tmax

∞ .
Therefore,

k

∑
j=1

T1( j) > PD− (P−1)Tmax
∞ . (8)

Equations 6 and 8 contradict each other. Therefore, the algorithm
is guaranteed to schedule the first k jobs.

Because jobs have unit completion rewards in the unweighted
case, the greedy knapsack selector also sorts jobs in order of in-
creasing total processing-time demand, i.e., T1(1) ≤ T1(2) ≤ ·· · ≤
T1(J). Equation 7 is identical to Equation 3 in the proof of Theo-
rem 3. Thus an identical argument shows that

k >

(
1− Tmax

∞
D

(1− 1
P

)
)

OPT−1 >

(
1− Tmax

∞
D

)
OPT−1.

Our algorithm schedules k jobs, and it is bounded by the above
inequality. If Tmax

∞ ≤ D/2, (1−Tmax
∞ /D) ≥ 1/2, then k > 1

2 OPT−
1.

Theorem 4 implies that any two-phase solution (with a proper
selection parameter r) completes at least half as many jobs as an
optimal algorithm if Tmax

∞ ≤ D/2. If Tmax
∞ = D/10, then it achieves

at least 90% of the optimal value. As Tmax
∞ /D goes to 0, its perfor-

mance approaches that of the optimal algorithm. The lower bounds
of Theorem 4 are tight, in the sense that we can construct pathologi-
cal examples to achieve them. Note that this result does not assume
any particular dispatcher policy, i.e., we have shown that when crit-
ical paths are short it is impossiblefor a non-delay dispatcher to
perform poorly.

The bound of Theorem 4 depends on maximum critical path
length Tmax

∞ for all the jobs; it is very weak when Tmax
∞ /D is close

to 1. Critical paths in real workloads can be long (see [47], work-
load characterization), so we must evaluate two-phase schedulers
empirically in order to understand performance in practice. The ex-
perimental results of Section 5 show that when Tmax

∞ is high our the-
oretical bounds are pessimistic, that our two-phase approach yields
good schedules in practice, that dispatcher policies differ dramat-
ically in performance, and that our method outperforms existing
practices substantially.

5. EXPERIMENTAL RESULTS
In this section, we evaluate both job selection and task dispatch-

ing empirically. We use traces derived from LSF scheduler logs
from a cluster of 1,000 CPUs to drive our simulation experiments.



These logs were collected from the cluster as it was used by Dream-
Works to render part of the feature film Shrek 2between 15 Febru-
ary and 10 April 2004. Each of the 500 machines in the cluster is
an HP ProLiant DL360 server with two 2.8-GHz Xeon processors,
4 GB of memory and two 36-GB 10k RPM SCSI disks. The logs
associate tasks with their parent render jobs and we reconstructed
their stage structure. We removed from consideration all jobs that
did not complete successfully, e.g., because a user cancelled them.
Our final trace contains 56 nights, 2,388 jobs, and 280,011 tasks.
The jobs have a median CPL T∞ of 3.4 hours, although on most
(75%) of nights, there is at least one job that cannot be completed
within a 13 hour time window. A more complete characterization
of this workload is in our companion paper [47].

In Section 4, we proved that differences among dispatcher poli-
cies are small when completion rewards are identical for all jobs
and critical paths are short relative to the global deadline. In our
animation workload, however, completion rewards vary and criti-
cal paths can be long. We explore these cases here. This section
addresses five questions.

1. Is a greedy knapsack selector adequate?
2. Do dispatcher policies differ in performance?
3. How well do selector/dispatcher pairs optimize our objective

function?
4. Does selection parameter r require tuning?
5. How does Tmax

∞ affect dispatcher performance?

All of our experiments use two parameters from the Dream-
Works cluster where our traces were collected: P = 1,000 proces-
sors and deadline D = 13 hours, because the nightly rendering shift
typically runs from 8 p.m. to 9 a.m. We first discuss how we assign
completion rewards to jobs so that we can compare the aggregate
reward of different solutions.

5.1 Reward Assignment
Our traces contain only ordinal priorities, and so we must assign

Rj based on job priorities or other job properties. We report results
for three reward functions: 1) linear: Rj ≡ 500−priority j ; 2) size-
dependent: Rj ≡ T1( j); and 3) banded:

Rj ≡




100,000 if priority < 100
1,000 if priority < 200

10 if priority < 300
1 otherwise

Linear rewards essentially use the priority as the reward (Dream-
Works uses low priority values to indicate greater importance).
Banded rewards group jobs into crude importance categories, e.g.,
“must do,” “good to do,” and “if there’s time.” Size-dependent re-
wards mean that value is directly proportional to processor time
spent.

5.2 Selection
The naı̈ve classic greedy knapsack algorithm can yield solutions

arbitrarily far from optimal; straightforward extensions guarantee
approximation bounds of only 1/2 or 3/4 [28]. But does an optimal
solver (e.g., our MIP or DP by profits) significantly outperform the
greedy algorithm for animation rendering job selection? We com-
pared greedy and optimal selectors in terms of how well they solve
the selection problem alone (Equations 1 and 2 in Section 3.1). Our
test used eighteen nights for which the total processing demands of
all jobs exceeded PD= 13,000 CPU-hours by at least 10%. For lin-
ear and banded completion rewards, the optimal solution is at most
0.25% better than greedy. For size-dependent rewards, the optimal
solution is up to 3% better. For the workload studied, greedy selec-
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Figure 3: Job completion times.
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Figure 4: Times at which processors cease work.

tion works well unless we face side constraints that only the MIP
solver can address.

5.3 Dispatching
In this section, we compare dispatcher behavior by a variety of

measures. We implemented a simulator that supports over twenty
dispatcher policies, including those described in Section 3.2. We
used traces from 32 nights whose submitted jobs required at least
13,000 CPU-hours of processing time. For each night, we used a
greedy selector to reduce the total CPU demand to less than 13,000
CPU-hours. After selection, a total of 1,311 jobs remained.

Figure 3 shows the distribution of job completion times for six
dispatcher policies. Job completion time profiles differ dramati-
cally across these six policies. STCPU begins to complete jobs al-
most immediately and has finished half of the jobs after only 4.6
hours. By contrast, CPA completes no jobs for more than eight
hours. After ten hours, STCPU has completed over 80% of all
jobs, PRIORITY has finished 62.5%, LCPF has completed 30.7%,
and CPA has finished only 2.4%. LCPF and CPA overtake the other
policies shortly after the deadline. However, by tuning selection
parameter r we can shift all of the distributions to the left: When
selection uses a lower value of r , all policies complete more jobs by
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the deadline and we can adjust whenLCPF overtakes the other poli-
cies. For our animation workload, r ≈ 0.9 yields good results. LCPF

and CPA furthermore perform much better than the others in terms
of makespan, the time to finish the last job. The worst makespan
for both LCPF and CPA is 19 hours; for PRIORITY it is over 23 hours
and for STCPU it is 26.8 hours.

A crucial difference between LCPF and CPA is that LCPF com-
pletes far more jobs early in the night, while both outperform STCPU

late in the night. Completion time profiles are important in practice
for animation rendering: quality control staff must review com-
pleted jobs and re-run those that yielded unsatisfactory results. CPA

leaves the staff idle for most of the night shift and overworked near
the deadline. It also leaves too little time to rerun failed jobs, which
are not uncommon (see [47], workload characterization).

Figure 4 shows the distribution of times at which processors
cease to serve tasks. LCPF and CPA utilize nearly all processors
until the deadline, then release them all nearly simultaneously. An
hour after the deadline, LCPF has released all but 7.2% of proces-
sors, whereas STCPU is still using 31.7% of them. LCPF and CPA

produce tidy rectangular Gantt charts, whereas the other policies
yield schedules with ragged right edges. Uniform processor re-
lease times are desirable in animation and other domains, because
clusters that run batch jobs overnight serve interactive users during
the day.

A final advantage of LCPF is that it achieves higher processor
utilization than the other policies: idle time (shaded in Figure 2)
is only 0.6% for LCPF but exceeds 3% for STCPU. Idleness during
the 13 hour window before the deadline is 13.5% for STCPU and
10.5% for PRIORITY but only 5.5% for LCPF.

5.4 Selection and Dispatching Together
We also evaluated a complete two-phase scheduler (selector plus

dispatcher) in terms of aggregate reward RΣ. These tests used traces
from the ten nights whose submitted jobs had the greatest total pro-
cessor demand ∑T1( j). We assigned rewards to jobs using each
of the three methods described in Section 5.1. We used our MIP to
select jobs, varying selection parameter r to see how under- or over-
selection impacts aggregate rewards. For simplicity, in this section
we assume that exact clairvoyant (offline) knowledge of task execu-
tion times is available to dispatcher policies. Appendix A considers
the case where imperfect estimates of critical path lengths and pro-
cessor demand are available but task execution times are not.
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Figures 6 and 7 present results for banded and size-dependent re-
wards, respectively (linear-reward results closely resemble Figure 6
and are presented in Appendix A). The horizontal axes show the
time budget r ·D used during selection. E.g., x = 12 hours corre-
sponds to r = 12

13 and means that the selector chose a subset of jobs
with aggregate processing demand no greater than 12,000 CPU-
hours.

Our results show that LCPF outperforms the other policies pro-
vided that r is tuned; r ≈ 0.9 works well for our traces. CPA is
comparable to LCPF if the selection parameter is well tuned, but it
suffers far more than LCPF when r is poorly tuned. STCPU and PRI-
ORITY are relatively insensitive to r but yield considerably lower
aggregate reward than well-tuned LCPF. In terms of aggregate re-
ward, LCPF outperforms PRIORITY by 9% for banded rewards and
32% for size-dependent rewards. Current practice in many produc-
tion environments appears in Figures 6 and 7 as the PRIORITY data
series at x = 15 hours; this approximates the case of “no selection
+ priority scheduling.”

Theorems 3 and 4 show that MAXK, which uses knowledge of
individual task lengths Li , performs no better in the worst case than
our two-phase solution, which requires only total processing de-
mand T1( j) for each job. Our experiments show that CPA, which
requires task lengths, performs no better on real inputs than LCPF,



which requires only critical path lengths. In summary, our theoret-
ical and empirical results point to the remarkable conclusion that
ignorance of individual task execution times does not makeDSSP

harder.

5.5 Impact of Critical Path Length
To understand the impact of critical path length T∞ on dispatcher

performance, we randomly generated workloads with different Tmax
∞ .

We randomly chose subsets of jobs from our trace that had T1( j)
close to 13,000 CPU-hours and Tmax

∞ less than a specified upper
bound. We constructed 30 random subsets for each value of Tmax

∞
between one hour and 7.5 hours in 15-minute increments.

Figure 5 shows how several dispatcher policies performed on
these workloads. There are two striking features. First, CPA per-
forms very poorly because it completes many jobs slightly after
the deadline. Unlike the other policies shown, CPA is very sensi-
tive to r and fails dramatically if this parameter is not tuned. (LCPF

suffers for the same reason; however we have seen in Section 5.4
that it outperforms other policies with an appropriate r .) Second,
the performance of all other dispatcher policies improves by 5–
15% as Tmax

∞ decreases. Like the theoretical results of Section 4,
our empirical results demonstrate that short critical paths increase
the number of jobs completed by the deadline. This result has di-
rect practical implications: Tasks can often be parallelized, e.g., in
animation rendering individual frames can be broken into “tiles”
that are rendered separately. Parallelization typically complicates
a computation and increases total processor demand; our results
demonstrate benefits against which these costs can be weighed.

6. RELATED WORK
Scheduling is a basic research problem in both computer science

and operations research. The space of problems is vast; [8, 38]
provide good reviews. In this section we focus on non-preemptive
multiprocessor scheduling without processor-sharing.

6.1 Minimizing Makespan
Much scheduling research focuses on minimizing makespan for

tasks with arbitrary precedence constraints. Graham [18] showed
that a simple priority-based heuristic called list schedulinghas a
worst case performance ratio of 2−1/P. Brent [7] and Graham [19]
extended list scheduling to arbitrary non-delay scheduling and proved
similar results. Adam et al. empirically evaluated list scheduling
algorithms for parallel programs and reported that CPA (“HLFET”
in their terminology) yields better makespan than several alterna-
tives for both real and synthetic workloads [1]. See Kwok and
Ahmad [32] for a recent survey of static scheduling algorithms
and Sgall [42] for online scheduling algorithms. Makespan min-
imization is also studied for a wide range of computation models,
such as uniform machines [11, 9], unrelated machines [34], open
shops [41], flow shops [20, 15] and job shops [15, 29].

The special case where each task has unit execution time has
received extra attention. Lenstra & Kan [33] proved that it is NP-
hard to approximate this special case within a ratio of 4/3. It is an
open problem whether we can get an upper bound better than 2. If
P = 2, makespan minimization is possible in polynomial time [36,
12]. It is an outstanding open problem [25] whether it is NP-hard
for P = 3. For multithreaded computations on parallel computers,
normally a task represents a single machine instruction, thus unit
execution time is a natural assumption. Blumofe and Leiserson [4,
5] and Gibbons et al. [2] analyze time- and space-efficient paral-
lel scheduling algorithms for well-structured multithreaded com-
putations. Their work extends Cilk, a provably time- and memory-
efficient runtime thread scheduler [3].

6.2 Minimizing Mean Completion Time
Minimizing mean task completion time is an important objec-

tive in both systems and theory literature. The classic shortest
job first heuristic is optimal in the offline case with no precedence
constraints, and works well in many online scheduling systems.
See [10] for a recent survey of theoretical results in this domain.

The large queueing-theoreticliterature on processor scheduling
typically assumes continuous online job arrivals and emphasizes
mean response times and fairness, e.g., Wierman and Harchol-
Balter [44]. Kumar and Shorey [31] analyze mean response time
for stochastic “fork-join” jobs, where fork-join jobs closely resem-
ble the stage-structured jobs of DSSP. Our work on DSSP differs
because we are confronted with a fixed set of jobs rather than a
continuous arrival process. Deadline schedulingis therefore a more
appropriate goal for DSSP.

6.3 Grid and Resource Management
For heterogeneous distributed systems such as the Grid, job schedul-

ing is a major component of resource management. See Feitel-
son et al. [16] for an overview of theory and practice in this space,
and Krallmann et al. [30] for a general framework for the design
and evaluation of scheduling algorithms. Most work in this space
empirically evaluates scheduling heuristics, such as backfilling [35],
adaptive scheduling [23], and task grouping [43], to improve sys-
tem utilization and throughput. Markov [37] described a two-stage
scheduling strategy for Sun’s Grid Engine, which superficially re-
sembles our two-phase decomposition approach. In fact there is
no similarity: The first stage of Markov’s approach assigns static
priorities to jobs and the second stage assigns dynamic priorities
to server resources. Most of the work in the Grid space does not
emphasize precedence constraints among jobs/tasks.

6.4 Commercial Products
Open-source schedulers such as Condor manage resources, mon-

itor jobs, and enforce precedence constraints [13]. Commercial
products such as LSF additionally enforce fair-share constraints [39].
These priority schedulers have no explicit selection phase, so they
must handle overload and enforce fair-share constraints through
dispatching decisions. Our two-phase deadline scheduler for DSSP

can employ a priority scheduler for task dispatching after an opti-
mal solver has selected jobs. Selection can enforce a wide range of
constraints, thereby allowing greater latitude for dispatching deci-
sions. Furthermore, the per-job completion rewards of our frame-
work are more expressive than ordinal job priorities and thus better
suited to DSSP.

7. CONCLUSIONS
DSSP is a new class of scheduling problem for which two-phase

decomposition is a promising approach. While we experiment only
with an animation rendering workload, many other commercial ap-
plications have the same structure as DSSP and we hope to find
traces for them as well and learn about their other requirements.

We presented a two-phase scheduling solution framework and a
variety of algorithms for both the job selection and task dispatching
phases. While deadline scheduling work traditionally focuses on
offline solutions that require complete knowledge of task and job
run times, we compared algorithms that require complete knowl-
edge with algorithms that use only rough predictions of run times
for entire jobs, not individual tasks. Both our theoretical results
and our empirical comparisons of the algorithms reach the same
surprising conclusion: our two-phase scheduling methods perform
well even without detailed knowledge of individual task run times.



We conclude that an optimal selection algorithm combined with
our new LCPF dispatching algorithm solve DSSP well. Our ap-
proach can satisfy a wide range of constraints while achieving high
aggregate value. LCPF also performs very well according to several
secondary criteria: like CPA it overtakes other policies in terms of
job completions near the deadline, but it dominates CPA well before
the deadline. LCPF also releases processors nearly simultaneously.
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APPENDIX

A. EXTENDED EMPIRICAL RESULTS
The empirical results presented in Section 5.4 consider the case

where dispatcher policies have clairvoyant/offline knowledge of
task execution times. In this appendix we consider the case where
our scheduler instead must rely on estimates of computational de-
mands that are available in the environment where our traces were
collected. Specifically, our scheduler uses the estimates of critical
path lengths and total CPU demand described in [47].

Figures 8 through 10 show results analogous to Figures 6 and 7
for the three reward functions described in Section 5.1. The data se-
ries labeled “actual” correspond to experiments in which both job
selection and task dispatching exploit complete clairvoyant knowl-
edge of task execution times. Those labeled “predicted” employ
estimates of T1 and T∞ for job selection and dispatching. We can-
not present “predicted” series for CPA because it requires estimates
of individual task execution times, which are not available for our
workload.

The results for banded and linear rewards (Figures 8 and 9) are
similar. In both cases LCPF is relatively much less sensitive to a
poorly tuned selection parameter r than CPA. Furthermore LCPF

outperforms the other policies provided that the selection param-
eter is well tuned. For size-dependent rewards (Figure 10), LCPF

outperforms both STCPU and PRIORITY in the “predicted” case re-
gardlessof r . LCPF delivers roughly 9% greater aggregate value
than PRIORITY for size-dependent rewards, when the best perfor-
mance of both policies are compared.
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Figure 8: Banded reward.
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Figure 9: Linear reward.
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Figure 10: Size-dependent reward.


