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Abstract—The performance modeling and analysis of disk arrays is challenging due to the presence of multiple disks, large array

caches, and sophisticated array controllers. Moreover, storage manufacturers may not reveal the internal algorithms implemented in

their devices, so real disk arrays are effectively black-boxes. We use standard performance techniques to develop an integrated

performance model that incorporates some of the complexities of real disk arrays. We show how measurement data and baseline

performance models can be used to extract information about the various features implemented in a disk array. In this process, we

identify areas for future research in the performance analysis of real disk arrays.

Index Terms—RAID, analytical performance model, array cache, parallel I/O, enterprise storage systems, I/O performance

evaluation, disk array.
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1 INTRODUCTION

AS computer applications have become more data
intensive, the demands on storage systems in terms

of efficient storage and retrieval have correspondingly
increased. Currently, RAID (Redundant Array of Indepen-
dent Disks) architectures have become the architecture of
choice for large storage systems since they employ striping
(i.e., parallelism) and redundancy across multiple disks to
increase capacity, speed, and availability of storage systems.
Modern RAID disk arrays contain multiple disks, large
caches, and sophisticated array controllers that perform
optimizations such as load-balancing, request coalescing,
and adaptive prefetching. Thus, disk arrays are complex
devices, and it is difficult to understand the behavior of disk
arrays and compute their performance measures. Since
storage systems are often the system bottleneck in computer
systems running I/O intensive applications, the degrada-
tion in system performance as a consequence of a
nonoptimal disk array configuration can be considerable
[23]. Consequently, improving the performance of the
storage system would result in an overall system perfor-
mance upgrade.

The key performance metrics studied by performance
engineers are disk array response time, throughput, and
queue length. Response time is the time spent by an I/O
request at the disk array, waiting for and receiving service.
Throughput is the rate at which I/O requests are serviced by
the disk array. Thus, response time measures how fast an
individual request can be stored and retrieved, and through-
putmeasureshowmany such requests canbe servicedwithin

a specified time.A relatedmeasureof interest is queue length,
the number of I/O requests at a disk array, and by Little’s
Law,meanqueue length is theproduct ofmean response time
andmean throughput. Both simulationmethods and analytic
techniques have been used to compute storage system
performance measures under various design trade offs.
Typically, simulationmodels aremore accurate than analytic
models since they make fewer simplifying assumptions. By
contrast, analytic models are much less expensive and
significantly faster than simulation models. Thus, analytic
models are useful as they provide a “quick and dirty” way to
isolate potential problem areas, with comparatively little
effort. This can be of advantage in complex storage manage-
ment systems such as Minerva [1], which have to evaluate
thousands of candidate data-to-device configurations to
arrive at an optimal-cost solution.

In our paper, we focus on using standard performance
techniques to develop an analytic model for understanding
the effect of various disk array features on the performance
of real disk arrays. In order to analyze the mechanisms of
real disk arrays, we extend prior performance modeling
work by including the effects of caching, parallelism, and
array controller optimizations in our performance model.
This is in contrast to earlier models that have either focused
on modeling the parallelism of disk arrays or on modeling
the caching policies of disk arrays, but not both. (See
Section 2 for survey of related work.) Further, our
performance model can be used to analyze the effects of
array controller optimizations such as write-back caching
policies, coalescing of multiple disk accesses into a single
disk access, redundancy layout in the disk array, and
adaptive data prefetching by the array cache. Thus, our
study helps shed light on 1) how disks and caches interact
with each other and jointly impact the performance of disk
arrays, and 2) how the array controller optimizations
impact the performance of disk arrays.

Our results indicate that standardperformance techniques
are useful in isolating disk array features that could be
improved for better disk array performance. For example, in
the array that we studied (theHP Surestore E FC-60 [14]), our
model could isolate the fact that the adaptive prefetching
feature performed well only when the number of sequential
streams accessing adisk in the arraywas small.We expect the
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disk array analysis andmodel developed here to be useful to
designers of disk arrays and to researchers in the area of
distributed and parallel computing where programs move
large chunks of data between the storage system and main
memory. Examples of I/O intensive applications are data-
base management systems, multimedia applications, and
large-scale scientific computations. Researchers who want to
getmaximumperformancebenefit of their storage systemcan
use our modeling approach to understand how their disk
array functions and learn its limitations and performance
bottlenecks. For example, if adaptive prefetching at the disk
array level performs best when the number of sequential
streamsaccessing thedisks is small (asdetermined forFC-60),
itwould imply that inapplications that submit sequential I/O
requests (e.g., multimedia), data should be distributed across
the disks such that the number of requests submitted to an
individual disk in the array is small. Thus, from a larger
perspective, the results of our model (if not the model itself)
could be integrated into the performance study of a larger-
scope parallel or distributed system.

The rest of the paper is organized as follows: Section 2
presents related work in the area of disk array modeling.
Section 3 describes the architecture of the real disk array
used in this study. Section 4 presents the general disk array
model and the standard techniques employed to evaluate
the performance of the model. Section 5 presents a baseline
disk array model whose input parameter values may be
known a priori (because it is published and made available
by the manufacturer) or unknown (in which case we infer it
from measurement data). Section 6 shows how the baseline
model can be used to extract details of array controller
optimizations. The effects of these optimizations are
subsequently incorporated in the baseline model. Section 7
discusses interesting observations and challenges that
require further research. Section 8 presents the conclusion.

2 SURVEY OF RELATED WORK

A review of the literature on performance analysis of disk
arrays reveals an interesting progression of increasing
complexity, as researchers attempt to model more features
of real disk arrays. The early papers focused on the parallel
disks and ignored the array cache.KimandTantawi [20]were
among the first to present an analytic method for approx-
imating the disk service time of requests striped across
n disks. In this early paper, redundancy and queueing of
outstanding requests are not considered. Chen and Towsley
[8], [9] subsequently incorporated both redundancy and
queueing in their performancemodel of RAID 5 disk arrays in
normal mode. Merchant and Yu [25], [26], [27] then analyzed
RAID 5 and RAID 1 disk arrays in both normal and recovery
modes, which Thomasian and Menon [33], [34] and Kuratti
and Sanders [21] extended to normal, degraded, and rebuild
modes in their RAID 5 performance model. Bachmat and
Schindler [7] analyzed reconstruction in RAID 1 disk arrays.
Lee and Katz [22] extended the analysis of disk arrays to
include synchronous I/O workloads. DiskSim [13], Raid-
Frame [11], and Pantheon [40] are some simulationmodels of
disk arrays. Only the disk components of these models have
been validated against real disks.

Papers that include the effect of caching policies on disk
array performance are relatively scarce compared to the
number of papers that have analyzed the effect of multiple
disks on array performance.Whilemost caching papers have
focused on generating faster, more efficient caching algo-
rithms, there are only two papers that directly analyze the

effect of caching mechanisms on disk array performance.
Menon [24]models explicit read-ahead andwrite-back by the
array cache of a RAID 5 disk array. Uysal et al. [35] present an
analytic model that predicts the mean throughput of disk
arrays under asynchronous I/O workloads when the mean
queue length at the disk array is known. Interestingly, they
incorporate the effect of some controller optimizationswhose
implementation details are known.

Wedevelopananalyticalmodel that analyzes the effects of
caching policies and the effects of parallelism of disks along
with the effects of array controller optimizations on the
performance of a disk array when read-only and write-only
workloads are submitted to the array. Our model incorpo-
rates caching policies that relax many of the assumptions
made by Menon. For example, Menon’s model assumes that
the read hit rate is known and that the write hit rate is always
one. Also, Menon’s model does not consider how caching
affects the workload distribution submitted to the disks. We
extendUysal et al.’s work to include synchronousworkloads
which make up a nonnegligible portion of I/O workloads.
Further, we do not assume that controller initiated optimiza-
tions are known, sincemanufacturers rarely reveal the details
of various features implemented in their system. We show
howdetails of controller optimizations can be extracted from
a real disk array using measurement data and baseline disk
arraymodels. Finally, compared to themajority of priorwork
which has employed simulations,we test ourmodel against a
real disk array using synthetic workloads. In the next section,
we describe the configuration of the real disk array used in
our study.

3 DISK ARRAY ARCHITECTURE

The Hewlett-Packard SureStore E FC-60 disk array [14] is
used in our study. This midsize storage system implements
several of the features found in typical disk arrays. Fig. 1
shows a representation of the FC-60 disk array. The FC-60 has
two array controllers. Each controller has 256 MB of battery
backed cache memory (NVRAM). We refer to this battery
backed cache memory as an array cache. An I/O request that
hits in the array cache can be serviced immediately by the
cache without forwarding the request to the disks. Thus, an
array cache that performs efficient read-ahead and write-
behind can have a major impact on the performance of the
disk array.
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Fig. 1. The HP FC-60 disk array.



Both array controllers of the FC-60 are connected to a
single backplane bus. The backplane bus has six ultrawide
SCSI buses, each connected to a separate tray. Each of the
six trays has two SCSI disk controllers and up to 10 disks.
Each disk has a 4 MB volatile on-board cache memory that
can be used to improve disk read access times by
prefetching data. Since there are 60 disks in a fully
configured FC-60, it is easier to manage the disk array if
the disks are logically partitioned into smaller, disjoint
groups of disks. Each group of disks is treated as an
independent unit and is referred to as a LUN (logical unit).
An I/O request is striped across disks belonging to a single
LUN. In the FC-60, a LUN is formed by combining disks
controlled by different SCSI controllers. For example, a LUN

could consist of the first disk on each tray. A typical
configuration for the FC-60 is a fully configured array with
60 disks, 10 to each SCSI controller, for a total of 10 6-disk
LUNs. Each array controller controls access to a disjoint set
of LUNs. However, if one array controller fails, then the
other array controller takes over the responsibilities of the
failed controller.

The RAID 1/0 configuration is a popular method of disk
striping, so we model the FC-60 with its LUNs configured as
RAID 1/0 arrays. To protect against failure of any one disk,
each disk in a RAID 1/0 configuration is paired with another
disk that mirrors its data. All write data have to be written
both to the disk and its mirror, and read data can be read
from either disk. Each disk in a RAID 1\0 LUN is logically
divided into blocks of equal size called stripe units.
Consecutive stripe units are assigned in round-robin order
to the mirrored disk pairs. The set of corresponding stripe
units on the disks (e.g., the third stripe unit on each disk)
forms a stripe. Typically, stripe units for consecutive stripes
are placed sequentially on a disk (Fig. 2).

All our experiments are run on one FC-60 LUN contain-
ing six disks, one from each tray. Table 1 presents the disk
array configuration parameters of significance to our work.
These parameter values are obtained from the manufac-
turer’s specifications [31] or directly measured.

4 DISK ARRAY PERFORMANCE MODEL

A real disk array is a complex system made up of several
components such as array caches, array controllers, disk
(SCSI) controllers, disk cacheswith their own internal caches,
and internal buses. If an analytical disk array performance
model explicitly models all these components, then it would
also be very complex. This level of detail in a disk arraymodel
is not only unnecessary but also counterproductive since it
would be difficult to extract the behavior of the disk array
from all the details. Hence, we use a top-down approach to
modeling disk arrays by first identifying the key components
and explicitly modeling them. In order to identify the key
components of a disk array, it is necessary to understandhow
the disk array services its workload. All read and write I/O
requests to a disk array are first submitted to the array cache.
A read request that hits in the array cache is immediately
serviced from the array cache, else the request is submitted to
the disks. A write request is first written into the array cache
and later written to the disks. Based on this analysis, we
identify the array cache and the disks as the key components
of the disk array.

Our disk array performance model is developed as a
network of queueing service centers that each represents a
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Fig. 2. RAID 1/0 configuration.

TABLE 1
Disk Array Characterization



key disk array component, namely, the array cache and the
disks. The effects of all other (secondary) components are
implicitly captured in the service times of the explicitly
modeled components. For example, the bus transfer time is
added to the array cache service time, while the disk
caching effect is incorporated in the disk service time.
During a later modeling phase, a secondary component can
be made a key component if it is found that the effect of the
secondary component cannot be accurately reflected in the
service time of another key component. A secondary
component can also be made a key component if one wants
to analyze the effect of this secondary component on
performance.

Once the key components are identified, the next phase in
the modeling process is to characterize the workload
submitted to the disk array. Assume that there are M jobs in
the system each generating an I/O stream. The key
characteristics of an I/O stream are the request type (read
or write), the request size (request_size), and the degree of
sequentiality. The degree of sequentiality of a workload
stream is defined by run_count, which is themean number of
requests to sequential data, and random_count, which is the
mean number of random requests between two runs (of
sequential requests). We assume that the jobs accessing the
disk array generate synchronous I/O requests. This implies
that a jobmust wait until its I/O request completes and there
is atmost one request fromeach streamat thedisk array. Each
of the M jobs spends some time at the CPU/terminal before
submitting an I/O request to the disk array. A job waits until
the disk array completes processing its I/O request, and then
the job spends time at the CPU/terminal before issuing
another I/O request. Such cyclical behavior ismodeled using
a closed queueing network with jobs cycling between the
CPU/terminals and the disk array. Hence, we refer to
synchronous I/O workloads in the closed system context.
Let CPU_delay represents the mean time spent by a job at its
CPU/terminal. Since the focus of this study is the behavior of
the disk array, the only nonstorage system parameter of
interest is the arrival rate of I/O requests. Hence, for
simplicity, each job is modeled with its own CPU/terminal
and there is no queueing at the CPU/terminal. Theworkload

parameters of significance to our model are summarized in
Table 2.

Once the system components and the workload para-
meters are identified, the next step in the modeling process
is to develop the detailed model and the analytical
technique used to evaluate the model. The model and
techniques for read and write workloads are presented
below. Table 3 summarizes the performance measures
computed by our performance techniques when there are
M workload streams accessing the disk array.

4.1 Read Model

We analyze the behavior of disk arrays when the submitted
workload consists of read-only I/O requests. Read requests
are first submitted to the disk array cache. With probability
cache_hit_probability, a read request’s data are found in the
cache, and the disk array controller signals service comple-
tion. With probability

cache miss probability ¼ 1� cache hit probability;

a request is forwarded to the disks, and the disk array
controller signals service completion after all disk I/Os for
the request complete service. From a performance perspec-
tive, the key components of a disk array are the array cache
and the disks. The array cache is modeled by a single
queueing server with mean service time cache_service_
time. The disks are modeled by a parallel queueing system
since a request submitted to the disks is divided into one or
more disk I/Os issued in parallel to some (or all) of the
disks, and the request completes service only after all its
disk I/Os complete. The parameter disk_access_probability
represents the probability that a request accesses a disk in
the array. The parameter disk_service_time represents the
mean time to service a disk I/O access. Even if all disk I/Os
for a request are issued simultaneously, these disk I/Os
need not all start and finish at the same time since the disks
are independent devices. The parameter parallel_overhead
represents the additional time (over disk_service_time)
taken to execute all the disk I/Os of a request.

Fig. 3 presents the queueing network model of the disk
array system with read workloads. The MVA technique for
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TABLE 2
Workload Characterization

1 A run in a workload stream is a string of sequential requests to contiguous bytes.

TABLE 3
Performance Technique Outputs for a Disk Array Accessed by M I/O Streams



parallel queueing networks [36] is the standard technique
used to evaluate mean performance measures of closed
parallel queueing networks. Appendix A.1 presents the
MVA technique using the disk array input parameters
presented above. In Section 5, we explain how values for
these input parameters are computed.

4.2 Write Model

We analyze the behavior of disk arrays when the submitted
workload consists of write-only workloads. Write requests
are first written to the disk array cache and completion is
signaled as soon as the write-to-cache is completed. The
“dirty” data in the cache are eventually written to the disks.
The write-back caching policy of a disk array determines
when dirty data are written to disks, and most disk arrays
implement write-back caching [12], [17].

Ourwrite-back cachingmodel for the FC-60 is determined
by two key parameters, namely, the destage_threshold and
max_dirty_blocks. The parameter destage_threshold deter-
mines themaximumnumberofdirtyblocks that canbeheld in
the cachewithout triggering diskwrites. Therefore, in steady
state, there is zero probability that the cache has less than
destage_threshold dirty blocks. The parameter max_ dirty_
blocks determines themaximumnumber of dirty data blocks
that can be held in the array cache. Write requests that arrive
when the cache is full must wait until enough dirty data are
writtenout to thedisks. Thus, there is zeroprobability that the
cache hasmore thanmax_dirty_blocks blocks. Let i represent
the number of dirty blocks in the cache. In steady state, the
cache can have destage_threshold � i � max_dirty_blocks
dirty blocks.

Let �[M] represent the rate at which dirty blocks arrive at
the cache and let �[M] represent the rate at which dirty

blocks are written out to disks when there are M workload
streams accessing the disk array. In steady state, the cache
can be modeled as a Markov birth-death M=M=1=K process
[10], where K = (max_dirty_blocks � destage_threshold þ1).
The corresponding Markov chain shown in Fig. 4 has states
{destage_threshold, . . . , max_dirty_blocks}. Appendix A.2
presents the technique used to compute the performance of
disk arrays under writes using the input parameters
described above. Note that the M=M=1=K model assumes
that the interarrival time distribution of dirty blocks to the
cache and the service distribution of dirty blocks written to
disks are exponential. The advantage of assuming expo-
nential distribution is the efficiency and simplicity of the
corresponding performance technique. The exponential
assumption may not be strictly satisfied, but during the
modeling process, we found that any errors caused by this
assumption were, at worst, comparable to other inaccura-
cies during the modeling process (e.g., errors in measure-
ment data).

The input parameters for the read model and write
model are summarized in Table 4. In the next section, we
present the computation of these input parameters.

5 BASELINE MODEL INPUTS

In this section, we present the computation of the input
parameters to the disk array modeling techniques. The input
parameter values (presented in Table 4) must reflect the
effects of system and workload specifications and also the
effects of various optimizations implemented by the array
controller. In the case of system specifications, one can get
accurate estimates of the parameter values using measure-
ment data or one can rely on manufacturer published data.
For example, themeanbus transfer rate for adisk array canbe
extracted by taking direct measurements. In the case of
controller optimizations, however, it is difficult to under-
stand the implementation details using measurement data
since manufacturers rarely specify the optimizations used in
an array. Even when particular optimizations are disclosed
through patents [15], [29], [38], it is difficult to identify the
specific variants that are used in a particular array.

VARKI ET AL.: ISSUES AND CHALLENGES IN THE PERFORMANCE ANALYSIS OF REAL DISK ARRAYS 563

Fig. 3. Queueing network model of disk arrays with read workloads.

Fig. 4. Markov chain representation of disk arrays with write workloads.

TABLE 4
Model Input Parameters When There are M I/O Streams Accessing the Disk Array



We address this issue by using a two-step approach to
compute the values of the input parameters to our
performance model. We first develop a baseline disk array
model whose input parameter values only incorporate the
effects of “known” disk array features. The algorithms used
in implementing these features are either known or can be
deduced by taking measurements on the real disk array. In
this baseline model, the effects of array controller optimiza-
tions are not incorporated, since the details of these
“unknown” features are difficult to deduce from just
measurement data. Once the baseline model is determined,
we compare this baseline model’s performance measures
against the disk array’s performance measures using work-
loads designed to isolate specific array controller optimiza-
tions. We then incorporate the effects of the “unknown”
features of the disk array in the input parameter values,
resulting in an integrated model of real disk arrays.

The rest of this section presents the issues involved in the
computation of input parameter values for the baseline
model. Note that for notational convenience, the multi-
programming level M is dropped from parameter repre-
sentation.

5.1 Disk Service Time

The disks are the slowest component of a disk array, so
errors in estimating disk service time would affect the disk
array model’s performance predictions more than errors in
estimating other parameter values. Hence, it is important to
get accurate estimates of disk service time, but this is a
difficult task since the value of disk service time can vary
widely depending on the disk workload, as we explain
below.

The disk service time is the sum of seek time, rotational
latency, and transfer time. Seek time is the time taken for the
disk head to move to the correct disk track, rotational latency
is the time taken for the correct disk sector to rotate under the
disk head, and transfer time is the time taken to write/read
data to/off the disk. The sum of seek time and rotational
latency is known as the disk positioning time. It is easy to
compute disk transfer time since it depends on the disk I/O
request size and the disk transfer rate (disk_transfer_time =
diskIO_size/disk_transfer_rate). It ismuchharder to compute
positioning time since this value depends on the distance that
the disk head has to move and the distance the disk has to
rotate. These distances are dependent on the disk specifica-
tions and thedisk schedulingpolicy, andonseveralworkload
features such as the arrival rate, distribution, and access
pattern of I/O workload streams, the number of workload
streams, and the per-stream sequentiality. It is important to
select a disk service time computation technique that

incorporates the effects of all these features. Several papers
[4], [6], [27], [30], [32] present disk service time computation
techniques that incorporate the effects of some of these
features. For the greatest accuracy, we compute disk
positioning time by analyzing disk measurement data.
During the measurement process, the disk was disconnected
from the disk array.

We model disk positioning time measurement data as a
function of disk queue length. The mean rotational latency
is typically approximated by the time for half a disk rotation
[32], which is constant for a given disk. We approximate the
seek time of a disk as �þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
seek distance

p
by simplifying

the seek curve formulas proposed by Ruemmler and Wilkes
[30], where � and � are constants depending on the disk.
The seek distance depends on the disk scheduling policy
and the location of disk I/O requests. Most disk controllers
use disk scheduling policies that reduce average seek time,
such as SCAN.1 We assume that when there are disk_queue
number of requests from different workload streams at a
disk, they are uniformly located over the disk. Since the
disk scheduling policy minimizes seek distance, the seek
distance is approximately the full-stroke distance (i.e., the
distance from one end of the disk to the other end) divided
by disk_queue þ 1. Thus, the seek time time is given by
�þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
full stroke distance=ð1þ disk queueÞp

. The position-
ing time, which is the sum of seek time and rotational
latency, can be written as

disk position time ¼ aþ bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ disk queue

p ; ð1Þ

where a and b incorporate the effects of constants � and �
for the disk along with the rotational latency and the full-
stroke distance.

The first graph in Fig. 5 plots disk positioning time
measurement data as a function of disk queue length when
the workload streams are all random. For random work-
loads, the disk positioning time is given by (1). By
minimizing the root-mean square errors between the
measured values and those given by the equation, it is
determined that for the Cheetah 73 disks used in our
experiments, the constants are a ¼ 3:53 ms and b ¼ 8:81 ms.

The second graph in Fig. 5 plots disk positioning time
measurement data as a function of disk queue length when
the workload streams are all sequential. When the disk
scheduling policy minimizes the seek distance, the disk
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1. In the SCAN scheduling policy, the disk arm starts from one end of the
disk and services requests as the arm moves to the other end of the disk.

Fig. 5. Disk mean read positioning time for random and sequential workloads.



positioning time depends on the degree of sequentiality of
the disk workload. The more sequential the workload, the
smaller the mean positioning time. When there is a single
stream of sequential requests accessing the disk, the
positioning time is close to zero since the disk workload is
sequential. As the number of sequential streams increases,
the disk workload appears random because of interleaving
of requests from different sequential streams, resulting in
an increase in positioning time. However, even if there are
two or more sequential streams accessing the disk, the
request service time can be reduced significantly if a read
request can be serviced from the disk cache due to read-
ahead [19]. Most modern disk drives have on-board caches
that act as speed matching buffers between the disk drive
and its interface and as read-ahead stores of sequential
request data. The disk cache is divided into segments, and
the amount of read-ahead is dependent on the size of a
segment and the disk queue length. During a read
operation, the disk drive typically reads an entire segment’s
worth of data into an available cache segment (not just the
request data) if there are no other requests waiting in the
disk queue. The graphs in Fig. 5 incorporate the effect of
disk caching by computing disk positioning time as the
average of positioning time values when there are cache hits
and misses. As the second graph indicates, the sequentiality
of the workload streams has minimal effect on disk service
time for disk_queue > 3. (That is, disk caching is effective
when there are less than four sequential streams accessing
the disk.) This result could be because there are four or
more sequential streams accessing the disk when there are
only three disk cache segments in the disks used in our
study. In fact, the default number of cache segments for
these disks is three, although they can be set to vary
between 1 and 16. Thus, read-ahead data are possibly being
replaced before they result in read-ahead hits. For simpli-
city, we model the positioning time for disk_queue � 3 as a
linear function of the disk queue length. For disk_queue
> 3, (1) is used. For sequential workloads, the mean
positioning time is given by

disk position time ¼ ð1Þ disk queue > 3
cþ d � disk queue disk queue � 3:

�

ð2Þ
For Cheetah 73, c ¼ �2:73 and d ¼ 3:68.

Given a particular disk and its workload, the disk service
time is a function of the disk queue length. However, disk
queue length is an output of the disk array performance
model. Thus, disk service time is a function of disk queue
length, but disk queue length is a function of disk service
time. To address this circular relationship between disk
service time and disk queue length, disk service time
computation techniques typically assume that the disk
queue length is a known input parameter. In our modeling
study, disk queue length is a known input parameter only
when CPU_delay ¼ 0 in which case disk_queue = M �
disk_access_probability. For workloads with CPU_delay
> 0, a reasonably accurate approximate value of disk queue
length must be computed and validated. Our computation
of the approximate disk queue length is presented in
Appendix A.3. The validation of the approximate disk
queue length is presented in a technical report [37].

5.2 Parallelism Overhead

Parallelism overhead (in Table 4) refers to the additional
time (over disk_service_time) taken to execute all the disk

I/Os of a request. Since all sibling disk I/Os are the same
size, the transfer time for each disk I/O is the same, but the
positioning time for each disk I/O could be different since
positioning time depends on several disk and workload
parameters as explained above. Let max_position_time
represent the mean of the maximum positioning time from
among num_diskIOs_per_request disk I/Os.

parallel overhead ¼ max position time� disk position time:

The value of max_position_time is dependent on the
distribution of positioning time, but the exact distribution of
positioning time is unknown. So, one has to approximate the
distribution of positioning time. We compute parallel over-
head by assuming positioning times are modeled by the beta
distributionwith values ranging from [0, full_ rotation_timeþ
disk_max_read_seek_time] [37]. Since parallelism overhead
is a small factor in the performance prediction computation
(see Appendix A.1), errors in the model’s performance
predictions due to inaccuracies in the value of parallelism
overheadarewithin thebounds of other errors inherent in the
modeling process.

5.3 Disk Access Probability

The disk_access_probability represents the probability that
a request accesses data from a disk in the array. The value
of disk_access_probability depends on the cache hit
probability, the I/O workload’s disk access pattern, and
on array controller optimizations such as access coales-
cing. In this baseline model, we ignore the effects of array
controller optimizations, but in the next section, we will
address the impact of these optimizations on the value of
disk_access_probability. It is assumed that requests access
data uniformly from all the disks. Hence, the value of
disk_access_probability depends on the cache hit prob-
ability and the distribution of the number of disk I/Os
per request for the I/O workload.

disk access probability ¼
cache miss probability � num diskIOs per request

stripe width
:

ð3Þ

5.4 Cache Parameters

A cache hit on a read request occurs if 1) this request is part
of a sequential stream of requests submitted to the disk
array and was read into the cache as part of read-ahead
data, or 2) this request had been referenced in the past and
the request’s data are still in the cache. The random
variables representing read-ahead and rereference hits are
independent since the probability that a request’s data
results in a read-ahead hit is not related to whether this
request’s data results in a rereference hit. The cache hit
probability is then given by

cache hit probability ¼1� ðread ahead miss probability�
re reference miss probabilityÞ:

Techniques for computing the rereference probability are
presented in several papers [5], [32], [35], [42]. The read-
ahead probability is a function of explicit read-ahead (i.e.,
every read access from the disks results in an additional
system-defined number of bytes being read into the cache)
and adaptive prefetching based on detection of I/O
sequentiality. A technique for computing the explicit read-
ahead hit rate is given in a technical report [37]. We will
address adaptive prefetching in the next section.
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The cache service time is the rate at which requests are
transferred from the array cache to the main system and is
equal to request_size/cache_transfer_rate.

5.5 Write Model Input Parameters

The parameter � represents the rate at which dirty blocks
are written out to the disks from the array cache. Once the
destage_threshold is reached, the controller writes out data
to all disks at a time. Since data written to a disk must also
be written to the disk’s copy,

� ¼ stripe width

2 � disk service time
:

The parameter � represents the rate at which dirty blocks
arrive at the write cache when it is not full (i.e., when the
number of dirty blocks in the cache is less than max_dirty_
blocks). In this state, the rate of arrival of dirty blocks is
constrained mainly by the multiprogramming level and the
CPU delay of the workload. We can therefore approximate
� by max_array_throughput, the throughput of the disk
array system with an infinite write cache under this
workload. The MVA technique can be used to compute
max_array_throughput of a disk array with an infinitely
large array cache.

6 EXTRACTING CONTROLLER OPTIMIZATIONS

Most array controllers implement the following optimiza-
tions:

1. access coalescing policy that determines whether
several disk I/Os that access contiguous data on the
samediskarecoalesced intoasingledisk I/O[15], [16],

2. redundancy-based load balancing policy that deter-
mines how the disk controller distributes the load
between a disk and its mirror [18], [38], and

3. adaptive data prefetching from the disks to the array
cache based on detection of I/O workload sequenti-
ality [29], [39], [43].

The baseline model developed in the last section does not
incorporate the effects of these optimizations.

Here, we show how a validated baseline model and a
carefully crafted workload can be used to isolate and
understand the details of each controller optimization. The
simplest baseline disk array model is one that models disk
arrays under small random read requests (which access
only 1 disk in the array) with CPU_delay ¼ 0. In this case,
the only input parameters of significance are disk service
time and cache service time. This model can be validated
against measurement data from the disk array. This
baseline model can be extended by incorporating the effects

of one feature at a time, and by validating the model against
measurements from the actual system at each step. We use
this incremental approach to incorporate the effects of each
of the controller initiated optimizations. Before presenting
details of the extraction of controller optimizations, we
present the workload used in this study.

6.1 Experimental Setup

An HP server generates the synthetic I/O workloads that
are used to extract the disk controller details. Unlike real
workload traces, synthetic workloads can be characterized
accurately, so we can eliminate errors in our model’s
performance predictions that arise due to inaccuracies in
workload characterization. The inputs to the synthetic
workload generator are presented in Table 5.

In order to analyze the disk array’s performance under
synthetic workloads, a trace of all I/O activity at the device
driver level is collected. The trace contains I/O submission
and completion times, the logical addresses and sizes of
requests, and all other relevant workload information. An
analyzing tool then analyzes the trace file and generates
statistical results such as mean values, variances, and
95 percent confidence intervals for response times and
throughputs. We ran each experiment until the 95 percent
confidence interval for each metric was less than 4 percent of
the point value.

6.2 Access Coalescing and Load Balancing Policies

The access coalescing policy determines whether several
disk I/Os that access contiguous data on the same disk are
coalesced into a single disk I/O. For example, consider a
request of size 96 KB striped across three disks when the
stripe unit size is 16 KB. In this case, the request’s data are
stored on two adjoining stripes (rows) of the three disks,
and the disk controller has to read two stripe units from
each disk in order to access all the request’s data. The access
coalescing policy determines whether the two individual
disk I/Os to each disk are coalesced into a single disk I/O.
The redundancy-based load balancing policy determines
how the disk controller distributes the load between a disk
and its mirror. For example, consider a request of size of
96 KB striped across six disks configured using RAID 1/0,
where each disk has a mirror. As explained above, the
request’s data are stored on two adjoining stripes. Since
each disk has a mirror, the controller can either read all the
data off three disks or the controller can distribute the load
between disks and their mirrors by submitting read
requests to all the six disks. That is, one disk I/O can be
submitted to all the six disks instead of submitting two disk
I/Os (or one coalesced disk I/O) to three of the six disks.
The advantage of distributing the request’s load across all
six disks is that the disk service time for the request can be
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reduced by reducing the transfer time. The disadvantage of
distributing the request’s load across all six disks is that the
queue length at each disk increases. For example, consider
two requests of size 96 KB submitted to the disk array. If
both requests are read off all six disks, then each disk has a
queue length of two. On the other hand, if each request is
read off three disks, then the disk controller can read one
request off three disks and the other request off the other
three disks, thus ensuring that the queue length of each disk
is one. We refer to the load balancing policy that balances
load by dividing each large request’s data read access
between a disk and its mirror as the disk-transfer-time-
reducing load balancing policy. The policy that balances load
by assigning separate requests to a disk and its mirror is
referred to as the disk-queue-length-reducing load balancing
policy.

The access coalescing and load balancing policies
together determine the distribution of the number of disk
I/Os per request. For example, consider large request sizes
� stripe_width � stripe_unit_size. Assume that access
coalescing occurs for such large requests. Then, depending
on the load balancing policy, num_diskIOs_per_request =
stripe_width if request data access is distributed between a
disk and its mirror (disk-transfer-time-reducing policy), else
num_diskIOs_per_request = stripe_width/2 (disk-queue-
length-reducing policy). As (3) (in Section 5.3) shows, the
disk access probability for a given workload is dependent
on num_diskIOs_per_request. So, disk_access_probability is
a function of the load balancing and the access coalescing
policies of a disk array.

In order to extract details of the access coalescing and
load balancing policies for the FC-60 disk array, we
incorporate different combinations of access coalescing
and load balancing policies in the validated baseline disk
array model. In particular, we develop four updated model
versions by separately incorporating each of the following
policies in the baseline model:

1. no access coalescing and disk-queue-length-redu-
cing policy,

2. no access coalescing and disk-transfer-time-reducing
policy,

3. access coalescing and disk-queue-length-reducing
policy, and

4. access coalescing and disk-transfer-time-reducing
policy.

The workload consists of random read-only requests with
large request sizes and varying multiprogramming levels.
By using random workloads, one can ensure that array

caching has minimal impact on performance of the disk

array. By using large requests (greater than stripe_width/2)

one can evaluate both the effects of access coalescing and

redundancy-based load balancing. We then compare each

updated model’s predictions against actual measurements,

and by the process of elimination, select the model that best

matches the system.
To evaluate whether access coalescing occurs, we

compare the performance of access coalescing and no-

access coalescing models against actual measurements.

Fig. 6 shows two graphs that compare the mean response

times of the actual system against model response times.

The first graph plots model predictions when the model

does not perform access coalescing, while the second graph

plots model predictions when the model performs access

coalescing. We deduce that access coalescing is used in the

actual system because of the close match of the actual and

model curves in the right-hand graph.
We use a similar approach to evaluate the redundancy-

based load balancing policywhichdetermines how the FC-60

distributes load between a disk and its mirror. We compare

the performance of the access coalescing, disk-transfer-time-

reducing load balancing model and the access coalescing,

disk-queue-length-reducing load balancing model against

actual measurements. Fig. 7 shows two graphs that compare

the mean response times of the actual system against model

response times. In the first graph, the model predictions

reflect disk-queue-length-reducing load balancing, while in

the second graph, themodel predictions reflect disk-transfer-

time-reducing load balancing. The graphs indicate that FC-60

performs disk-transfer-time-reducing load balancing. The

graphs show that for the given workload consisting of all

same-sized requests, disk-transfer-time-reducing load bal-

ancing policy lowers performance significantly as the multi-

programming level increases. This implies that for the tested

workloads, the performance degradation due to increasing

disk queue lengths is not offset by the performance improve-

ment due to reduction in disk service times (by reducing disk

transfer times).
Our analysis shows that the FC-60 performs access

coalescing and disk-transfer-time-reducing load balancing.

We then incorporate the effects of these two policies in our

baseline model as follows:
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num diskIOs per request ¼
stripe width if request size � stripe width�

stripe unit size

request size
stripe unit size

l m
otherwise:

8>><
>>:

6.3 Adaptive Prefetching Policy

Current disk arrays typically implement adaptive prefetch-
ing of data based on automatic detection of sequential I/O
streams. In order to understand how adaptive prefetching is
implemented, we again compare our model predictions
against actual measurements.We use our baseline disk array
model now updated with the incorporation of the effects of
load balancing and access coalescing policies. The workload
consists of sequential read requests. As explained in Section
5.4, read hits at an array cache occur because of explicit and
adaptive read-ahead by the array cache and by rereferencing
of data currently in the array cache. In order to isolate the
effects of the adaptive prefetching policy, we turn off explicit
read-ahead by the array cache, thus ensuring that explicit
read-aheadhit rate is 0.We also ensure rereference hit rate is 0
by ensuring that the workload contains no rereferences.

Since the FC-60 performs adaptive prefetching and our
model does not, one would expect the actual system
performance to be better than the model predictions. This
improvement in system performance over model perfor-
mance would indicate the effectiveness of FC-60’s adaptive
prefetchingpolicy.Fig. 8plots themodelmeanresponse times
and the actual response times for sequential read workloads
forvaryingrequestsizes,multiprogramming levels1,3,6,and
12, and CPU delay 0ms, 10 ms, 30 ms, and 100ms. Note that,
for a given multiprogramming level, as the CPU delay
increases, the disk queue length decreases. For example, if a
request accesses all the disks, the disk queue length equalsM
when CPU delay is 0 ms, while the disk queue length is less
than M when CPU delay is greater than 0 ms. Referring to
Fig. 8, for CPU delay of 0 ms, the disk array outperforms the
model by a small margin for M ¼ 1; 3 (disk_queue < 4). As
CPUdelay increases, the disk array outperforms themodel at
additional multiprogramming levels, as long as disk_queue
< 4. For CPU delay of 100 ms, the disk array outperforms the
model for all multiprogramming levels plotted, since dis-
k_queue < 4. Thus, our analysis indicates that for the
workloads considered, the FC-60 adaptive prefetching policy
is effective when disk_queue< 4.
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Our model isolates the effects of adaptive prefetching in
the FC-60 disk array. In order to incorporate the effects of
adaptive read-ahead, one has to understand the details of
when prefetching occurs and also the adaptive read-ahead
data size. We were unable to extract these details even
through our reverse engineering approach, so adaptive
prefetching is not implemented in our disk array model.

6.4 Write-Back Caching Policy

Thewrite-back caching policy details for FC-60 are presented
in Section 4.2. When comparing our write baseline model
performance measures against system performance mea-
sures, we determined that write-back caching in the FC-60
occurs only for write requests of size at most equal to two
stripes. As Fig. 9 indicates, the write policy determination is
made because ourwrite-back cachingmodel outperforms the
system by a largemarginwhile a direct-write model matches
the system closely. In the direct-write model, large write
requests larger than two stripes are written directly to the
disks bypassing the array cache. The disk array controller
signals service completion of a large write request after all its
disk I/Os complete. The performance of disk arrays with
large write workloads can be computed using the technique

for evaluating the disk array model with read requests
(Section 4.1). The model parameterization for large writes is
relatively straightforward and the details are presented in a
technical report [37].

6.5 Validation

In addition to the optimizations mentioned above, a disk
array controller may implement other optimizations. In
addition, there are overheads involved with the operations
of the controller. Without any knowledge of what these
optimizations and overheads are, it is difficult to select an
appropriateworkload that can isolate the effect of a particular
optimization or overhead. So, we compare our model
performance predictions against the system performance
measurements to check whether it is possible to extract
information about the combined effects of other unknown
optimizations and overheads on the overall performance of
the disk array.

Figs. 10 and 11 plot the model mean response times
and the actual response times for read and write work-
loads for varying request sizes and multiprogramming
levels, and CPU delay of 0 ms and 10 ms. Fig. 12 plots
model and actual throughputs for varying request sizes
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and multiprogramming levels, and CPU delay of 30 ms.
These graphs indicate that the model’s performance
predictions are a good match for the experimental
performance measures. The model is better for random
I/Os than for sequential I/Os, and better for reads than
for writes. The average errors range from 3 ms (for
random I/Os) to 5 ms (sequential I/Os). Across all
workloads and experiment sets, the accuracy of the model
is within 7.1 percent on average. For random reads, the
model is accurate within 3.7 percent, on average, and for
random writes, the model is accurate within 5.5 percent,
on average. For sequential workloads, the model predic-
tions are, on average, within 8.8 percent and 8.0 percent
for read and write workloads respectively. For FC-60
under the tested workloads, the graphs indicate that our
model adequately incorporates the effects of the various
controller optimizations and overheads.

6.6 Further Analysis

Our results indicate that the disk array’s performance under
random and sequential workloads is quite similar, which
indicates that the sequentiality of the workload has little
impact on performance when the disk queue length is 4 or
more. This result is not very surprising given the similarity
of disk service time values for random and sequential
workloads, and the earlier analysis indicating that FC-60’s
adaptive prefetching algorithms perform better for small
disk queue length values.

Our results indicate that the disk array’s performance
under read and write workloads is quite similar. Given that
large writes are written directly to disks and given that
most read requests result in cache misses, this result is not
surprising. However, the performance under small random
reads is equivalent to the performance under small writes
when there is a high probability that an arriving request
finds the cache full. This result is a little surprising since one
would expect the performance with write-back caching to
be better than direct writes (or random reads) even when
the cache is mostly full, because the array controller can

judicially pick dirty data from the full cache to write out to
the disks. This implies that the algorithm that selects dirty
cache data to write to the disks can be improved.

7 DISCUSSION

In this paper, we evaluate how well standard performance
techniques can be used to analyze real disk arrays whose
internal details may not be known. In contrast to the purely
measurement-based table approach2 used by the Hippo-
drome project [2], [3], our modeling approach provides
insights into how various features of a disk array affect the
performance of the array. Our analytic approach, although
developed and validated for the FC-60 disk array (a midsize
storage system), could be used to compute the performance
of other vendors’ storage systems, since the modeling
techniques employed are not specific to FC-60. Also, there is
considerable flexibility allowed by our modeling approach.
For example, if one wants to analyze the effects of disk
caching on disk array performance, then one could model
the disk cache as a separate service center rather than
incorporating caching effects in disk service time.

Our study of the interaction between array caches and
disks and their joint impact on the performance of disk arrays
indicates that array caching policies affect not only the cache
hit rate, but also the disk service time and disk access
probability by changing the distribution of I/O workload.
Similarly, disk parameters such as disk queue length affect
not only the disk service time, but also the array caching
policies. For example, our study indicates that for the FC-60,
adaptive prefetching caching policy is most effective for
disk_queue < 4.
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ments of a disk array under synthetic workloads. Performance measure-
ments which were not measured are found by interpolation.



Given our objective of identifying the issues and

challenges to performance modeling of disk arrays, we

believe more work is needed on the following issues:

1. We found considerable paucity of data about the
internal specifications of disk arrays, despite a study
of manufacturer manuals and other published
information such as the US patent Web site where
information on patented algorithms is available. Too
often we found it difficult, if not impossible, to
associate a patented algorithm with a specific disk
array. Also, in the instances where published data
was available (e.g., bus transfer rate), the parameters
seem based on performance under best-case condi-
tions and do not reflect the effect of traffic at the
device. For example, for the workloads tested, we
found that the bus transfer rate presented in the
manufacturer’s specifications was about 35 percent
greater than the measured values. In the absence of
such information, we had to rely on measurement
data and carefully designed baseline models to
understand the implementation details of various
features. It would be useful if manufacturers publish
the exact conditions under which their published
rates can be reproduced or, alternatively, publish
both best case and worst case scenarios.

2. Several papers analyze the performance of disk arrays
as a function of the disk service time, the stripe unit
size, and stripe width [8], [9], [20], [21], [22], [25], [26],
[27], [33], [34]. Our study indicates that, in addition to
the features mentioned above, a disk array’s perfor-
mance depends on disk controller optimizations,
array caching policies, and workload distribution. It
is important to understand how all these features
together impact the performance of a disk array for
different workloads. For example, in our study, the
disk-transfer-time-reducing load balancing policy

performed poorly against the disk-queue-length-
reducing load balancing policy. This could be because
all requests were the same size in our study. Another
related aspect that requires further study is the
difficulty of configuring a disk array tomeet the often
conflicting requirements of all applications accessing
the disk array. For example, applications that submit
large I/O requests would benefit from policies that
distribute each request’s load across all disks thereby
reducing the time taken to service the requests, while
applications that submit several small requestswould
benefit from policies that distribute individual re-
quests to separate disks, thereby increasing request
throughput of the disk array. Designing a storage
system that balances the requirements of all applica-
tions accessing the device requires a thorough under-
standing of how the various system and workload
parameters impact on the response time and through-
put of the disk array.

3. Our study indicates that write-back caching im-
proves performance over direct writing to disks
when there is a low probability that an arriving
request finds the cache full. This result is a little
surprising since a disk array controller can judicially
select dirty data from the full cache of dirty data to
write to the disks, thereby improving performance
over a system that writes each incoming write
request directly to the disks. Thus, there is scope
for improving the algorithm used by FC-60 to
determine which data are to be written out to the
disks from the array cache.

4. The FC-60 has two 256 MB array caches, and each
disk within the disk array has a 4 MB cache. Our
study indicates that for the FC-60 disk array, per-
stream sequentiality has little impact on perfor-
mance if there are four or more sequential streams
accessing a disk at a time. This indicates that for the
FC-60 disk array, adaptive prefetch hit rates are low
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at high multiprogramming levels. Previous studies
[28], [41] have found that disk array cache rerefer-
ence hit rates are typically low. Since the FC-60 is a
typical example of a mid-size disk array, this raises
the question as to whether the disk array read caches
are being optimally used.

5. A real disk array is a dynamic system since several of
its policies such as the adaptive prefetching cache
policy, the load balancing policy, etc., are dependent
on the disk queue length. However, the disk queue
length is dependent on the policies and parameter
values of the disk array and its workload. This
recursivedependencebetween the inputs andoutputs
of a disk array’s performancemodel represents one of
the most challenging problems in the performance
analysis of real disk arrays. In our paper, we address
the dependence of disk service time on disk queue
length by computing an approximate disk queue
length value (see Appendix A.3). Clearly, more work
is needed on resolving the circularity involving disk
queue length and the inputs of a disk array model.

Finally, these findings need to be evaluated in the context
of this study, which was limited by reasons of access to the
analysis of only one real disk array architecture, namely, the
FC-60 disk array. Manufacturers typically do not allow the
analysis and publication of the performance results of their
systems, but we were fortunate that HP Labs allowed us to
study the FC-60 disk array and publish our results.
Consequently, some of the problems and issues identified
above may be specific to the FC-60 array. We would
strongly encourage researchers with access to real disk
arrays to verify whether the issues we have identified above
are reproduced in other proprietary systems. Also, since we
were keen to understand how well standard performance
techniques modeled the various “unknown” optimizations
within real disk arrays, simple synthetic workloads were
used. These workloads consisted of read-only and write-
only streams with all I/O requests of same size. Conse-
quently, all performance predictions in this paper are
necessarily restricted to the simple workloads studied in
this paper.

8 CONCLUSION

We show how standard performance techniques can be
used to develop a disk array performance model that
incorporates the system effects of caching, multiple disks,
and various controller optimizations, in addition to the
workload effects of sequentiality, concurrency, and CPU
delay. Our modeling approach is useful in determining the
performance of a real disk array whose internal algorithms
may not be completely known. Researchers in academia,
who often do not have access to all internal algorithms
implemented in their storage system, can use our approach
to develop reasonably accurate models of their storage
system and understand how their storage system functions.
Storage analysts in industry, with access to the internal
algorithms implemented in their storage system, could also
use our approach to quickly develop models that isolate the
effects of different features of their system on the
performance of their disk array. Thus, our model provides
them with a “quick and dirty” way to isolate potential
problem areas, with comparatively little effort. Our model
would be useful in sensitivity analysis studies that analyze
the impact of various parameters and features on a disk
array’s performance. For example, our model can be used to

analyze the impact of optimizations such as access coales-
cing and load balancing.

Our study identifies several issues and challenges of disk
array performance modeling that need further analysis.
While the disk array model developed here is more detailed
than previous disk array models, there is much more work
to do. We analyzed our disk array under synthetic read-
only and write-only workloads, because we wanted to keep
things reasonably simple in our initial analysis of the issues
and challenges of performance modeling of “black-box”
(real) disk arrays. Hence, our model does not analyze the
impact that read-write workloads have on the performance
of disk arrays. In future work, we intend to “muddy the
waters” a bit more and study disk arrays under read-write
synthetic workloads and real workloads.

APPENDIX A

A.1 Performance Modeling Technique for Reads
We show how the parallel MVA technique is used to
compute the mean response time, throughput, and queue
length of a disk array under read workloads. For multi-
programming level m varying from 1 to M, iteratively
compute

1.

array response time½m� ¼ cache response time½m�þ
disks response time½m�;

where

cache response time½m� ¼ cache service time½M�
� ð1þ cache queue½m� 1�Þ

disks response time½m� � cache miss probability½M�
� ðparallel overhead½M�
þ disk service time½M�Þ
þ ðdisk access probability½M�
� disk service time½M�
� disks queue½m� 1�Þ:

The parameter cache_queue represents the mean
number of requests at the array cache. The para-
meter disks_queue represents the mean number of
requests at the disks. For m ¼ 1,

cache queue½m� 1� ¼ cache queue½0� ¼ 0

and

disks queue½m� 1� ¼ disks queue½0� ¼ 0:

For m > 1, the computation of cache_queue and
disks_queue is presented in Step 3 of this algorithm.

2.

array throughput½m� ¼
m

CPU delayþ array response time½m� :

3. The queue lengths at the disks and the cache are
computed using Little’s Law,
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disks queue½m� ¼ disks response time½m�
� array throughput½m�

cache queue½m� ¼ cache response time½m�
� array throughput½m�:

The disk array queue length represents the total
number of outstanding requests at the array cache
and disks.

array queue½m� ¼ disks queue½m� þ cache queue½m�:

A.2 Performance Modeling Technique for Writes

The disk array under write workloads is modeled using the
M=M=1=K queue, and here, we show how the disk array’s
mean performance measures are computed. Let � ¼
�½M�=�½M� represent the utilization of the M=M=1=K queue.
Then, the steady state probability distribution of dirty
blocks in the cache is [10]

Pi ¼
ð1��Þ��ði � destage threshholdÞ

ð1��Kþ1Þ for destage threshold � i �
max dirty blocks

0 otherwise:

8<
:

Each job submits write requests that are equivalent to one or
more dirty blocks. Let number_of_dirty_blocks represent the
number of dirty blocks per I/O request.

number of dirty blocks ¼ request size

stripe unit size

� �
:

The mean throughput (i.e., requests serviced per unit time)
of the disk array is computed from the M=M=1=K queueing
model

array throughput½M� ¼ �½M� � ð1� Pmax dirty blocksÞ
number of dirty blocks

:

The mean response time is computed using Little’s Law on

the entire system.

array response time½M�¼ M

array throughput½M� � CPU delay:

The disk array queue length is computed using Little’s Law

on the disk array.

array queue½M� ¼ array throughput½M��
array response time½M�:

A.3 Computation of Approximate Disk Queue Length

If there are M jobs, then in the worst case, all the jobs are

at the disks. Since the probability of a job being at any

particular disk in the array is disk_access_probability,

disk queue ¼ M � disk access probability. Hence, disk_posi-

tion_time (and, subsequently, disk_service_time) for this

disk queue length can be computed using (1) or (2)

presented in Section 5.1. Then, the disk response time for

this worst case is given by

disk response time ¼ disk service time �M
� disk access probability:

A job spends CPU_delay at the CPU and, in the worst case,

cache response time ¼ M � cache service time:

UsingLittle’sLaw, the throughputof thediskarray isgivenby

array throughput ¼
M

ðCPU delayþ cache response timeþ disk response timeÞ :

Using Little’s Law again, the approximate queue length at a
disk is given by

disk queue ¼ disk response time � array throughput:
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