

Automatic design of dependable data storage systems
Kimberly Keeton and John Wilkes

Storage Systems Department
Hewlett-Packard Laboratories, Palo Alto, CA

 {kkeeton, wilkes}@hpl.hp.com

ABSTRACT
Constructing dependable storage systems is difficult, because
there are many techniques to pick from that interact in often
unforeseen ways. The resulting storage systems are often either
over-provisioned, or provide inadequate protection, or both. We
assert that automating our way out of this dilemma is both
desirable and achievable, and we present some lessons we have
learned from our initial efforts at doing so. The result is a first
step down the path of self-managing, dependability-aware storage
systems, including a better understanding of the problem space
and its tradeoffs, and a number of insights that we believe will be
helpful to others.

1. INTRODUCTION
Facts do not cease to exist because they are ignored.

– Aldous Huxley
Hardware breaks. Software has defects. Viruses propagate.
Buildings catch fire. Power outages happen. People make
mistakes. Much as we might prefer that these events weren’t so
prevalent, it is only prudent to make plans for their occurrence. In
the storage domain, this means making redundant copies of data,
isolating these copies as necessary from sources of further
problems, and trading off the desire for rapid recovery and
minimum data loss against the monetary, operational, and
performance costs of achieving them.
Data is the primary asset of most corporations in the information
age, and access to that data is vital if businesses are to continue
operation. In a 2001 survey [7], fully a quarter of its respondents
estimated data access loss costs as more than $250,000/hour – and
8% estimated them as more than $1M/hour. The price of data loss
is even higher. Gartner estimates that “two out of five enterprises
that experience a [site] disaster … go out of business within five
years [16].” Robust, dependable systems are needed to avoid such
problems.
We use the term data dependability to cover both data reliability
(i.e., the lack of data loss or corruption) and data availability (i.e.,
that access is always possible when it’s desired). Over time, the
list of mechanisms that are available to achieve storage system
dependability has grown. New ones continue to be invented, and
old ones become more widely applicable as the cost of raw
storage capacity continues to plummet. The result is a plethora of
approaches, techniques, and configuration choices. Each
technique provides some of the necessary protection; combined,
they can cover a much broader range – but sometimes they can
interact in surprising ways.

This design space might be manageable if there were clearly
specified, agreed-upon objectives for data dependability.
Unfortunately, this is rarely the case, because the large variations
in cost, performance, and dependability that are achievable make
the tradeoffs hard for human operators and system designers to

reason about. For example, humans are known to be poor
estimators of low-risk events with large effects.
As a result, design choices are often made in an ad hoc manner,
focusing more on the practical issues of setting the configuration
knobs for a chosen technique than on trying to achieve a desired
dependability level. Administrators may not even understand the
data dependability ramifications of their design choices. As a
result, the systems deployed are all too often not as dependable as
they need to be, or more costly, or both.
We believe that the exploration of the design space and its
tradeoffs can usefully be automated. Our eventual goal is a
storage system that is completely self-managing, but our initial
steps are concentrated on the interactive design of systems. This
requires a rapid trial-response cycle, measured in seconds, not
hours or days. In turn, this requires that the design-space
exploration be automated, and results be presented in ways that
are helpful to storage system designers, rather than the developers
of storage mechanisms.

Contributions
The first contribution of this paper is a summary of dependability-
oriented design options and fault types that storage system
designers are trying to tackle. Our message is that the space is a
rich one, and not as simple as it might first appear. That richness
contributes to the difficulties that people have in understanding
and meeting their goals.

The second contribution is a description of a simple tool that
successfully attacks a portion of the problem, along with some
initial results. Although it is only an exploratory venture, we have
already found it helpful in formalizing our understanding of the
problem, and in demonstrating promise in the approach.
The third contribut ion is a set of lessons learned so far. We
conclude with a summary of next steps.

Synchronou
s Mirroring

SAN or LAN SAN or LAN

Synchronous

Snapshot

Local
mirroring

Tape

Backup

Tape Tape Disk Disk Disk

Media shipped
offsite

WAN

Remote
Disk
Array

WAN WAN

Remote
Disk
Array

Remote
Disk
Array

Disk Array
R10 vs. R5

Local
Disk
Array

SAN or LAN

Mirroring

Tape Disk

WAN

Remote
Disk Array

Asynchronous
Mirroring

R10 vs. R5 R10 vs. R5

Local
Disk
Array

SAN or LAN Local
Disk
Array

Local
Disk Array

SAN or LAN

Synchronous
Mirroring

Figure 1: data protection techniques handled by our initial

dependability-design tool.

2. THE PROBLEM SPACE
The chief cause of problems is solutions. – Anonymous

The storage system design space is large, thanks to the multitude
of different failure types that it is desirable to protect against, and
the proliferation of data protection techniques. Without attempting
an exhaustive enumeration of either, we offer a brief taxonomy of
the two to communicate the richness of the space that they
represent.

Sample failure types

• Storage hardware (container) failures – disk drive, disk array,
file server, rack, building, site (e.g., fire), region (e.g., flood or
earthquake)

• Common shared infrastructure failures – power, air
conditioning

• Software-induced data corruption - storage device firmware,
networking components, host operating system, application
defects, virus

• Human/operator/user error – accidental mis-configuration,
deletion or overwriting, malicious insider attacks (e.g.,
disgruntled employee), external attacks (e.g., denial of service)

Different installations may care more about different failure types
than others. For example, reasonably well-conditioned power is
common in developed regions, but cannot be taken for granted in
many other parts of the world.

Data protection techniques (a partial list)

• Inside one storage device (e.g., a disk array): this includes both
partial redundancy (e.g., RAID5, copy-on-write snapshots, file
system metadata journals) and full redundancy (e.g., RAID1,
RAID10, database logs).

• Between storage devices: this includes the cross product of full
redundancy (e.g., mirroring) and partial redundancy (e.g.,
erasure codes, RAID-5) at the same level of the storage
hierarchy (e.g., array to array) or across different ones (e.g.,
array to tape, or array to slow, cheap disk storage).

• Update frequency: synchronous, lock-step with foreground
updates; continuous asynchronous (e.g., remote mirroring,
logging); and batched (e.g., nightly backup). See [9] for a
more complete classification for remote mirroring.

Combinations of techniques are also important. One popular
combination includes local RAID-5, remote mirroring, snapshot
and backup to tape. RAID-5 provides protection against disk
failures, remote mirroring guards against site failures, snapshots
address user errors, and tape backup protects against software
errors and provides archival.
After a failure, fresh resources are often required for recovery.
The best case occurs when these are already acquired, installed,
configured, formatted, and immediately available for allocation to
the restoration process (i.e., not in use for anything else).
Removing any one of these properties can introduce delay – the
worst case being when new equipment has to be purchased,
delivered, installed, connected, configured, tested, and made
available. In practice, a wide range of “somewhat ready”
equipment sources exist, including dedicated hot spares, unused
local resources, remote dedicated or shared disaster-recovery
facilities (which can be owned or leased), all the way out to the
equipment manufacturer’s delivery pools. Gaining access to

physically-available equipment may require negotiation or the
migration of the current workload (e.g., for a shared facility).
In addition to impacting the delay until the resources are
available, a secondary effect of these variations is to complicate
the accounting model of a potential solution’s cost.

Tradeoffs
Different protection techniques offer a range of different
tradeoffs:

• Protection overhead – including capacity, performance impact
on the foreground workload, and downtime during which
applications must be quiesced.

• Recovery time – how long does it take to get the data back?
(Note that data recovery time is only a portion of the outage
duration experienced by application users.)

• Recovery points – how much (and which) data can be returned
to its pre-loss state?

• Cost – what are the direct and indirect monetary costs for a
particular solution? Direct costs include equipment purchase
or rental costs, human administrator salaries, and lost revenues
from degraded mode operation. Indirect costs include lost
worker productivity, user dissatisfaction and damaged
corporate reputation.

For example, mirroring offers rapid recovery after a loss of one
copy, but has 100% capacity overhead and slower write times, and
still provides no protection against accidental data deletion.
Costs are important: we know of several cases where the initial
desire to “protect everything” evaporated after the financial costs
of doing so (redundant storage systems, multiple sites, repeated
operator training and trial runs, etc.) became apparent. Brute-
force over-provisioning is not usually sensible at enterprise scale,
although it can be quite effective for smaller systems.

To reduce overall costs, some companies have chosen to
implement systems that satisfy only a portion of their data
dependability needs, investing in an insurance policy to cover the
remaining potential losses. Others deliberately choose to forgo
protection, and live with the risk.
Another approach to reducing costs is to use multiple explicit data
dependability levels for different subsets of the data. There’s no
need to pay for the most expensive alternative for information that
is ephemeral, such as a temporary file, or can be reconstructed
easily, such as a database index. This approach allows scarce
resources to be focused on the most important, or most valuable,
data.
In summary, we have found that the problem space is large, and
the design space is rich. The potentially devastating consequences
of failures, coupled with their relative rarity, means that
traditional trial-and-error solutions are simply inappropriate.
Something more stringent is needed if we are to make dependable
systems the norm, rather than a pleasant exception.

3. AUTOMATING DATA
DEPENDABILITY DESIGN

We are continually faced by great opportunities brilliantly
disguised as insoluble problems. – Lee Iacocca

We believe that the key challenge is that of designing highly
dependable storage systems – automatically. By design, we mean

the problem of choosing which data protection techniques to
apply to which data, and of setting the corresponding
configuration knobs appropriately. To that end, we have been
exploring techniques for automating data dependability design.

Design is a fundamental process, both for developing an initial
system, and for adapting a system to changes in its load, goals, or
environment. Thus, even though we are presenting results from a
standalone design tool here, our eventual goal is to include
something like it in a dynamic, self-managing system.
In order to accelerate our understanding of the problem, we began
with a deliberately narrow focus: handling the combination of (1)
remote mirroring, (2) local mirroring, (3) tape backup, and (4) site
failover for disk arrays (see Figure 1). Despite this, we found we
had to put together a disturbingly large number of design choices,
and cope with a wide variety of configuration choices. For
example, in addition to the dimensions outlined above, we had to
think about:

• the required bandwidth to mirror data, and the number (and
cost) of the network links between the two sites

• how often to take full backups and how often to make
incremental ones, the bandwidth required to make backups,
and the number of required tape devices

• when to move backup tapes off-site for disaster recovery

• whether to rebuild a stricken site, or build a new one
somewhere else

The basic approach we took was to determine a minimum-cost
solution, by trying a number of candidate designs.
Cost: we measured cost with two components: outlays, such as
the purchase price or capital depreciation for storage equipment,
operating costs, lease rates; and penalties, which are the cost of
data loss and data inaccessibility, expressed as $/hour and $/byte,
respectively. We allowed different data loss costs for “recently
written” data that might still be buffered, and for “stable” data.
Workload: we used a simple workload model, which included
capacity, write rate and its burstiness, and the write working set
size, derived from measurements of our local 1.36TB workgroup
file server. This model drove several performance-sensitive design
choices, such as the number of remote mirroring links needed.
Performance: we deliberately chose to ignore all other
performance issues.
To expedite experimentation, we turned to a pre-existing linear
optimization package that could handle value- and integer-value
constraints, inter-dependencies, and already had a decent user
interface: the solver package available in Microsoft Excel [12].
This proved to be a useful tool for early experiments, and let us
get feedback from an early working prototype in only a couple of
days. The results presented in Section 4 are from this
implementation.

4. RESULTS
Our initial results explore the use of a single data protection
technique at a time to survive the failure of a disk array for a file
server workload. As shown in Figure 1, we considered several
alternate techniques, including tape backups, remote mirroring
and local mirroring. We present a few representative results here.
Our design parameters varied across the following ranges: 1–16
remote mirroring links, 10 seconds to 24 hours duration for

asynchronous batches [9] , 1–16 tape drives, 4–48 hour tape
backup window, 0–27 incremental backups between each full
backup pair, and 1 minute to 34 hours time to prepare spare
resources. We fixed penalties as follows: stable data loss
$20k/MB, recent data loss $2k/MB, data inaccessibility
$50k/hour. Disk array costs were calculated based on the list
prices for HP’s mid-range EVA (Extended Virtual Array). Tape
system costs were calculated based on list prices for HP’s
ESL9595 tape library. We used a 3-year capital depreciation
period.
Figure 2 illustrates the recovery times experienced by these design
alternatives after an array failure. In this model, we assume that
recovery is completed when the data has been reconstructed onto
a new array at the local site. The line labeled “Default (no spare)”
includes weekly full backups with daily incremental backups and
asynchronous mirroring with a 10-second update batching
window, both with no spare resources.
Perhaps surprisingly, the recovery time for the default remote
mirroring designs is considerably higher than the recovery time
for the default tape backup or local mirroring. The reason is that
reloading from fast tape drives is faster than retrieving all the data
from the remote site across the WAN links, which had been
provisioned to support the remote mirror update traffic, not the
restore traffic. We observed an analogous scenario with the
number of tape drives used in the backup case: fast recovery may
need more tape drives than are required to create the backup
during the requested backup window.

The line labeled “Min RT (no spare)” illustrates the recovery
times when the wide area links and tape drives are provisioned to
minimize recovery time. Despite this, all of the “no spare”
designs require 35 to 40 hours for recovery, because of the time
required to order, set up and configure a replacement disk array.
Having a hot spare array available and appropriately configured
can reduce this time to less than five hours.
Table 1 describes the data loss experienced by our design
alternatives under array failure. In the case where no additional
dependability design is applied to the primary array, the array
experiences a complete data loss (over a TB for this example).
Tape backup limits the window of vulnerability to recent data
loss, based on the frequency of backups. The default daily backup
scheme provides a worst-case data loss of two-days’ worth of
recent data. This loss potential can be reduced by conducting
backups more frequently and over a shorter backup window, as
shown in the figure. As expected, the mirroring solutions
experience nearly zero data loss.

The stable data loss for our dependability designs is zero because
we make the simplifying assumption that these protection
techniques will operate correctly (e.g., tape drives won’t break,
tape media won’t become corrupted or unreadable, inter-array
links won’t become inoperable). If we relaxed this assumption,
the stable data loss values would increase.
Figures 3 and 4 quantify the outlay and penalty costs associated
with our default and optimal dependability designs (note the log
scale on the y axes). Outlay costs are provided on an annualized
basis, and penalty costs are provided on a per-failure event basis.
As expected, the outlay cost for tape backup requires the smallest
increment over the primary array, followed by the local mirroring
options, and finally the remote mirroring options.

For each design alternative, as we increase the resources used to
support recoverability (e.g., network links or tap e drives), cost
increases –sometimes dramatically. As we add hot spare
resources, outlay costs increase further. These outlay costs are
dwarfed, however, by the penalty cost savings from the better
recovery time that the additional resources provide. Tape backup
penalty costs are dominated by data loss costs, so the addition of
resources to improve recovery time behavior results in only minor
penalty cost improvement.

Figures 5 and 6 provide a sensitivity analysis for the configuration
parameters we examined. As expected, we observe that the
addition of hot spare resources drastically reduces the recovery
time for all of our design alternatives. Given that our time
estimate for ordering, setting up and configuring a new array is
optimistic, this disparity is likely to be even greater in practice.
We observe that tape-based backup data loss varies greatly,
depending on the length of the backup window and frequency of
the backup operation. Data loss for the mirroring alternatives also
varies considerably, depending on which variant is used: a

0

20

40

60

80

100

120

Tape backup Local mirror
(sync)

Local mirror
(asyncB)

Remote mirror
(sync)

Remote mirror
(asyncB)

Data dependability design

R
ec

o
ve

ry
 t

im
e

(h
o

u
rs

)

Default (no spare) Min RT (no spare) Min RT (spare)

Figure 2: recovery time behavior.

Table 1: data loss behavior.

Data protection
technique

Stable
data loss

Recent
data loss
(default)

Recent
data loss
(min DL)

Primary array only 1360 GB 0 GB 0 GB

Tape backup 0 GB 5 GB 1 GB

Local mirror (sync) 0 GB 0 GB 0 GB

Local mirror (asyncB) 0 GB 14 KB 14 KB

Remote mirror (sync) 0 GB 0 GB 0 GB

Remote mirror (asyncB) 0 GB 14 KB 14 KB

$10,000

$100,000

$1,000,000

$10,000,000

Primary array
only

Tape backup Local mirror
(sync)

Local mirror
(asyncB)

Remote
mirror (sync)

Remote
mirror

(asyncB)

Data dependability design

O
u

tl
ay

 c
o

st
 ($

/y
ea

r)

Default (no spare) Min RT,DL (no spare) Min RT, DL (spare)

Figure 3: outlay costs for “typical” and “best” designs.

0

20

40

60

80

100

120

0 20 40 60 80 100 120

Recovery time (hours)

R
ec

en
t d

at
a

lo
ss

 (G
B

)

Tape backup (no spare) Local mirror (no spare) Remote mirror (no spare)
Tape backup (spare) Local mirror (spare) Remote mirror (spare)

Figure 5: recent data loss vs. recovery time tradeoffs.

$10,000

$100,000

$1,000,000

$10,000,000

$100,000,000

$1,000,000,000

$10,000,000,000

$100,000,000,000

Primary
array only

Tape
backup

Local mirror
(sync)

Local mirror
(asyncB)

Remote
mirror (sync)

Remote
mirror

(asyncB)

Data dependability design

P
en

al
ty

 c
o

st
 f

o
r

ar
ra

y
fa

ilu
re

 (
$)

Default (no spare) Min RT,DL (no spare) Min RT, DL (spare)

Figure 4: penalty costs for “typical” and “best” designs.

$0

$200,000

$400,000

$600,000

$800,000

$1,000,000

$1,200,000

$1,400,000

$1,600,000

0 20 40 60 80 100 120

Recovery time (hours)

O
u

tl
ay

 c
o

st
 (

$/
ye

ar
)

Tape backup (no spare) Local mirror (no spare) Remote mirror (no spare)
Tape backup (spare) Local mirror (spare) Remote mirror (spare)

Figure 6: cost vs. recovery time tradeoffs.

synchronous protocol minimizes loss (0 GB), while an
asynchronous logging protocol bounds data loss by the size of the
cache set aside for logging (8 GB in our experiments), and an
asynchronous batching protocol experiences a worst-case data
loss that’s twice the batching window. The huge range of
recovery time behavior for remote mirroring is due to the
provisioning of the wide area links, as described above.
Perhaps the most interesting result of this sensitivity analysis is
that tape-based backup can be competitive with local mirroring
for recovery time and data loss, given the appropriate
configuration.

5. ANALYSIS
Nothing will ever be attempted, if all possible objections

must be first overcome. – Samuel Johnson
Our experiences with this initial dependability design tool have
helped us to understand several issues that weren’t initially
obvious to us.

Recovery-oriented design
It is all too easy to forget that the primary specification is recovery
performance (e.g., the time to recover from a failure), not
redundancy performance (e.g., the costs of maintaining redundant
information). We “knew” this fact, but still found that this
mistake crept into our thinking several times, such as in the
determination of the number of wide area remote mirroring links
and tape drives for backup, as described in the previous section.

Recovery metrics
Two metrics are commercially popular in this space: recovery
time objective, RTO (how long does it take to get the data back?)
and recovery point objective, RPO (how old will that data be?).
The adoption of these metrics is clearly a step forward from more
simplistic metrics like mean time to data loss (MTTDL), but they
don’t go far enough to describe many situations. For example:
1. It may be useful to “time travel” to different points in the past,
rather than one, fixed interval. For example, it may be necessary
to go back a month to find a secure copy of a vital file after a
long-dormant security attack erupts; meanwhile, a user may want
to go back to a version only a few minutes old to recover from an
accidental delete error.

Recovery metrics should permit the specification of several
recovery point goals: retrieving a particular data object from a
past point (e.g., for deleted-file recovery), as well as restoring the
entire system to some known prior point (e.g., after a site
disaster).
2. Although we chose to ignore it in our current tool, there is a
wealth of difference between “not down” and “operating
adequately.” Some applications can usefully operate at a fraction
of their normal rate; others are essentially useless until close-to-
normal performance is restored. Similarly, some applications can
usefully operate with only a fraction of their data, whereas others
require all data to be functional. This distinction affects the
choice of both data redundancy techniques (e.g., it may mandate
the use of snapshots and dedicated I/O ports to take backups), and
recovery techniques (e.g., a RAID 5 degraded mode may never be
acceptable, so the data will have to be fully replicated).
Recovery metrics should permit the administrator to describe
whether these partially operational modes are desirable, or even
possible.

Capturing costs
It is surprisingly hard to capture outlay and penalty costs in a
meaningful way. This difficulty is partly the consequence of the
rich design space, and (doubtless) partly because we are still
exploring. Some of the questions we encountered are:
Outlay costs: What is the period over which a purchase is
amortized? What about capital depreciation? service contracts?
personnel overheads? installation costs? opportunity costs for
idle equipment? How should shared equipment be charged (e.g.,
at an outsourced disaster-recovery site)?
Penalty costs: How should an outage be priced (e.g., the one-time
worst-case cost, or that value multiplied by its frequency)? Who
pays for replacement equipment? (And if it is the insurance
company, is the cost of the equipment effectively zero?) How
should data loss be priced? How do people price indirect costs,
such as user dissatisfaction?
We expect that many of the outlay cost questions can be
addressed by applying standard accounting principles, including
amortizing costs over the useful lifetime of the system. We
suspect that absolute penalty costs will be difficult to gather, at
least at first, so we have geared our implementation towards a “try
and see” interactive design tool that allows people to change the
outage and data loss costs, and see the result. We also suspect
that techniques common in the insurance industry will be helpful,
such as “flash cards” that present the consequences of a failure.

Simultaneous exploration of objectives and solutions
We believe that, given a clear recovery time objective, it is
relatively straightforward to triage the alternative mechanisms,
eliminating those with too-high delays and (perhaps)
unnecessarily good performance, and then explore the remaining
subset of the design space. One problem this fails to recognize,
though, is that most people are unable to provide a clear RTO,
because they are making tradeoffs between the effectiveness of
the solutions and their costs. Only when presented with both –
and, perhaps, a sensitivity analysis of some of the alternatives –
will they be able to come to a decision. The key observation is
that these tradeoffs are hard to make – they involve too many
alternatives and too many interactions for most people to consider,
or even remember.
We believe that a tool that allows users to int eractively explore
the design space of possible objectives and solutions will be of
great use – especially if it can take as input data in a form that is
closer to the tradeoff space that people want to explore (e.g.,
recovery time, cost), rather than the list of techniques they feel the
need to try.

Lack of orthogonality in the solution and failure spaces
As we hope was clear from the short taxonomy presented earlier,
neither the failure nor the solution space are properly orthogonal.
This causes interactions between solutions and failure types. For
example, a disk array LU failure could result in failure of the
primary data it stores, but could also disable the copy-on-write
snapshots taken from it, and may (indirectly) influence the
availability of spare resources.
One challenge in this space is to develop a concise way of
capturing the effects of a failure, and the properties of a data
protection technique. How exactly do you formalize what a
remote mirror does? What about a restore from a tape backup?
We suspect that, absent such formulations, failure- and solution-

handling will remain a rather clumsy, handcrafted, skill-intensive
activity.

Next steps
We found our initial forays into this space encouraging. As a
result, we plan to continue this approach, extending our tool’s
functionality in a number of ways, including: more failure types
and scopes (e.g., failure rates, concurrent failures; user, operator,
and software faults), a greater range of dependability techniques, a
choice of objective functions (e.g., how much dependability can
be obtained for a fixed outlay), and a broader set of tradeoffs and
business practices.
Although our initial prototype implementation has shown us many
useful insights, the lack of automation in Excel prompts us to
search for a new implementation vehicle for these next steps.

Finally, we suspect that this approach may help us identify
“holes” in the solution space, which in turn may help guide the
development of new data protection techniques.

6. RELATED WORK
The dependable systems community has techniques for modeling
[8] and simulating [10] various aspects of dependability. The
emphasis in this community appears to be on tools to assess
designs that have been created by hand, as evidenced by their GUI
interfaces (e.g., [6]). While this assessment is a necessary ability
for any design system, it doesn’t address the problem of how to
explore the design space automatically.
System administrators have to make the design choices we
describe here every day, but the focus in their literature is on
operational issues, such as explaining backup policies and setting
related configuration parameters.
The majority of “data protection” work is focused on developing
(yet more) new protection mechanisms, with various twists and
tradeoffs. Rarely do their designers consider the difficulties of
deciding when to use them, and how they combine with existing
techniques.
We were able to leverage existing work that deals with specifying
and evaluating dependability requirements. Examples include a
declarative method of specifying data performability and
reliability requirements [11, 14, 15], and ways to measure the
availability of RAID systems [5].
Some prior work from our own group has addressed the design of
systems to meet performance goals (e.g., [4, 3]), but the design
tools that resulted (e.g., [1, 3]) considered only online redundancy
techniques (mirroring and RAID5). Our dependability design
work builds on the experience gained there.
In short, we are not aware of any other work that shares our goal
of automating data dependability design, nor of any system that
accomplishes this goal.

7. CONCLUSIONS
The solution and failure spaces for dependable storage systems
are rich, complex and inherently interesting. We believe that
because of these issues, automating the design of dependable
storage systems is likely to be an appropriate approach.
Moreover, this approach is achievable – at least over the space
we’ve tried so far. We described our simple dependability
designer prototype, and presented initial results exploring the
recovery time-data loss-cost space. The insights we came upon

during this process suggest that there remains a wealth of
interesting problems to explore in this space.

REFERENCES
The ability to quote is a serviceable

substitute for wit. – Maugham
[1] G. A. Alvarez, E. Borowsky, S. Go, T. H. Romer, R. Becker-Szendy,
R. Golding, and J. Wilkes. Minerva: an automated resource provisioning
tool for large-scale storage systems. ACM Transactions on Computer
Systems 19(4):483–518, November 2001.

[2] E. Anderson, M. Hobbs, K. Keeton, S. Spence, M. Uysal, and A.
Veitch. Hippodrome: running circles around storage administration.
Proceedings of Conference on File and Storage Technologies (FAST),
Monterey, CA, pages 175–188, January 2002.

[3] E. Anderson, R. Swaminathan, A. Veitch, G. Alvarez, and J. Wilkes.
Selecting RAID levels for disk arrays. Proceedings of Conference on File
and Storage Technologies (FAST), Monterey, CA, pages 189–201,
January 2002.

[4] E. Borowsky, R. Golding, A. Merchant, L. Schreier, E. Shriver, M.
Spasojevic, and J. Wilkes. “Using attribute-managed storage to achieve
QoS”. Presented at 5th International Workshop on Quality of Service
(IWQoS'97), Columbia University, New York, June 1997. Available from
http://www.hpl.hp.com/SSP.

[5] A. Brown and D. Patterson. Towards availability benchmarks: a case
study of software RAID systems. Proceedings of the 2000 USENIX
Annual Technical Conference, pp. 263–276, June 2000.

[6] D. D. Deavours, et al. The Möbius Framework and its
implementation. IEEE Transactions on Software Engineering,
28(10):956–969, October 2002.

[7] Online survey results: 2001 cost of downtime. Eagle Rock Alliance
Ltd. Aug. 2001, accessed May 2003. Available from
http://contingencyplanningresearch.com/2001%20Survey.pdf ,.

[8] B. Haverkort, R. Marie, G. Rubino and K. Trivedi, eds. Performability
modeling: techniques and tools, Wiley & Sons, May 2001.

[9] M. Ji, A. Veitch, and J. Wilkes. Seneca: remote mirroring done write.
In Proceedings of the USENIX technical conference (San Antonio, TX),
pp 253–268, June 2003.

[10] M. Kaaniche, et al. A hierarchical approach for dependability analysis
of a commercial cache-based RAID storage architecture. Proceedings of
the 28th International Symposium on Fault-Tolerant Computer Systems
(FTCS -28), pp. 6–15, June 1998.

[11] K. Keeton and J. Wilkes. Automating data dependability.
Proceedings of 10th ACM-SIGOPS European Workshop (Saint-Emilion,
France), pp. 93–100, Sept. 2002.

[12] Microsoft Excel Users’ Guide, Version 5.0, Microsoft Corporation,
1994.

[13] The Data Recovery Solution. White paper by OnTrack Data
Recovery, Inc., 1998, available from http://www.ontrack.com .

[14] J. Wilkes. Traveling to Rome: QoS specifications for automated
storage system management. Proceedings of the International Workshop
on Quality of Service (IWQoS), pp. 75–91, June 2001.

[15] J. Wilkes and R. Stata. Specifying data availability in multi-device
file systems. Proceedings of the 4th ACM-SIGOPS European Workshop,
September 1990; published as Operating Systems Review 25(1):56-59,
January 1991.

[16] R. Witty and D. Scott. Disaster recovery plans and systems are
essential. Gartner FirstTake FT-14-5021, Gartner Research, Sept. 12,
2001.

