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ABSTRACT 
Constructing dependable storage systems is difficult, because 
there are many techniques to pick from that interact in often 
unforeseen ways.  The resulting storage systems are often either 
over-provisioned, or provide inadequate protection, or both.  We 
assert that automating our way out of this dilemma is both 
desirable and achievable, and we present some lessons we have 
learned from our initial efforts at doing so.  The result is a first 
step down the path of self-managing, dependability-aware storage 
systems, including a better understanding of the problem space 
and its tradeoffs, and a number of insights that we believe will be 
helpful to others. 

1. INTRODUCTION 
Facts do not cease to exist because they are ignored.  

– Aldous Huxley 
Hardware breaks. Software has defects. Viruses propagate. 
Buildings catch fire.  Power outages happen.  People make 
mistakes.  Much as we might prefer that these events weren’t so 
prevalent, it is only prudent to make plans for their occurrence.  In 
the storage domain, this means making redundant copies of data, 
isolating these copies as necessary from sources of further 
problems, and trading off the desire for rapid recovery and 
minimum data loss against the monetary, operational, and 
performance costs of achieving them. 
Data is the primary asset of most corporations in the information 
age, and access to that data is vital if businesses are to continue 
operation. In a 2001 survey [7], fully a quarter of its respondents 
estimated data access loss costs as more than $250,000/hour – and 
8% estimated them as more than $1M/hour.  The price of data loss 
is even higher.  Gartner estimates that “two out of five enterprises 
that experience a [site] disaster … go out of business within five 
years [16].” Robust, dependable systems are needed to avoid such 
problems.   
We use the term data dependability to cover both data reliability 
(i.e., the lack of data loss or corruption) and data availability  (i.e., 
that access is always possible when it’s desired).  Over time, the 
list of mechanisms that are available to achieve storage system 
dependability has grown.  New ones continue to be invented, and 
old ones become more widely applicable as the cost of raw 
storage capacity continues to plummet.  The result is a plethora of 
approaches, techniques, and configuration choices.  Each 
technique provides some of the necessary protection; combined, 
they can cover a much broader range – but sometimes they can 
interact in surprising ways.   

This design space might be manageable if there were clearly 
specified, agreed-upon objectives for data dependability.  
Unfortunately, this is rarely the case, because the large variations 
in cost, performance, and dependability that are achievable make 
the tradeoffs hard for human operators and system designers to 

reason about.  For example, humans are known to be poor 
estimators of low-risk events with large effects.   
As a result, design choices are often made in an ad hoc manner, 
focusing more on the practical issues of setting the configuration 
knobs for a chosen technique than on trying to achieve a desired 
dependability level.  Administrators may not even understand the 
data dependability ramifications of their design choices. As a 
result, the systems deployed are all too often not as dependable as 
they need to be, or more costly, or both. 
We believe that the exploration of the design space and its 
tradeoffs can usefully be automated.  Our eventual goal is a 
storage system that is completely self-managing, but our initial 
steps are concentrated on the interactive design of systems.  This 
requires a rapid trial-response cycle, measured in seconds, not 
hours or days. In turn, this requires that the design-space 
exploration be automated, and results be presented in ways that 
are helpful to storage system designers, rather than the developers 
of storage mechanisms. 

Contributions 
The first contribution of this paper is a summary of dependability-
oriented design options and fault types that storage system 
designers are trying to tackle.  Our message is that the space is a 
rich one, and not as simple as it might first appear.  That richness 
contributes to the difficulties that people have in understanding 
and meeting their goals. 

The second contribution is a description of a simple tool that 
successfully attacks a portion of the problem, along with some 
initial results.  Although it is only an exploratory venture, we have 
already found it helpful in formalizing our understanding of the 
problem, and in demonstrating promise in the approach. 
The third contribut ion is a set of lessons learned so far.  We 
conclude with a summary of next steps. 
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Figure 1:  data protection techniques handled by our initial 

dependability-design tool. 



   

2. THE PROBLEM SPACE 
The chief cause of problems is solutions. – Anonymous 

The storage system design space is large, thanks to the multitude 
of different failure types that  it is desirable to protect against, and 
the proliferation of data protection techniques. Without attempting 
an exhaustive enumeration of either, we offer a brief taxonomy of 
the two to communicate the richness of the space that they 
represent. 

Sample failure types 

• Storage hardware (container) failures – disk drive, disk array, 
file server, rack, building, site (e.g., fire), region (e.g., flood or 
earthquake) 

• Common shared infrastructure failures  – power, air 
conditioning 

• Software-induced data corruption - storage device firmware, 
networking components, host operating system, application 
defects, virus 

• Human/operator/user error – accidental mis-configuration, 
deletion or overwriting, malicious insider attacks (e.g., 
disgruntled employee), external attacks (e.g., denial of service) 

Different installations may care more about different failure types 
than others.  For example, reasonably well-conditioned power is 
common in developed regions, but cannot be taken for granted in 
many other parts of the world.  

Data protection techniques (a partial list) 

• Inside one storage device (e.g., a disk array): this includes both 
partial redundancy (e.g., RAID5, copy-on-write snapshots, file 
system metadata journals) and full redundancy (e.g., RAID1, 
RAID10, database logs). 

• Between storage devices: this includes the cross product of full 
redundancy (e.g., mirroring) and partial redundancy (e.g., 
erasure codes, RAID-5) at the same level of the storage 
hierarchy (e.g., array to array) or across different ones (e.g., 
array to tape, or array to slow, cheap disk storage). 

• Update frequency: synchronous, lock-step with foreground 
updates; continuous asynchronous (e.g., remote mirroring, 
logging); and batched (e.g., nightly backup).  See [9] for a 
more complete classification for remote mirroring. 

Combinations of techniques are also important.  One popular 
combination includes local RAID-5, remote mirroring, snapshot 
and backup to tape. RAID-5 provides protection against disk 
failures, remote mirroring guards against site failures, snapshots 
address user errors, and tape backup protects against software 
errors and provides archival.  
After a failure, fresh resources are often required for recovery.  
The best case occurs when these are already acquired, installed, 
configured, formatted, and immediately available for allocation to 
the restoration process (i.e., not in use for anything else).  
Removing any one of these properties can introduce delay – the 
worst case being when new equipment has to be purchased, 
delivered, installed, connected, configured, tested, and made 
available.  In practice, a wide range of “somewhat ready” 
equipment sources exist, including dedicated hot spares, unused 
local resources, remote dedicated or shared disaster-recovery 
facilities (which can be owned or leased), all the way out to the 
equipment manufacturer’s delivery pools.  Gaining access to 

physically-available equipment may require negotiation or the 
migration of the current workload (e.g., for a shared facility). 
In addition to impacting the delay until the resources are 
available, a secondary effect of these variations is to complicate 
the accounting model of a potential solution’s cost. 

Tradeoffs 
Different protection techniques offer a range of different 
tradeoffs: 

• Protection overhead – including capacity, performance impact 
on the foreground workload, and downtime during which 
applications must be quiesced. 

• Recovery time – how long does it take to get the data back? 
(Note that data recovery time is only a portion of the outage 
duration experienced by application users.) 

• Recovery points – how much (and which) data can be returned 
to its pre-loss state?  

• Cost – what are the direct and indirect monetary costs for a 
particular solution?  Direct costs include equipment purchase 
or rental costs, human administrator salaries, and lost revenues 
from degraded mode operation.  Indirect costs include lost 
worker productivity, user dissatisfaction and damaged 
corporate reputation. 

For example, mirroring offers rapid recovery after a loss of one 
copy, but has 100% capacity overhead and slower write times, and 
still provides no protection against accidental data deletion. 
Costs are important: we know of several cases where the initial 
desire to “protect everything” evaporated after the financial costs 
of doing so (redundant storage systems, multiple sites, repeated 
operator training and trial runs, etc.) became apparent.  Brute-
force over-provisioning is not usually sensible at enterprise scale, 
although it can be quite effective for smaller systems.  

To reduce overall costs, some companies have chosen to 
implement systems that satisfy only a portion of their data 
dependability needs, investing in an insurance policy to cover the 
remaining potential losses. Others deliberately choose to forgo 
protection, and live with the risk. 
Another approach to reducing costs is to use multiple explicit data 
dependability levels for different subsets of the data. There’s no 
need to pay for the most expensive alternative for information that 
is ephemeral, such as a temporary file, or can be reconstructed 
easily, such as a database index.  This approach allows scarce 
resources to be focused on the most important, or most valuable, 
data. 
In summary, we have found that the problem space is large, and 
the design space is rich.  The potentially devastating consequences 
of failures, coupled with their relative rarity, means that 
traditional trial-and-error solutions are simply inappropriate. 
Something more stringent is needed if we are to make dependable 
systems the norm, rather than a pleasant exception. 

3. AUTOMATING DATA 
DEPENDABILITY DESIGN 

We are continually faced by great opportunities brilliantly 
disguised as insoluble problems. – Lee Iacocca 

We believe that the key challenge is that of designing highly 
dependable storage systems – automatically.  By design, we mean 



   

the problem of choosing which data protection techniques to 
apply to which data, and of setting the corresponding 
configuration knobs appropriately.  To that end, we have been 
exploring techniques for automating data dependability design.   

Design is a fundamental process, both for developing an initial 
system, and for adapting a system to changes  in its load, goals, or 
environment.  Thus, even though we are presenting results from a 
standalone design tool here, our eventual goal is to include 
something like it in a dynamic, self-managing system. 
In order to accelerate our understanding of the problem, we began 
with a deliberately narrow focus: handling the combination of (1) 
remote mirroring, (2) local mirroring, (3) tape backup, and (4) site 
failover for disk arrays (see Figure 1).  Despite this, we found we 
had to put together a disturbingly large number of design choices, 
and cope with a wide variety of configuration choices.  For 
example, in addition to the dimensions outlined above, we had to 
think about: 

• the required bandwidth to mirror data, and the number (and 
cost) of the network links between the two sites 

• how often to take full backups and how often to make 
incremental ones, the bandwidth required to make backups, 
and the number of required tape devices  

• when to move backup tapes off-site for disaster recovery   

• whether to rebuild a stricken site, or build a new one 
somewhere else 

The basic approach we took was to determine a minimum-cost 
solution, by trying a number of candidate designs.  
Cost: we measured cost with two components: outlays, such as 
the purchase price or capital depreciation for storage equipment, 
operating costs, lease rates; and penalties, which are the cost of 
data loss and data inaccessibility, expressed as $/hour and $/byte, 
respectively.  We allowed different data loss costs for “recently 
written” data that might still be buffered, and for “stable” data.   
Workload: we used a simple workload model, which included 
capacity, write rate and its burstiness, and the write working set 
size, derived from measurements of our local 1.36TB workgroup 
file server. This model drove several performance-sensitive design 
choices, such as the number of remote mirroring links needed. 
Performance: we deliberately chose to ignore all other 
performance issues.   
To expedite experimentation, we turned to a pre-existing linear 
optimization package that could handle value- and integer-value 
constraints, inter-dependencies, and already had a decent user 
interface: the solver package available in Microsoft Excel [12].  
This proved to be a useful tool for early experiments, and let us 
get feedback from an early working prototype in only a couple of 
days.  The results presented in Section 4 are from this 
implementation. 

4. RESULTS 
Our initial results explore the use of a single data protection 
technique at a time to survive the failure of a disk array for a file 
server workload.  As shown in Figure 1, we considered several 
alternate techniques, including tape backups, remote mirroring 
and local mirroring.  We present a few representative results here. 
Our design parameters varied across the following ranges: 1–16 
remote mirroring links, 10 seconds to 24 hours duration for 

asynchronous batches [9] ,  1–16 tape drives, 4–48 hour tape 
backup window, 0–27 incremental backups between each full 
backup pair, and 1 minute to 34 hours time to prepare spare 
resources.  We fixed penalties as follows: stable data loss 
$20k/MB, recent data loss $2k/MB, data inaccessibility 
$50k/hour. Disk array costs were calculated based on the list 
prices for HP’s mid-range EVA (Extended Virtual Array).  Tape 
system costs were calculated based on list prices for HP’s 
ESL9595 tape library.  We used a 3-year capital depreciation 
period. 
Figure 2 illustrates the recovery times experienced by these design 
alternatives after an array failure.  In this model, we assume that 
recovery is completed when the data has been reconstructed onto 
a new array at the local site.  The line labeled “Default (no spare)” 
includes weekly full backups with daily incremental backups and 
asynchronous mirroring with a 10-second update batching 
window, both with no spare resources.   
Perhaps surprisingly, the recovery time for the default remote 
mirroring designs is considerably higher than the recovery time 
for the default tape backup or local mirroring.   The reason is that 
reloading from fast tape drives is faster than retrieving all the data 
from the remote site across the WAN links, which had been 
provisioned to support the remote mirror update traffic, not the 
restore traffic.  We observed an analogous scenario with the 
number of tape drives used in the backup case:  fast recovery may 
need more tape drives than are required to create the backup 
during the requested backup window.   

The line labeled “Min RT (no spare)” illustrates the recovery 
times when the wide area links and tape drives are provisioned to 
minimize recovery time.  Despite this, all of the “no spare” 
designs require 35 to 40 hours for recovery, because of the time 
required to order, set up and configure a replacement disk array.  
Having a hot spare array available and appropriately configured 
can reduce this time to less than five hours. 
Table 1 describes the data loss experienced by our design  
alternatives under array failure.  In the case where no additional 
dependability design is applied to the primary array, the array 
experiences a complete data loss (over a TB for this example).  
Tape backup limits the window of vulnerability to recent data 
loss, based on the frequency of backups.  The default daily backup 
scheme provides a worst-case data loss of two-days’ worth of 
recent data.  This loss potential can be reduced by conducting 
backups more frequently and over a shorter backup window, as 
shown in the figure.  As expected, the mirroring solutions 
experience nearly zero data loss. 

The stable data loss for our dependability designs is zero because 
we make the simplifying assumption that these protection 
techniques will operate correctly (e.g., tape drives won’t break, 
tape media won’t become corrupted or unreadable, inter-array 
links won’t become inoperable).  If we relaxed this assumption, 
the stable data loss values would increase.  
Figures 3 and 4 quantify the outlay and penalty costs associated 
with our default and optimal dependability designs (note the log 
scale on the y axes).  Outlay costs are provided on an annualized 
basis, and penalty costs are provided on a per-failure event basis.  
As expected, the outlay cost for tape backup requires the smallest 
increment over the primary array, followed by the local mirroring 
options, and finally the remote mirroring options.   



   

For each design alternative, as we increase the resources used to 
support recoverability (e.g., network links or tap e drives), cost 
increases –sometimes dramatically.  As we add hot spare 
resources, outlay costs increase further.  These outlay costs are 
dwarfed, however, by the penalty cost savings from the better 
recovery time that the additional resources provide.  Tape backup 
penalty costs are dominated by data loss costs, so the addition of 
resources to improve recovery time behavior results in only minor 
penalty cost improvement. 

Figures 5 and 6 provide a sensitivity analysis for the configuration 
parameters we examined.  As expected, we observe that the 
addition of hot spare resources drastically reduces the recovery 
time for all of our design alternatives.  Given that our time 
estimate for ordering, setting up and configuring a new array is 
optimistic, this disparity is likely to be even greater in practice.  
We observe that tape-based backup data loss varies greatly, 
depending on the length of the backup window and frequency of 
the backup operation.  Data loss for the mirroring alternatives also 
varies considerably, depending on which variant is used:  a 
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Table 1:  data loss behavior. 

Data protection 
technique 

Stable 
data loss 

Recent 
data loss 
(default) 

Recent 
data loss 
(min DL) 

Primary array only 1360 GB 0 GB 0 GB 

Tape backup 0 GB 5 GB 1 GB 

Local mirror (sync) 0 GB 0 GB 0 GB 

Local mirror (asyncB) 0 GB 14 KB 14 KB 

Remote mirror (sync) 0 GB 0 GB 0 GB 

Remote mirror (asyncB) 0 GB 14 KB 14 KB 
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synchronous protocol minimizes loss (0 GB), while an 
asynchronous logging protocol bounds data loss by the size of the 
cache set aside for logging (8 GB in our experiments), and an 
asynchronous batching protocol experiences a worst-case data 
loss that’s twice the batching window.  The huge range of 
recovery time behavior for remote mirroring is due to the 
provisioning of the wide area links, as described above. 
Perhaps the most interesting result of this sensitivity analysis is 
that tape-based backup can be competitive with local mirroring 
for recovery time and data loss, given the appropriate 
configuration.   

5. ANALYSIS 
Nothing will ever be attempted, if all possible objections 

must be first overcome. – Samuel Johnson 
Our experiences with this initial dependability design tool have 
helped us to understand several issues that weren’t initially 
obvious to us.    

Recovery-oriented design 
It is all too easy to forget that the primary specification is recovery 
performance (e.g., the time to recover from a failure), not 
redundancy performance (e.g., the costs of maintaining redundant 
information).  We “knew” this fact, but still found that this 
mistake crept into our thinking several times, such as in the 
determination of the number of wide area remote mirroring links 
and tape drives for backup, as described in the previous section.  

Recovery metrics 
Two metrics are commercially popular in this space: recovery 
time objective, RTO (how long does it take to get the data back?) 
and recovery point objective, RPO (how old will that data be?). 
The adoption of these metrics is clearly a step forward from more 
simplistic metrics like mean time to data loss (MTTDL), but they 
don’t go far enough to describe many situations.  For example: 
1. It may be useful to “time travel” to different points in the past, 
rather than one, fixed interval.  For example, it may be necessary 
to go back a month to find a secure copy of a vital file after a 
long-dormant security attack erupts; meanwhile, a user may want 
to go back to a version only a few minutes old to recover from an 
accidental delete error. 

Recovery metrics should permit the specification of several 
recovery point goals:  retrieving a particular data object from a 
past point (e.g., for deleted-file recovery), as well as restoring the 
entire system to some known prior point (e.g., after a site 
disaster). 
2. Although we chose to ignore it in our current tool, there is a 
wealth of difference between “not down” and “operating 
adequately.” Some applications can usefully operate at a fraction 
of their normal rate; others are essentially useless until close-to-
normal performance is restored. Similarly, some applications can 
usefully operate with only a fraction of their data, whereas others 
require all data to be functional.  This distinction affects the 
choice of both data redundancy techniques (e.g., it may mandate 
the use of snapshots and dedicated I/O ports to take backups), and 
recovery techniques (e.g., a RAID 5 degraded mode may never be 
acceptable, so the data will have to be fully replicated). 
Recovery metrics should permit the administrator to describe 
whether these partially operational modes are desirable, or even 
possible. 

Capturing costs 
It is surprisingly hard to capture outlay and penalty costs in a 
meaningful way.  This difficulty is partly the consequence of the 
rich design space, and (doubtless) partly because we are still 
exploring.  Some of the questions we encountered are: 
Outlay costs: What is the period over which a purchase is 
amortized? What about capital depreciation?  service contracts?  
personnel overheads?  installation costs?  opportunity costs for 
idle equipment?  How should shared equipment be charged (e.g., 
at an outsourced disaster-recovery site)? 
Penalty costs: How should an outage be priced (e.g., the one-time 
worst-case cost, or that value multiplied by its frequency)?  Who 
pays for replacement equipment? (And if it is the insurance 
company, is the cost of the equipment effectively zero?)  How 
should data loss be priced?  How do people price indirect costs, 
such as user dissatisfaction?   
We expect that many of the outlay cost questions can be 
addressed by applying standard accounting principles, including 
amortizing costs over the useful lifetime of the system.  We 
suspect that absolute penalty costs will be difficult to gather, at 
least at first, so we have geared our implementation towards a “try 
and see” interactive design tool that allows people to change the 
outage and data loss costs, and see the result.  We also suspect 
that techniques common in the insurance industry will be helpful, 
such as “flash cards” that present the consequences of a failure.  

Simultaneous exploration of objectives and solutions  
We believe that, given a clear recovery time objective, it is 
relatively straightforward to triage the alternative mechanisms, 
eliminating those with too-high delays and (perhaps) 
unnecessarily good performance, and then explore the remaining 
subset of the design space.  One problem this fails to recognize, 
though, is that most people are unable to provide a clear RTO, 
because they are making tradeoffs between the effectiveness of 
the solutions and their costs.  Only when presented with both – 
and, perhaps, a sensitivity analysis of some of the alternatives – 
will they be able to come to a decision.   The key observation is 
that these tradeoffs are hard to make – they involve too many 
alternatives and too many interactions for most people to consider, 
or even remember.   
We believe that a tool that allows users to int eractively explore 
the design space of possible objectives and solutions will be of 
great use – especially if it can take as input data in a form that is 
closer to the tradeoff space that people want to explore (e.g., 
recovery time, cost), rather than the list of techniques they feel the 
need to try. 

Lack of orthogonality in the solution and failure spaces 
As we hope was clear from the short taxonomy presented earlier, 
neither the failure nor the solution space are properly orthogonal.  
This causes interactions between solutions and failure types.  For 
example, a disk array LU failure could result in failure of the 
primary data it stores, but could also disable the copy-on-write 
snapshots taken from it, and may (indirectly) influence the 
availability of spare resources.   
One challenge in this space is to develop a concise way of 
capturing the effects of a failure, and the properties of a data 
protection technique.  How exactly do you formalize what a 
remote mirror does? What about a restore from a tape backup?  
We suspect that, absent such formulations, failure- and solution-



   

handling will remain a rather clumsy, handcrafted, skill-intensive 
activity. 

Next steps 
We found our initial forays into this space encouraging.  As a 
result, we plan to continue this approach, extending our tool’s 
functionality in a number of ways, including: more failure types 
and scopes (e.g., failure rates, concurrent failures; user, operator, 
and software faults), a greater range of dependability techniques, a 
choice of objective functions (e.g., how much dependability can 
be obtained for a fixed outlay), and a broader set of tradeoffs and 
business practices. 
Although our initial prototype implementation has shown us many 
useful insights, the lack of automation in Excel prompts us to 
search for a new implementation vehicle for these next steps.  

Finally, we suspect that this approach may help us identify 
“holes” in the solution space, which in turn may help guide the 
development of new data protection techniques.  

6. RELATED WORK 
The dependable systems community has techniques for modeling 
[8] and simulating [10] various aspects of dependability.  The 
emphasis in this community appears to be on tools to assess 
designs that have been created by hand, as evidenced by their GUI 
interfaces (e.g., [6]).  While this assessment is a necessary ability 
for any design system, it doesn’t address the problem of how to 
explore the design space automatically. 
System administrators have to make the design choices we 
describe here every day, but the focus in their literature is on 
operational issues, such as explaining backup policies and setting 
related configuration parameters.  
The majority of “data protection” work is focused on developing 
(yet more) new protection mechanisms, with various twists and 
tradeoffs. Rarely do their designers consider the difficulties of 
deciding when to use them, and how they combine with existing 
techniques.   
We were able to leverage existing work that deals with specifying 
and evaluating dependability requirements.  Examples include a 
declarative method of specifying data performability and 
reliability requirements [11, 14, 15], and ways to measure the 
availability of RAID systems [5].   
Some prior work from our own group has addressed the design of 
systems to meet performance goals (e.g., [4, 3]), but the design 
tools that resulted (e.g., [1, 3]) considered only online redundancy 
techniques (mirroring and RAID5).  Our dependability design  
work builds on the experience gained there. 
In short, we are not aware of any other work that shares our goal 
of automating data dependability design, nor of any system that 
accomplishes this goal.   

7. CONCLUSIONS 
The solution and failure spaces for dependable storage systems 
are rich, complex and inherently interesting.  We believe that 
because of these issues, automating the design of dependable 
storage systems is likely to be an appropriate approach.  
Moreover, this approach is achievable – at least over the space 
we’ve tried so far.  We described our simple dependability 
designer prototype, and presented initial results exploring the 
recovery time-data loss-cost space.  The insights we came upon 

during this process suggest that there remains a wealth of 
interesting problems to explore in this space.   
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