Hippodrome: running circles around storage administration

Eric Anderson, Michael Hobbs, Kimberly Keeton, Susan Spence, Mustafa Uysal and Alistair Veitch

Hewlett-Packard Labs Storage Systems Department http://www.hpl.hp.com/SSP/

Challenges of data center storage

Storage system configuration

- Application workloads
 - Streams of I/O requests
 - Stores: application data
- How to allocate storage resources?
- How to map workload onto storage devices?

2002-11-Hippodrome, 2 Storage Systems Department

Storage system configuration challenges

- Design storage system to match workload requirements
 - Which storage devices?
 - Configurations?
 - How to map workload data?
 - Too many choices
 - Insufficient workload knowledge
- Implement design
 - Configure disk arrays and hosts
 - Migrate existing app data (if any) to new design
 - Tedious and error-prone
 - Mistakes hard to find

- Storage system configuration is a naturally iterative process
- Human experts use "rules of thumb"
- Resulting systems:
 - Take too long to develop
 - Over-provisioned (cost too much)
 - Under-provisioned (perform poorly)

Our solution

- Automate tasks that are difficult for human admins
- Goal-directed management
 - Users specify what they want (goals), not how to achieve it (implementation)

- Business-critical availability
- 150 i/o per sec
- 200ms response time

Hippodrome: automating storage config

 Automatically designs and configures storage system

- Introduction
- Hippodrome approach
 - Hippodrome component overview
 - Loop operation
 - Questions to answer
- Hippodrome loop components
- Experimental methodology and results
- Related work
- Conclusions

Hippodrome components

2002-11-Hippodrome, 8 Storage Systems Department

Hippodrome loop operation: example

Hippodrome loop operation: example

Laboratories

2002-11-Hippodrome, **12** Storage Systems Department

Does it converge to a valid storage design?

- Does it converge to a valid storage design?
 Yes
- How long does it take to converge?
 - A few loop iterations

- Does it converge to a valid storage design?
 Yes
- How long does it take to converge?
 - A few loop iterations
- Is the solution stable (i.e., doesn't oscillate)?

Does it converge to a valid storage design?

- How long does it take to converge?
 - A few loop iterations
- Is the solution stable (i.e., doesn't oscillate)?
 Yes
- How little information must be provided?
 - Capacity requirements only

Does it converge to a valid storage design?

- Yes

- How long does it take to converge?
 - A few loop iterations
- Is the solution stable (i.e., doesn't oscillate)?

- How little information must be provided?
 - Capacity requirements only
- How do its solutions compare with solutions from a human administrator?
 - Performance within 15% of human solutions

- Introduction
- Hippodrome approach

Hippodrome loop components

- Workload analysis
- System design solver
- System design storage device models
- Configuration
- Migration planning and execution
- Experimental methodology and results
- Related work
- Conclusions

Rubicon workload analysis

• Goal:

 Succinctly capture important workload requirements and behaviors by analyzing I/O trace

Workload = set of stores + streams

- Stores capture static requirements (e.g., capacity)
- Streams capture dynamic workload requirements (e.g., bandwidth, request size) to a store
- Workload behaviors of interest:
 - request size and rate, read:write ratio
 - spatial and temporal locality, burstiness
 - phased behavior, correlations between parts of storage system

Storage system design complexity

- Numerous configuration parameters:
 - Number and type of arrays, LU sizes, RAID types, array configuration, SAN layout, store allocation, ...
 - Millions of candidate designs for a large problem!
- Multiple (non-additive) constraints
 - Capacity, performance utilization
 - Simpler version of problem (capacity-only constraints and fixed-size disks) is NP-complete
- Human sys admins don't find best solutions
 - Hard to handle complexity
 - Solutions may under- or over-provision

• Goals:

- Automate difficult search space exploration
- Near-optimal solutions in a short time

2002-11-Hippodrome, **20** Storage Systems Department

Ergastulum solver: automated design

Ergastulum solver – search algorithm

- Inputs:
 - Workload specification
 - Goals and constraints
- Step 1: initial system design and data mapping
 - For each store, add store:
 - Add to existing LU,
 - Extend LU,
 - Change LU configuration, or
 - Add new device/LU
- Step 2: improve system design and mapping
 - Reassign LUs to reduce no. LUs
 - Reassign stores to balance load
- Output:
 - System design, including device specification and data mappings

Storage device models

- Fast, detailed and robust analytical models
- Approach 1: Delphi modular toolkit
 - Potential for reusable components: disks raid controllers, caches
 - Components impose workload transformations
 - Requires considerable human effort
- Approach 2: table-based models
 - Table of measured values to enable automatic creation
 - Look up workload utilization in table; use linear interpolation

Laboratories

invent

Automatic configuration 0

Storage Systems Department

Peregrinatio migration planning

- Migration planning shown to be NP hard
 - What order to move stores?
 - How to minimize temp space or number of moves?
 - How to improve performance through parallelism?
- Current implementation:
 - Simple greedy heuristic
 - Can find plans for 100s-1000s stores on 10s-100s of devices
- Developed advanced heuristics that provide:
 - Parallel migration plans
 - Proven upper bounds on temp space
 - Proven upper bounds on # moves

Migration execution

- What is migration execution?
 - Moving a store from its current location to a goal location
 - Must be done quickly and reliably
- Two methods:
 - Off-line: applications can't access stores during migration
 - On-line: applications can access stores during migration
- Aqueduct provides online migration with minimal impact on foreground workload

The Rome specification system

What it does:

- Records user requirements
- Records workload requirements
- Represents hardware/software configurations
- Describes storage devices
 - capabilities and configuration options
- Describes assignments
 - workload to device mappings

What's in it:

- Rome data model
 - UML(-like) models for all objects in a storage system
- Languages (textual representations)
 - Latin: current Tcl-based variant
 - Greek: future XML variant

Summary: Hippodrome components

- Introduction
- Hippodrome approach
- Hippodrome loop components
- Experimental methodology and results
- Related work
- Conclusions

Experimental methodology

- **Experimental system**
 - Mid-range SMP host
 - Mid-range disk array
 - Fibre-Channel SAN
- Workloads:
 - Synthetic
 - Postmark
- **Experiments:**
 - Fix workload, iterate through loop

16KB stripe size 10 disks/SCSI bus

60 disks total

Hewlett-Packard aboratories

2002-11-Hippodrome, 30 Storage Systems Department

Experimental results: synthetic wkld

Both workloads converge to stable design
Performance estimate helps

2002-11-Hippodrome, **31** Storage Systems Department

Experimental results: PostMark

- 85% 99% of best human-achieved performance
- Fast convergence to stable design

Experimental results - summary

- Hippodrome system:
 - Rapidly converges to final design
 - Designs stable systems
 - Requires only capacity information

Resulting solutions:

- Use near-minimal resources
- Perform within 15% of human expert

Hippodrome ongoing and future work

- Continuous adaptation to workloads that change over time
- Greater range of workloads
- Sensitivity of loop effectiveness to quality of components
- Increased sophistication of loop components

Configuration adaptation inside a disk array

- EMC Symmetrix, HP XP512, Hitachi 9900
- HP AutoRAID

Policy-based management

- IBM StorageTank
- Database solutions
 - Teradata hash-based partitioning
 - UCB River cluster I/O architecture
 - Microsoft AutoAdmin automatic index selection
 - IBM DB2 LEO feedback-driven query optimizer
- Compute resource allocation
 - IBM Oceano automatic server allocation
 - Duke Muse energy-conscious server allocation

- Key idea: self-managing storage
- Benefits to approach:
 - Better solutions
 - Reduced human error
- Reduces expensive management costs through automation

Acknowledgments

- Hippodrome and its components have been developed by the following Storage System Department members:
- Eric Anderson, Guillermo Alvarez, Michael Hobbs, Mahesh Kallahalla, Kim Keeton, Arif Merchant, Susan Spence, Ram Swaminathan, Mustafa Uysal, Alistair Veitch, Qian Wang and John Wilkes

invent

http://www.hpl.hp.com/SSP/

Hippodrome loop operation: example

2002-11-Hippodrome, 40 Storage Systems Department

Related FAST '02 papers

2002-11-Hippodrome, 41 Storage Systems Department

