SmartFrog User Manual v3.06 -1- last modified on 10-Jul-06 8:33 pm

Smartkrog User Manual

For SmartFrog Version 3.06

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog User Manual v3.06 -2- last modified on 10-Jul-06 8:33 pm
Table Of Contents
1 INTRODUCTION 4
2 SMARTFROG FRAMEWORK 5
2.1 DIRECTORIES AND FILES IN THE BINARY DISTRIBUTION.uuuuuuuruverrrrrrereereeeeeeeeeeseessssssssssssssssssssssssseseeeseeeenes 5
2.2 CLASSPATH. .uvveeeeeeetteeeeeeeeeteeeeeeeeeareeeeeeeaseeeeeeeebeeeeeeeetaaeaeeeeaasseeseesassseseeeeaasaseeesentrseeeseensssseeseesannres 6
3 USING THE FRAMEWORK 7
3.1 SMARTFROG RESOURCE REFERENCES......cuvvviiiiiiiiiiiiiiiii ettt e e e e e e e e e e e e e s e e e s ee s s ssssassennnnees 7
3.2 SMARTFROG ACTION DESCRIPTOR....euvuvviiiiiiiiieiieeieeeeeieeeeeeeesesessaaaaeaeeeeeeeeeeeeeeeeeseeeseesesssssssssssssssesssseeeeees 7
B20d INAME. ... e ettt 8
3.2.2 ACTION.........ooooooeeeeeeeeeeeeeeeee ettt ettt 8
3.2.3 SEFREF ...t 8
3204 SUBREF ... ettt 9
3205 HOST ... 9
3.2.60 PROCQCESS. ... ettt 9
3.2.7 EXQINPLES ..ottt ettt ettt e ta e e ba e nbeeaee e 9
4 THE COMMAND-LINE SCRIPTS 10
4.1 SFHOME ENVIRONMENT VARIABLE. ...uuvvutvertereeeeeeeeeeeeeeeesesesessssssssssssssssessesesesessesessssesssmsssssssssssssssseeees 10
4.2 SETSIFPROPERTIES SCRIPT.....cceiiiiiiiieiieieieieesistaiesaeeeeeeteeeeeeeeeeeeeeeeeesesssssssssssssssssseeeeseeeeeeesaeesesssssnensnnes 10
4.3 SETSFDEFAULTPROPERTIES SCRIPT......0eeeeeeiiureeeeeeeitreeeeeeesnseeeeeesisseseeeesisreseseeessssssssessisseesesssssssseeeens 10
4.4 SETSFDYNAMICCLASSLLOADINGPROPERTIES SCRIPT......ecceiieiuvreeeeeeiiureeeeeeeerreeeeeeeisereeeeenstsreeeseesinreeeseenns 11
4.5 SETSFSECURITYPROPERTIES SCRIPT......cceceiiivireeeeieiiureeeeeesitseeeeeeesisseeeseeessseseeessesssssseseesissssesesssssseseeennes 11
S N ol D YN o3 (o AP URPRUERRRRPRRRRRRRRNt 11
AT SMARTFROGceettureeeeeeiiureeeeeeieisereeeeeesiaseesssesisasseseeaaiaressesessresseesensassseseasasssesesnnsreseesensssssseeesnsenes 12
N o 0 N T PRSPPI 12
N VN . VRN 13
o TSy e Vo) TSSOSO 13
O I BN N V0T D YN 51V () SRR 13
V20 DN 3 D) X @ UANN oY 21811 NNy TN 13
T B TN ol B3 Y 117 14
B A O SN TSy R RRRRRRPRRNt 14
15 SFPING ..ottt e e e e et e e e e e etaraaeeeearraeaeaaas 15
4,16 SFIDIAGNOSTICS.cceeiurreeeeeeiitreeeeeeeeiteeeeeeeeareeeeeeeesreeeeeeesttaseeeeeasasseeeeeeaaarareeeeaatsseeeseessrseeeeennarreeens 15
Q.17 SFVERSION.....uvvvieeeeeiteeeeeeeeeireeeeeeeettereeeeeesareeeseeeatreeeeeeaettaseeeeeasasseeeseesaraeeeesaatasseeseessrseeeeennnrreeens 15
4,18 TYPICAL USAGE IMODELS.....ccciieuirieeeeeiitteeieeeeeiteeeeeeeeiteeeeeeeesiaseeeeeeesstereeeseestsseeeseessaseseseesntreesessannes 15
4,19 SFIMANAGEMENTCONSOLE. ...vvvveeeeeiutreeeeeieittereeeeeeiareeeeeesiareeeeeseestareseseesasseeeeesassesseseesssreeeesnsnresees 16
5 RE- COMPILING THE EXAMPLES 18
5.1 RUNNING THE BUILD SCRIPTS......cctuuvreeeeesiurreeeeesessrsseesessisssesseesssssssesesssssssesessmssssseseesssssesssesssssssesesnnres 18
5.2 RE-COMPILING EXAMPLESuvvvvieeieitereeeeeeisreeeeeesissessessesissssesessissssssessissssssesssssssssemsisssssseessssssseesss 18
5.3 CREATING JAVA DOCS FOR THE EXAMPLES CODE....uvvveeeeieurreeeeeesureeeseeenisseeeesessissseesssnssssesessessssesesessnnnes 18
6 ENABLING SECURITY 18
6.1 CREATING THE SECURITY INFRASTRUCTUREL.ccceiiurerieeiiitieeeeeeiesereeeeeeinseeeeesinaseeeessesaeseessssssnseesssenns 18
6.1.1 Running the Security DUIld SCHIPLS.ccocoeiiiiiiii ettt 18
6.1.2 Creating a certifiCation QUIROFILY..............ccccoueriiieeiieee ettt 19
6.1.3 The Test Certification AUROFIEY.........cc.cceiieiiiieii ettt 19
0.1.4 ReSEttiNG the QUIROFILY............cccoeeeiieieeie ettt ettt enees 19
0.1.5 SiGNING LRE JAT fIES.......c..coiiiiiiiiiiiiie et 19
6.1.6 Creating new daemon IdERLILIES...................cccccvecueiieceesieieeieie ettt sae e saeeneens 19
6.2 PREPARING HOSTS....uviviiiiiiiiiiiic et ettt ee e ee et e e e et e e e e e e e atareeeeeeaaaeeeees 20
7 REMOTE CLASS LOADING 21
7 T 2 =30\, ()) =1 SN 21

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog User Manual v3.06 -3- last modified on 10-Jul-06 8:33 pm

7.2 JVM-WIDE CLASS LOADING...ccutiitiiiiiiiiieiteiictetcctcre ettt ettt s e 21
7.2.1 Enabling Class Loading WithOut SECUFILY............cc.ccovvvevieieiiieiieieeieeiesie e 21
7.2.2 Enabling Class Loading With SECUFILY.............c.cccoeieiimeiecieiieieeiieeeeee et 21
7.2.3 ARE TASKS.c...c.ooveeeeeiieeeie ettt ettt b ettt et ettt ete et eae e 22

7.3 CODEBASE IN DEPLOYMENT DESCRIPTORS. ...eutveesveesseessseesseessseesseesssesssessssesssessssesssessssessssesssesssessssesssesss 22

7.4 GEeTTING THE BEST OF BOTH WORLDS: DYNAMIC LOADING FOR PARSING AND EXECUTION. c..ceveuveteneeeeeenees 22

7.5 POINTS OF NOTE...ceutteuteittenit ittt ettt ettt ettt et e st e et e s ae e tesae e besbe e be e s e e beestebeeneeeteeneeeseeneesaeenees 23
7.5.1 JAR Caching and reloading...................c..ccoovuiviiiiiniiiiiie et 23
7.5.2 FUBUF@S ...ttt ettt ettt et ettt sttt et en 23

8 RUNNING THE FIRST EXAMPLE 24

8.1 LOCAL, SINGLE PROCESS DEPLOYMENT........uuuveteeeeesusreeeeeeinssereeessessnsseessesssseeseessmssssssesssssssssesssmsssseseessnns 24

8.2 INTO A SINGLE DAEMON.....uuteutitieutetienteatteteeueenetemeesteentesueemsesaeansesseenteeseenseeneeaseeneeaseensesaeensesneenbesnnans 24

8.3 REMOTE HOST...cutteutitieuieeteete et ettt et st e et et et ee et es e bt ea e eaeemeeeseemeeeseemeesaeentesaeenseeseenseeneenseeneanneens 25

9 SMARTFROG COMMAND LINE 26

9.1 KEY COMMAND LINE FACTS...ccuteeuteeruteerteestreenstesueeeteessesseesaseenseessseenseesssessseessesnsesssessseessseessaesssesnne 26

9.2 SMARTFROG COMMAND-LINE OPERATIONS.veeuuteeureerureeseessseenseesmsesseesssesnseesseessseesseesssessseesseesseesnseenes 26

9.3 SMARTFROG JVIM PROPERTIES.....cccuvieeieeiiieiieeteeiiesieeitesiteesetesateenbeesaseenbeesaseenseesaseenseesnseenseesnsesnses 26
9.3.1 Org.SMAFLfFOQ.INIFILC.ccveivieiieiieieeeeeee ettt 26
9.3.2 org.smartfrog.sfcore.processcompound.sfProcesSNAme..................cccocoevecveeeeceeneeceenneannns 26
9.3.3 org.smartfrog.sfcore.processcompound.sfROOtLOCAIOTPOFL.................cccooeeeeveceeeieieannnn, 26
9.3.4 0rg.SMATIIOZ.COACDASE..............cc.eieeiiiiiieeeee ettt e 27
9.3.5 org.smartfrog.sfcore.common.Logger.logStackTrace.................ccoccoooeioeviiceiiaceniaecn, 27
9.3.6 0rg.SMartfrog.OUtSIF@AMCIASS.ccoieeeieiei ettt 27
9.3.7 org.smartfrog.errStreaMOCIASS.c.ccoeoi ittt 27

9.4 SECURITY CONFIGURATION. ¢« .ceeuttetteenteeruteeteesutesateesateeseesseeesstesaseenbeesasesaseesabeeseesaseensaesaseenseesnsesnseens 27
9. 4.1 JAVA.SCCUFIEY.TATAZE ... ettt ettt ettt ettt et e sttt eeateenee 27
9.4.2 org.smartfrog.sfcore.SeCurity ProPIile............coociciiiiiiiiiiiiiiiiiiniieneeeeeee s 27
9.4.3 JAVA.SECUFTEY.DOLICYocueeeiieeeeieee ettt ettt est e eaeeseeneennes 27
9.4.4 org.smartfrog.sfcore.security. keyStOreNGME.cc.ccccceeceeeiiceieieieieeiesie e 27

9.5 SECURITY PROPERTY FILE CONFIGURATION.....certteritieireeteenieeeteenieesteessresnseessseenseenseesnseenssesnseesssessseens 28

9.6 USEFUL JVIM PROPERTIES.uveetveeuriesureeseessreeseessseassesnseesssessssessseesssesnsesnsessnsessssesnsessssessessssesnsesnses 28

9.7 OTHER JVIM OPTIONS. ...eeeutteiuteeteentieeteenttesttesteesiseessaeenseesseesssaeseessseesssesssseseenssesseesssesnsessssesnseensees 28

0.8 ERROR CODES......eeutitieiieitieieette ettt ettt ettt et s h et st e bt s bt e b e b e bt ea et eate bt eateebeemeesbeensesaeenaesaeen 28

10 TROUBLESHOOTING 29

10.1 GENERAL DIAGNOSTICS TEST..ccuutiiiieriieiiienie ettt et esite st esete st siteeiteestaeebeenteesabeenseesnseensnesnseenees 29

10.2 "SMARTFROG SECURITY IS NOT ACTIVE"....oi oottt 29

10.3 UNRESOLVED REFERENCE
10.4 A REFERENCE TO A COMPONENT IS NOT RESOLVING TO THE RIGHT TYPE; IT IS RESOLVING TO A

COMPONENTIIESCRIPTION. ...uvvvviiieeiuieeeeesieitieeeeeeeeaseeeeeeeessteseeeseasaseesssessessesessassaeesessensaeseesssssssseeesessnnrenees 29
10.5 NESTED COMPONENTS ARE NOT DEPLOYED.......uuveeieeiienreeeeeeseiueeeesesinseeeeesssssssssesssmssseesssssssssseeessmnsasees 30
10.6 CoMPONENTS DECLARED IN A COMPOUND COMPONENT ARE NOT DEPLOYED IN ORDER.........uvvveeeerineeeeeennns 30
10.7 JVM PROPERTIES APPEAR INCORRECT.........ceeteeeeiennsursssssssseeeeeseesseseeseesessesssesessssssssssssssssssesseeseeeeeeeens 30

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog User Manual v3.06 -4 - last modified on 10-Jul-06 8:33 pm

1 Introduction

This manual is aimed at those wanting to run the SmartFrog framework. It
assumes that user is working with the binary distribution of the SmartFrog
framework.
It describes:

e Directory structure for the binary distribution

e Starting and managing the daemons

e Setting up and managing the security infrastructure

¢ Running the first example

e Configuring dynamic code downloading

e The manual does not cover details of how to write SmartFrog

applications i.e. how to use the SmartFrog notation, the component

model, etc. The reader is directed to the SmartFrog Reference
Manual and its accompanying Javadoc for this information.

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog User Manual v3.06 -5- last modified on 10-Jul-06 8:33 pm

2

21

SmartFrog Framework

Directories and Files in the binary distribution

Cf] dist |

® (3 bin

I3 docs
I help
I lib

=) private

I signedLib

= 3 src
1) testCA
SFHOME = INSTALLATION_DIRECTORY/dist

The distribution expanded into SFHOVE contains a number of directories and
files. These are

docs — a directory which includes a number of documents describing
the framework and examples. It also includes the javadocs for the
framework and the accompanying packages.

bi n — contains scripts for starting and stopping the daemons and
applications; these may be used as is, or modified as required to suit
local conditions. It may be desirable to include SFHOME/bin in any
path environmental variable used by the shells.

I i b — contains all the jar files provided in the distribution.

si gnedLi b — initially empty, it is used for placing jar files signed
during the security initialization process. Not all jar files in lib will be
signed as not all are compatible with the security infrastructure.

t est CA — the files needed to provide a dummy certification authority
for testing security for those who do not have access to OpenSSL.

t est — scrips to run some automatic diagnostics test. Log files will be
created in test/log.

private — a directory which will contain files for the security
infrastructure. Note that before any re-installation of the infrastructure,
this directory may need to be saved to preserve security information.
For more details see section .

src — the source code for some examples showing a few of the
capabilities of the system. These examples have been precompiled
and are provided in sf Exanpl es. j ar in the lib directory.

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog User Manual v3.06 -6- last modified on 10-Jul-06 8:33 pm

2.2 Classpath

build. xn'" — a file used by ant to re/compile the examples, to
generate the javadocs for the examples and to control the security
build process.

rmtargets — a file that contains the classes that need to be
compiled with the r ni ¢ compiler.

We recommend that you start SmartFrog using the packaged scripts. When
this is done, there should be no need to set the class path as it is set within
the scripts. However, if the user does not use the scripts, he/she has to set
the classpath. The classpath settings are determined by the use of security
and/or remote class loading.

No security; classes are local —set the class path to include every jar
file in the lib directory [For reference see packaged scripts
set SFProperties and set d assPat h]

Security; classes are local — set the class path to include every jar file
in the si gnedLi b directory; these are only present after the security
infrastructure has been built and not all of the packages are available
in this case.

With remote class loading — set the class path to minimally include
one of the Iib/smartfrog.jar or signedLib/smarfrog.jar files,
depending on whether security is enabled or not. This must be local
since otherwise SmartFrog cannot be started and the class loading
initiated. In addition, the property or g. smart fr og. codebase must be
set to contain URLs to the remaining jar files. This should be done
even with the process running the server component.

More details of how to do this are in the section on remote class loading.

" ANT 1.6.5 or later (http://ant.apache.org/) and Java JDK 1.4.2 have to be installed and properly
configured to be able to re-compile the examples, generate javadocs for the examples and run the
security build process.

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog User Manual v3.06 -7 - last modified on 10-Jul-06 8:33 pm

3 Using The Framework

SmartFrog has many different ways of being started; all provided by the Java
class SFSyst emthat is fully documented in the SmartFrog reference manual.
Users may use either this class or the scripts provided in the SFHOVE/ bi n
directory. This section only covers the use of these scripts.

The scripts provide some of the more common use models for the SmartFrog
framework. They are provided primarily to give users a simple way of
experimenting with the framework and are useful for running the examples
provided with the distribution.

All the scripts assume the following:

e security features are not required (for enabling security,
set SFProperti es script is provided in the directory SFHOME /bin.

e the SFHOME variable has been set to refer to the installation directory.

It is, of course, possible to use remote class loading and security together.
However, it should be noted that it is left to users to create appropriate scripts
for their specific environment, those provided are merely examples
demonstrating what must be done. The full set of environmental variations is
too great for a generalized script set to be provided.

There are two concepts to understand as part of the underlying control of the
SmartFrog system. The first of these is the SmartFrog Resource Reference
(SFREF). This is a URL to a description file to deploy or otherwise use. The
second is an SmartFrog Action Descriptor (SFACT), which is used to indicate
to SmartFrog an action to take. These are now described in more detail.

31 SmartFrog Resource References
Throughout the SmartFrog system, including on the command line,
references to SmartFrog resources (i.e. files) may be given in a number of
ways:

e as a URL to the file;

e as a relative or absolute path name to a file;

e as a path to a resource in a jar file on the classpath or code base.

In this last case, the reference should be given as a path relative to the root of
the package structure within the jar file, i.e. without the leading "/ ". In most
cases this leading "/ "is removed by the code, but there may be some

instances where this is not so.

In the following descriptions of the scripts, a reference to such a resource is
referred to as an SFREF.

3.2 SmartFrog Action Descriptor
An action descriptor is used on the command line to describe a certain type of

action that will be carried on by the daemon. An action has a number of “
separated fields, most of which may be left blank in many cases.

The format is:

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog User Manual v3.06 -8- last modified on 10-Jul-06 8:33 pm

NAME: ACTI ON: SFREF: SUBREF: HOST: PROCESS

3.21

foo

The semantics of the fields are defined as follows:

NAME
The name is a single word, or a SmartFrog reference in which case it must be
surrounded by quotes. The name has one of two interpretations depending on
the action to be taken (see next field).

In TERM NATE, DETACH, DETaTERM PI NG, DI AGNCSTI CS the name is a
reference to the component on which to apply the action.

In DEPLOY, the name is treated like a placement and the name is split into two:
all but the last part is a reference to another component and the last (or only)
part is the name which will be given to the deployed component within that
referenced component. If the component is not a ProcessConpound, the
component is also made the parent of the deployment.

In all cases, the NAME is resolved relative to the process compound of the
HOST and PROCESS specified by the appropriate fields.

When a name is not provided, it indicates the process compound of the host
and process defined in the HOST and PROCESS fields. Also, in DEPLOY no name
means use the sfProcessComponentName from the description if available or
generate a random name to name the deployed description.

Examples:

"HOST | ocal host : f 00"

3.2.2

3.23

ACTION
This field defines the action to be taken on the named component

« DEPLOY a component or application.
« TERM NATE a component or application.
« DETACH a component from its parent.
- DETaTERMdetach and terminate a component from its parent.
* Pl NGa component.
« PARSE a description and generates report.
- DI AGNOSTI CS a component and generate report.
SFREF

The SmartFrog description (if needed) to be used by ACTION. It is a
SmartFrog Resource Reference see 3.1. It needs to use quotes (“ or ') when

“, »

the reference is using “:”. Currently this is only required for a DEPLOY and
PARSE actions and is ignored otherwise.

Examples:

/ hone/ sf/ f o0o. sf

"c:\sf\foo.sf"

"c:\sf\foo. sf'

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog User Manual v3.06 -9- last modified on 10-Jul-06 8:33 pm

3.24 SUBREF

When the SFREF is parsed and resolved, the result is a component
description containing a number of attributes. In the “sf’ language, this is the
contents of the sf Confi g definition. Under normal circumstances, it is this
whole definition that is used for the deployment, but occasionally, for testing
purposes perhaps, it is useful to specify some single subcomponent. Under
these circumstances, the name of this attribute, or a reference to a deeply
nested application, may be provided. This is the SUBREF.

Examples:

foo
"fist:foo"
"fist:foo'

3.25 HOST
host name or IP from where to resolve the name. If HOST is not present, the
process name is ignored and the process executing is used. If you want to
refer to another process, other than the executing one, on the local host,
"localhost" should be used and the appropriate PROCESS name used.

Examples:

f oo. hpl . hp. com
127.0.0.1

3.2.6 PROCESS
process name from where to resolve the name. When empty it defaults to
“r oot Process”.

3.27 Examples
These examples show the use of the action descriptors for different purposes.

Example 1: Deploy a description in the local daemon
Ex1: DEPLOY: or g/ smart f r og/ exanpl es/ count er/ exanpl e. sf: : | ocal host:
Example 2. Terminate the local sf Daenon
root Process: TERM NATE: : : | ocal host:
or
: TERM NATE: : : | ocal host :
Example 3: Deploy "count er ToSucceed" from count er / exanpl e2. sf

count er Ex3: DEPLOY: or g/ smart f r og/ exanpl es/ count er/ exanpl e2. sf: "test Le
vel 1: count er ToSucceed": | ocal host :

Example 4: Get diagnostics report for "sf Def aul t" component running in
localhost

sf Def aul t : DI AGNOSTI CS: : : | ocal host :

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog User Manual v3.06 -10- last modified on 10-Jul-06 8:33 pm

4 The Command-Line Scripts

41 SFHOME environment variable
This is a variable needed by all shell scripts to determine where the
SmartFrog distribution files are installed

4.2 setSFProperties script
set SFProperties is a script for setting all the necessary SmartFrog
environment properties for starting the daemon and running the applications
in various modes like without security, with security and remote classloading.

This script calls other three scripts to set all the necessary properties:
— setDefaultProperties

— setSFDynamicClassLoadingProperties. Run if
SFDYNAM CCLASSLOADI NG _ON is set.

— setSFSecurityProperties. Run if SFSECURI TY_ON s set.

These scripts are called in this order so that some properties can be
overwritten in the same order. For example, when security is enabled, the
setSecurityProperties file overwrites SFDEFAULTSF and SFDEFAULTINI
properties that sfDefaultProperties file also defines.

Other properties:

* SFLI BPATH: to set library path (lib, signedLib, user-defined library
path) for SmartFrog jar files.

* CLASSPATH: this script also sets the classpath to include the
required JAR files for various modes like security on/security off
and/or classloading by using set C assPat h script with SFLI BPATH
variable.

4.3 setSFDefaultProperties script
set SFDef aul t Properties is a script for setting the default smartfrog

environment properties for running smartfrog. This script is run by
set SFPropert i es when the environment variable SFSECURI TY_ONis set.

Properties:

e SFUSERHOVE: to set the user lib directory. There are several
variables available for the user to set several lib directories:
SFUSERHQOVE, SFUSERHOVEL, SFUSERHOVE2, SFUSERHQOVES,
SFUSERHOVE4

- SFDEFAULTIN : to set the property org.smartfrog.inifile for
defaul t.ini file which defines all the JVM system properties.

» SFDEFAULTSF: to set the property
org.smartfrog. sfcore. processconpound. sf Def aul t . sf Def aul
t for defaul t.sf that contains some standard components to be
deployed in all daemons and subprocesses.

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog User Manual v3.06 -11- last modified on 10-Jul-06 8:33 pm

4.4 setSFDynamicClassLoadingProperties script
set SFDynani cCl assLoadi ngProperties is a script for setting all the
necessary smartfrog environment properties for starting the daemon and
running the applications with dynamic class-loading enabled. This script is run

by set SFProperti es when the environment variable
SFDYNAM CCLASSLOADI NG_ON is set.

Properties:
» SERVER to set the hostname for remote class loading.

» CODEBASE: to contain URLs to include additional jar files for remote
classloading.

+ SFCODEBASE: to set the property org.smartfrog. codebase to
contain URLSs to include additional jar files for remote classloading.

4.5 setSFSecurityProperties script
set SFSecurityProperties is a script for setting all the necessary
SmartFrog environment properties for starting the daemon and running the

applications with security enabled. This script is run by set SFProperties
when the environment variable SFSECURI TY_ON is set.

Properties:

* SFSECURI TY: to set the properties for enabling the security
infrastructure.

» SFDEFAULTI NI : to set the property org.smartfrog.inifile for
defaul t.ini file which defines all the JVM system properties. This
property will overwrite the definition included by
set SFDef aul t Properti es.

» SFDEFAULTSF: to set the property
org.smartfrog. sfcore. proccessconpound. sf Def aul t. sf Def au
It for def aul t. sf that contains some standard components to be
deployed in all daemons and subprocesses. This property will
overwrite the definition included by set SFDef aul t Properti es.

+ SFHOSTNAME: to determine the credentials to used. It defines the
name of the subdirectory in private that contains the credentials.
hostl is used as default value.

The user only needs to modify these properties

(SFUSERHOVE, SFDYNAM CCLASSLOADI NG ON, SFSECURI TY_ON,
SFDEFAULTI NI, SFDEFAULTSF, SERVER, CODEBASE, SFCODEBASE,
SFSECURI TY) for various modes in this script or in his system environment
and all the other scripts for daemons and applications will use them.

4.6 sfDaemon
sf Daenon is a script that creates a root process compound (see reference
manual). As a root process, it starts a registry to enable it to be located by
other SmartFrog systems, by default this registry is on port 3800.

At start up, the daemon (and every sub-process created by it) reads the
following files from the directory ${ SFHOVE} / bi n/ .

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog User Manual v3.06 -12 - last modified on 10-Jul-06 8:33 pm

4.7

4.8

« default.ini :to define JVM system properties; this may be edited
to alter those it uses. It may not be used for properties that affect
security or code loading — it is read after these are already
initialized.

« default.sf : containing some standard components that should be
deployed in all daemons and sub-processes; this may be edited as
required. By default, it contains a component to start a display
window for the process (shows stdout, stderror and provides
additional information). This description registers itself using the
name sf Def aul t .

To stop the daemon, see sf St opDaenon.

smartfrog

sfRun

smart frog wraps SFSyst em The SFSyst emis documented in the SmartFrog
reference manual. smar t f r og behaves like sf Daenon except that the daemon
created is not a root process, just a simple daemon which can be used to run
SmartFrog applications which are run locally or do not require other
SmartFrog systems to locate them.

The command line parameters are as for sf Daenon, none, one or more than
one of each is permitted:

e -a SFACT: SmartFrog Action Descriptors (SFACT) that the daemon
has to execute.

- -f SFREF: file that contains a set of SmartFrog Action Descriptors
(SFACT).

- -e: the daemon will terminate after finishing the deployment. Similar
functionality can be achieved with:

-a : TERM NATE: : : :
« -d: environment diagnostics report for daemon

« -?:usage and help information

Only the def aul t . i ni file is read by default: editing the script will be required
to change this.

The smartfrog script is the most flexible command and can be used to
replace all other scripts except sf Daenon.

The sf Run script is similar to sf Daenon except that the daemon created is not
a root process, just a simple daemon which can be used to run SmartFrog
applications which are run locally or do not require other SmartFrog systems
to locate them using the registry (HOST links).

The command line parameters are:

» SFREF : the SFREF where the text is to be found to be parsed and
deployed.

+ -e: to terminate the daemon after if finishes the deployment.
Optional.

Only the def aul t . i ni file is read by default: editing the script will be required
to change this.

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog User Manual v3.06 -13 - last modified on 10-Jul-06 8:33 pm

This command is equivalent to:
smartfrog -a : DEPLOY: SFREF: :: -e

4.9 sfStart
sfStart is a simple way of getting applications launched into a network of
SmartFrog daemons, even if one is not running on the local host. The
command line is

sfStart host nanme appnanme SFREF

with the following interpretation:

e host nane : is the name of a host on which the root daemon is running
through which deployment should be done; the name | ocal host may
be used to indicate that the daemon is running locally.

e appnane : the name by which the application should be known in that
daemon — this is important for sfTerminate. If not name is provided
(using “”) if available sfProcessComponentName attribute in the
description will be used to name the application or, if it is not available
a random name will be generated.

e SFREF : the SFREF where the text is to be found to be parsed and
deployed.

This command is equivalent to:
smartfrog -a appnane: DEPLOY: SFREF: : host nane: -e

410 sfStop
sfStop is now obsolete and replaced by sfTernmi nate. Please see
sf Term nat e.

4.1 sfStopDaemon
sf St opDaenon is the counterpart to the sf Daenon command, in that it can
terminate every application that was deployed in a daemon and then the
daemon itself.

The command line is:
sf St opDaenbn host nane

with the following interpretation:

e hostnane : is the name of a host on which the root daemon is
running through which deployment should be done; the name
| ocal host may be used to indicate that the daemon is running
locally.

This command is equivalent to:

sf Ternmi nate host nane root Process
or

smartfrog -a root Process: TERM NATE: : : host nane: -e
or

smartfrog -a : TERM NATE: : : host nane: -e

412 sfDetachAndTerminate

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog User Manual v3.06 -14 - last modified on 10-Jul-06 8:33 pm

sf Det achAndTer mi nat e is a script that detaches the named component from
the SmartFrog system and then terminates it. This detachment and
termination does not affect the other components.

The command line is:

sf Det achAndTer mi nat e host nane appnane

with the following interpretation:

e host nane : is the name of a host on which the root daemon is running
through which deployment should be done; the name | ocal host may
be used to indicate that the daemon is running locally.

e appnane : the complete name by which the component should be
known in that daemon.

This command is equivalent to:
smartfrog -a appnanme: DETaTERM : : host nane: -e

413 sfTerminate
sf Ternmi nate is a script that terminates the named component from the
SmartFrog system. The termination does not affect the other components.

The command line is:

sf Term nat e host nanme appnane

with the following interpretation:

e host nane : is the name of a host on which the root daemon is running
through which deployment should be done; the name | ocal host may
be used to indicate that the daemon is running locally.

e appnane: the complete name by which the component should be
known in that daemon.

This command is equivalent to:

smartfrog -a appnane: TERM NATE: : : host nane: -e

414 sfParse
sf Parse is different from the other scripts in that it does not invoke the
SFSyst emclass to deploy the application. It is merely a tool to help in learning
the notation or to debug an application description when unexpected effects
are observed.

The sf Par se script parses and fully resolves the description and then prints
the resultant expanded and processed description to the console.

If the verbose flag is set, the sf Par se script carries out the same process, but
at each step, the abstract syntax tree on which the various tools operate is
printed to the console. Consequently, the complete description (with include
files expanded) is printed, it is printed again after type resolution, again after
place resolution and so on, for all the required phases.

The command is

sfParse [-v] [-q] [-r] [-R {[-f] filenane | SFREF}

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog User Manual v3.06 -15- last modified on 10-Jul-06 8:33 pm

where the optional flag -v sets the verbose mode and the “SFREF” is a
SmartFrog file.

All the command line parameters are:
e -v:verbose, prints every parser phase.
e -q: quiet, no phase printed. Overrides - v. Only errors are reported.
e -r:show status parsing report.

e - R create status parsing report in an HTML file named:
<filename>_report.htm .

e -f filenane: file with a list of SmartFrog descriptions (SFREFs) to
parse.

e SFREF: reference for a SmartFrog file or description.
e -7?:shows command line usage info.

Example:
sfParse -r org/smartfrog/ exanpl es/ count er/ exanpl e. sf

415 sfPing
sf Pi ng pings a component to check if it is alive. If no component is selected it
will ping the root process compound.

sf Pi ng host name [conponent nane]
This command is equivalent to:
smartfrog -a conponent nanme: PI NG : : host nane: -e

416 sfDiagnostics
sf Di agnosti cs creates a diagnostics report for a component. If no
component is selected it will create the diagnostics report for the root process
compound.

sf Di agnosti cs host nanme [conponent nane] [processnane]
This command is equivalent to:
smartfrog -a conponent nane: DI AGNOSTI CS: : : host nane: procssnane -e

417 sfVersion
sf Ver si on prints out the current SmartFrog version number to the console.
The command line syntax for the script is

sf Ver si on

418 Typical Usage Models
The two models for deploying applications supported by the scripts are
follows:

e Locally, in a single process for testing or simply because no
distribution is necessary. This is achieved by using the sf Run script.

¢ In a network of machines, each running a root daemon and each

started by the sf Daenon script. The applications are launched using
sf St art and perhaps terminated using the sf Ter ni nat e script.

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog User Manual v3.06 -16 - last modified on 10-Jul-06 8:33 pm

419 sfManagementConsole
sf Managenent Consol e starts a console to show information and manage the
applications deployed in a particular daemon in real time. No information is
cached. Each application is shown in a different tab panel.
The command line parameters are:
e -h <HOSTNAME> : host name where the daemon is running.
e -p <PORT_NUMBER >: port that the daemon is using.
e -w <W NDOW PCSI TI ON>: where to show the console window. Valid
values are: N (north), NE, NW S (south), SE, SW C (centre), E (east), W
(west).

e -r: shows an extra panel that connects to the daemon directly. Note
that the r oot Pr ocess component has a link to itself. Experts only.

e -?: shows command line usage info.
Some important features:
Button bar:
Reload Panels: The system is rescanned for an updated view.

Using the right button of the mouse there are some management actions
available:

1. Right click in left panel:

Terminate Component: Terminates the component selected. The
termination can be NORMAL or ABNORNVAL.

Detach and Terminate Component: Detaches the selected
component from the SmartFrog system and then terminates it. It uses a
NORNMAL termination.

Detach Component: Detaches the selected component from the
SmartFrog system.

2. Right click in right panel over the attributes table:

Remove Attribute: Remove the selected attribute from the selected
component.

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog User Manual v3.06 -17 - last modified on 10-Jul-06 8:33 pm

= sfManagementConsole [sfManagementConsole connected to local... | E|R|
File Help Mng. Console

|| Refresh | |

sfD - | ProcessName :
@ FrocesshMarme Attribute value:
@ displayTrace T ult.u:ua = .f_.:.au..
@ tracelLocal rc":;;szrge étep
e § g;;lg:nnﬂgnt SfClas org.smartirog.examples.counter....
@ traceFirst 3 5]
& displayFIRST . Lol
& dernoa sfLivenessDelay 15
0_@ foo sfLivenessFactor 2 = -
9'@ b guijarro-j-3145144 26193
@ & har s - - b
@ SEran =) HOST guijarro-j-3.labs.hpl.hp.co.. i
o @& foobar sfTraceDeployl ifeCycle Wied Aug 24 14:40:54 BET 2005 |5
sfTraceStartlifeCycle Wed Aug 24 144054 BST 2005

Remove Attribute

Resolve LAZY Ref.

HOST guijarro-j-2.labs hplhp comerootProcess ProcessMame systerm:hardamoD |

Add/Modify Attribute: Add a new attribute and its value or to modify
an existing one. Next is shown a picture of the dialog used to add\modify
attributes with the attribute types that it supports. Val ue will understand any
notation understood by the parser.

& Add/Modify attribute

Name ‘ ‘

Value

{use SF syntax)

At the bottom of the management console, a status bar shows the canonical
name for the selected component. This information can be copied using
“ctrl +C’ after selecting it.

This console can also be started from every daemon display using the option:

Hel p -> SF Mhg Console. After selecting that option, a dialog is displayed to
choose a host to connect.

| [_rau..'.. [:]E|SJ

Management Console for ...

Hostame:
localhosd |

| OK || Cancel ‘

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog User Manual v3.06 -18 - last modified on 10-Jul-06 8:33 pm

5 Re- Compiling the examples

5.1 Running the build scripts
The examples are built by an Ant build file provided as part of the release, in
SFHOME/ bui | d. xm . Once Ant is installed, these may be run from the SFHOME
directory. Running the command ant -p generates a short help message that
describes the main targets. Actions that are possible include :

5.2 Re-Compiling examples
Compiling or recompiling the examples is as simple as running

ant build

in the SFHOME directory.

This builds all the code contained in SFHOVE/ src/ or g/ smart f rog/ exanpl es and
creates a jar file called sf Exanpl es. j ar in SFHOVE/ | i b.

To compile code existing in different location a modification of SFHOVE/ bui | d. xni is
required.

5.3 Creating Java Docs for the examples code
Creating the javadocs for the examples code is as simple as running

ant jdocs

in the SFHOVE directory.

This creates a new directory called SFHOME/ j docs where the javadocs are placed.
Once Ant finishes, check SFHOMVE/ j docs/ i ndex. ht M to browse the result.

6 Enabling Security

The security infrastructure is designed to provide an environment within which
a SmartFrog system may be securely deployed and applications executed. A
complete description of the principles behind the security system is given in
the reference manual.

6.1 Creating The Security Infrastructure
The principle behind the security build environment is as follows:

e create a certification authority for code signing on a central host,
thereby defining the community;

e sign all JAR files compatible with the security infrastructure (the main
restrictions are to do with class loading) on that host;

e create host identities on the central host;
e securely distribute identities and signed files to each host;
e ensure operating system protection of security credentials;
o start SmartFrog with security enabled.
6.1.1 Running the security build scripts
The security is built by Ant build scripts provided as part of the release, in
SFHOVE/ bui | d. xm . Once Ant is installed, these may be run from the SFHOVE

directory. Running the command ant -p generates a short help message
that describes the main targets. Actions that are possible include:

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog User Manual v3.06 -19- last modified on 10-Jul-06 8:33 pm

6.1.2

Creating a certification authority
This must be done once only for each security community required. It is
usually done on a secure central host and the information distributed using
secure means to the execution hosts in the system. Note that each security
domain will require its own copy of the SmartFrog directories so as not to
confuse the identities, keys, etc.

To create a new certification authority requires OpenSSL to be installed. Once
this is done, creating a new CA is as simple as running

ant initCA

6.1.3

in the SFHOME directory.

This creates the authority for signing code that will be checked for by each
host as code is loaded. If a new certification authority is created, no existing
signed code will be loaded by new daemons, and existing running daemons
will no longer be able to interact with them.

The Test Certification Authority
If OpenSSL is not present, yet there is a need to test code using a CA, the
SmartFrog distribution comes with a dummy CA, contained in the directory
t est CA. Using this CA provides a fully capable security infrastructure, but it
should not be considered secure for real deployment.

The command to create the dummy CA is

ant dummyl ni t CA

run from the SFHOME directory. This should not be done if the i ni t CA target
has been run.

Resetting the authority
At times, it might be useful to reset all the information regarding a certification
authority. This may be done by running the script

ant cl eanCA

run from the SFHOVE directory. Users must now run one of the above scripts.

Signing the jar files
Once the certification authority has been created, all the jar files may be
signed and placed into the si gnedLi b directory by running the command

ant signJars

from the SFHOME directory. Currently only a few of the jar files are signed. If
a user jar file is required to be signed, in addition to those distributed with
SmartFrog, the si gnJars target in the bui I d. xn file may be modified. The
alternate approach is to use the <sf - si gn> Ant task within one's own build
file.

Creating new daemon identities
Each root daemon in the security domain must have a separate identity, this
identity being cryptographically strong. The command

ant newbDaenon

creates a new identity. These identities are created in the SFHOME/ pri vate
directory, each in a separate subdirectory named host xxx, where xxx is a
unique number generated from the current time and date. As many of these
as required may be created. The host xxx directory contains two files:

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog User Manual v3.06 -20 - last modified on 10-Jul-06 8:33 pm

nykeys. st — the keystore for the host that contains certificates, trust
assumptions and keys.

SFSecurity. properties — the default security properties for the
host, this may be edited if required, and contains a random password
that unlocks the keystore.

The t est CA directory contains some pre-created identities that are copied into
the private directory by the target dummy| ni t CA.

6.2 Preparing Hosts
Each host must be prepared to run in a secure mode. This means that
several simple steps must be taken:

All the signed jar files must be downloaded and placed in the
appropriate location, such as the si gnedJar directory; minimally this
must include the smartfrog.j ar file.

The host identity must be securely transferred to the host (by floppy,
over a secure network or using some secured protocol). The two files
from the selected host xxx directory, the security properties and the
key store, must be placed the private directory on the specific host
and this directory MUST be made read-only and accessible only to
the user account running the daemon.

The start-up scripts must be protected to ensure that as SmartFrog is
started the security is indeed enabled.

If an .ini file is used during startup, this is read before the security
system is initialized and consequently it is read without checking for
signatures. It should therefore be read only from a secured source,
such as the private directory. Note that security properties may not be
set within the .ini file.

All SmartFrog files and class files MUST be read from signed and
sealed jar files otherwise exceptions will occur. This includes the
i ni SFFi | e. All application code must therefore be packaged, sealed,
and signed.

The environment variable SFHOSTNAME has to be defined to select
the credentials from “private” directory that are going to be used. This
variable names the subdirectory that has to be used. host 1 is used
as default value.

The SFHOVE/ bi n/ securi ty directory has a set of scripts to run SmartFrog
with security enabled. Modify set SFSecuri tyProperties scriptto modify
the property SFSECURITY to enable security features. The rest of the scripts
like sf Daenon, sfStart, sfTermninate etc. use thisto work in a secure

mode.

Another alternative is to define the property SFSECURI TY_ON in your
environment or modify set SFProperti es (remove comment) to get all the
scripts running with security on.

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog User Manual v3.06 -21- last modified on 10-Jul-06 8:33 pm

7 Remote Class Loading

71 The Model

SmartFrog provides an integrated remote class loading system that is
compatible with the security system, though it also works without security. It is
slightly more restrictive than it might be because of the need to be secure, in
that all the remote resources must be in Jar files.

A web server can be used to serve jar files to requesting daemons. All other
daemons are then configured to use the server to access all jar files except
the core smartfrog.jar that must be local to bootstrap the SmartFrog
system.

7.2 JVM-wide Class Loading

7.21

The first way to control the classloader is to provide a list of URLs to JAR files
-files which must be signed when running SmartFrog securely. When set in
this way, the property controls not only which JAR files are loaded to run
programs, but which are also used for searching for deployment descriptors
used in #include statements.

Remember that these statements are parsed before everything else, but are
parsed in the program doing the initial parsing of the deployment descriptor,
not the deployment. Except for the special case of def aul t. sf scripts for a
daemon, the program doing the parsing is the copy of SmartFrog that is run to
initiate the deployment, usually via the scripts or the ant tasks.

To set the classloader URL path in a JVM, define it in the Java system
property org. smartfrog. codebase.

Enabling Class Loading Without Security
All daemons that wish to make use of the class loading must be initialized at
start-up to access the server. This is done by setting the
org.snartfrog. codebase system property to be a list of space-separated
URLs to jar files.

This is done in the normal way (either using —D), and is set as in the following
examples

Windows:

"-Dorg.snartfrog. codebase=http://aHost..com 8080/ sf Exanpl es. j ar
http://.."

Unix:

-Dorg. smartfrog. codebase=http\://aHost..com : 8080/ sf Exanpl es. j ar\
http:// ...

7.2.2

To use this feature modify the variable CODEBASE and property SFCODEBASE in
set SFDynani cC assLoadi ngProperties script in SFHOME/bin and define
SFDYNAM CCLASSLOADI NG ON property in your environment or modify
set SFProperties (remove comment) . The rest of the scripts will use them
to enable classloading.

Enabling Class Loading With Security
To use this feature modify the variable CODEBASE and properties SFSECURI TY
and SFCODEBASE in set SFDynani cCl assLoadi ngProperti es and
set SFSecurityProperties files in sFHOME/bin and define the variables:
SFSECURI TY_ON and SFDYNAM CCLASSLOADI NG ON in your system
environment. The rest of the scripts will use them to enable security and
classloading.

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog User Manual v3.06 -22- last modified on 10-Jul-06 8:33 pm

7.23 AntTasks
The Ant tasks have a special attribute for setting the codebase. They also
have a helper task, <sf -t ourl| > that converts one or more file locations into
file: URLs. This is for autogenerating the codebase list when deploying to a
local daemon:

Here, for example: we create a URL list of our deliverable jar file (identified by
${target.jar} and all our lib files, then hand it off for deployment.

<sf-tourl property="target.jar.url" file="${target.jar}">
<fileset dir="1ib">
<i ncl ude nanme="**/*_jar"/>
</[fileset>
</sf-tourl>
<echo> codebase= ${target.jar.url}</echo>
<sf-depl oy cl asspat href="run. cl asspat h"
| ogSt ackTraces="true"
host =" ${ depl oy. host } "
>

<codebase url ="${target.jar.url}"/>
<application name="app" file="valid.sf"/>
</ sf - depl oy>

7.3 Codebase in deployment descriptors
Setting the JVM codebase property sets the codebase for the program
parsing the descriptor. It has no effect upon any remote daemons deploying
the components.

The way to set the codebase dynamically for remote daemons is to declare it
in the deployment descriptor, via the sf CodeBase attribute:

sf CodeBase "http://exanpl e. com sf Exanpl es. j ar
file://nfs/apps/sfletty.jar";

This attribute takes a string of the same style as the
org. smartfrog. codebase parameter: a space separated list of URLs.

Setting the sf CodeBase attribute of a component sets the classpath for that
component and all components nested within it. Components can override
any sf CodeBase setting at any time, by declaring a new sfCodeBase
attribute..

This is very powerful. Each instance of a component can have its own
codebase -source JAR files, if needed, and if not, the parent codebase can be
used automatically.

As sf CodeBase is a normal SmartFrog attribute, all the usual assignment and
resolution operations apply to it.

The one thing that can not be done with it, is use the attribute to control where
#include paths are resolved from, because the #i ncl ude import takes place
before the sf CodeBase attributes is parsed and resolved.

7.4 Getting The best of Both Worlds: dynamic loading for parsing and execution
As covered above, there are separate ways to set the codebase for parsing
-the org. smart f r og. codebase property, and at runtime with the sf CodeBase
attribute(s).

It is often good to have the two synchronized, so that the runtime codebase is
bound to the parse-time codebase. This is simple and easy to do, with the
following fragment of a SmartFrog descriptor:

sf CodeBase PROPERTY org.smartfrog. codebase

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog User Manual v3.06 -23- last modified on 10-Jul-06 8:33 pm

Here we have told the program parsing the descriptor to set the sf CodeBase
attribute to its value of the Java system property, or g. smart f r og. codebase.
If that property is not set, a resolution error will occur and deployment will fail.
If it is set, then the deployment descriptor is dynamically bound to the current
value of the property. This value will then be passed to all the other daemons
in the network who are deploying parts of the program.

Do not use LAZY PROPERTY here, as that will retrieve the value of the
system property on the remote machine.

7.5 Points of Note

7.5.1

7.5.2

JAR Caching and reloading.
When a resource or class from a JAR file is needed, the entire JAR file is
retrieved from its URL-specified location and cached locally. Its signature is
verified, and from then on, all accesses are locally.

This holds until the JAR file is no longer needed, and unloaded. When does
that happen? Whenever all the things that have a reference to the JAR file
are garbage collected.

What happens if the source JAR file is needed and it is no longer there?

If the JAR file contains classes that were explicitly loaded by a component,
the JAR file will be cached for the life of the component. Resources and
dynamically loaded classes (those loaded by d ass.forNane()) are not
going to be pre-loaded by the system, so are only guaranteed to be available
while the source file is present. If the source JAR file is deleted or changed,
then the loading may fail, or later versions of the JAR loaded instead.

Well-written components must handle this by not loading classes or
resources during the termination phase of their lifecycle.

What happens when a source JAR file is updated?

A change in a remote JAR file is only picked up when that file is next
reloaded. That will only happen after all local references to that JAR file are
gone. There is currently no way to predict when this will happen. Terminating
an existing application, then redeploying a new version may be enough
-provided nothing else is using the JAR files, but there are no guarantees.
The only way to be 100% sure that the new version of a component has been
picked up is to restart the daemon.

This is significantly weaker than application servers, that cleanly reload an
entire Web Application on demand. Remember that SmartFrog is a
deployment framework, rather than the actual host of applications. It is only
when developing SmartFrog components themselves (or other code loaded in
the daemon's JVM) that updating remote files becomes an issue.

One trick is to use URLs that are different, as the comparison is done by URL
comparison -there are many different ways to refer to the same JAR file by
URL path. This is just a workaround, and an ugly one.

Futures
There is room for improvement in dynamic class loading, though the need to
maintain absolute security in the download process means that some
improvements are not admissible.

With that caveat, we are open to suggestions for improvements, and even
patch files containing implementations of the improvements.

One planned feature of the revised security model is that a component will be
provided to force a flush of cached JAR files.

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog User Manual v3.06 -24 - last modified on 10-Jul-06 8:33 pm

8 Running The First Example

8.1 Local, single process deployment
The simplest model for a SmartFrog description to be launched is to start a
SmartFrog process directly running the application, without any intention of
providing interaction with other SmartFrog systems around. To do this, use
the sf Run script. To try this out, run the command line:

sf Run org/smartfrog/ exanpl es/ arithnet/exanpl el. sf
This should generate the following text on the screen.
[WARN][rmain] SFCORE LOG - SnartFrog security is NOT active

Smart Frog 3. 04. 002
(C Copyright 1998-2004 Hew ett-Packard Devel opment Company, LP

To terminate the process, do so using the ctr | - Ckey.

A full explanation of this example is given in the reference manual, but
roughly speaking, two component are created, a printer and a generator, the
generator sends a message to the printer every few seconds and printer
prints that.

8.2 Into a single daemon
Now a slightly more complex model of deployment will be used. Firstly, a
daemon will be started on a host — say the | ocal host — and one or more
applications will be launched into this daemon.

First, start the daemon by running the command line

sf Daenon

This should start the daemon which should open a window into which it will
write all output.

& [rootProcess] sfDaemon Displa... ED@

File Help

(output |

Next, in a different shell, launch the application into the daemon with the
following command.

sfStart | ocal host exanpl el
org/ smartfrog/ exanpl es/ arit hnet/exanpl el. sf

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog User Manual v3.06 -25- last modified on 10-Jul-06 8:33 pm

8.3

The example should now be running in the daemon, writing its information on
that screen and the sf St art command should have terminated. The first two
command line parameters are the host containing the daemon and a name by
which this application instance should be known on that host — the use for this
will be shown later.

Now we can start many applications at once, into the same daemon. Type the
following

sfStart | ocal host exanpl e2
org/ smart frog/ exanpl es/ arit hnet/ exanpl e2. sf
sfStart | ocal host exanpl e3
org/ smart frog/ exanpl es/ arit hnet/ exanpl e3. sf

As each is launched, it should start printing on the screen of the daemon.
Each is distinguishable by the differing printer names and the different
messages output.

Once they are finished, the same lines can be typed again to launch the
applications again. The only thing to note is that each application currently
running must have a unique name (i.e. exanpl el, exanpl e2, etc). This name
may be any string and may be reused after the application using that name
has terminated.

While an application is running, run the following command
sf Ternmi nate | ocal host exanpl el
replacing the example1 name with whatever application should be stopped.

Remote host
Install the SmartFrog system onto a second host - say “f oo. conf. Start the
daemon in the same manner as above, using the sf Daenon command.

Repeat the sfStart commands, and sfTerninate if desired, with the
hostname replacing “I ocal host ”, for example

sfStart foo.com exanpl el org/snartfrog/ exanpl es/ arithnet/exanpl el. sf
sf Ternminate foo..com exanplel

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog User Manual v3.06 - 26 - last modified on 10-Jul-06 8:33 pm

9 SmartFrog Command Line

If the reader does not wish to use the bundled startup scripts, SmartFrog can
be started directly through the Java command line. This is how the Ant tasks
work, incidentally.

9.1 Key command line facts
JAR file: smartfrog. jar - all other JAR files are optional.

Main class: org. smart fr og. SFSyst em

9.2 SmartFrog command-line operations
+ -a SFACT: SmartFrog Action Descriptors (SFACT) that the daemon has to execute.

examples:

-a newApp: DEPLOY: "c: /descriptor.sf":: | ocal host:
-a newApp: DETaTerm : : | ocal host :

- -f SFREF: file that contains a set of SmartFrog Action Descriptors (SFACT).

» -e:the daemon will terminate after finishing the deployment. Similar functionality can
be achieved with:

-a : TERM NATE: : : :
- -d: environment diagnostics report for daemon

+ -7?: usage and help information

9.3 SmartFrog JVM Properties
These are the properties that can be set to control the JVM

9.3.1 org.smartfrog.iniFile
The name of a Java properties file that will be loaded; all the properties in the
file can then be used to configure the daemon.

Note #1: the current directory of the Java process is used as the base
directory for resolving this path.

Note #2: the exact syntax of the properties file is defined by the
java. utils. Properties class. It has its own rules as to valid syntax, which
must be adhered to.

Note #3: This file is only read after the security settings have already been
read and used. You cannot configure security settings from this file, only the
command line and the security file indicated on that line.

-Dorg. smartfrog.ini Fil e=daenon. properties

9.3.2 org.smartfrog.sfcore.processcompound.sfProcessName
This property sets the name of the root process. If the process is not given a
name, it will not be exported, and the SmartFrog engine will not listen for
incoming deployment requests. The lifetime of the engine will then be bound
by that of any application deployed on the command line

The default name is r oot Pr ocess
-Dorg. smartfrog. sfcore. processconpound. sf ProcessNane=r oot Process

9.3.3 org.smartfrog.sfcore.processcompound.sfRootLocatorPort

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog User Manual v3.06 - 27 - last modified on 10-Jul-06 8:33 pm

This integer property identifies the port on which the daemon should listen for
incoming requests:-

-Dorg. smartfrog. sfcore. processconpound. sf Root Locat or Por t =3800

9.3.4 org.smartfrog.codebase
This property sets the codebase for the application; a space separated list of
URLs to JAR files:

"-Dorg.smartfrog. codebase=http://appserver/jars/sfextras.jar
file:/hone/sf2/jar"

9.3.5 org.smartfrog.sfcore.common.Logger.logStackTrace
This property enables/disables stack tracing

-Dorg. smartfrog. sfcore. cormon. Logger. | ogSt ackTr ace=true

9.3.6 org.smartfrog.outStreamClass
The name of a class that implements the j ava. i o. Pri nt St r eaminterface. If
set, an instance will be instantiated and used as the output stream.

-Dorg. smart frog. out St reanCl ass=or g. exanpl e. Qut Stream

9.3.7 org.smartfrog.errStreamClass
The name of a class that implements the j ava. i 0. Pri nt St r eaminterface. If
set, an instance will be instantiated and used as the error stream.

-Dorg. smartfrog. err StreanCl ass=or g. exanpl e. Err Stream

9.4 Security Configuration
If security is to be used, the JVM must be configured to run with security.
There are four properties on the command line for this. All are required to
enable security, with resulting command line appearing like the following:

- Dj ava. securi ty. manager

-Dj ava. security. policy==sf.policy

-Dorg. smartfrog. sfcore. security. keySt oreNane=nykeys. st

-Dorg. smartfrog. sfcore. security. propFi | e=SFSecurity. properties

9.41 java.security.manager
A flag to indicate that there should be a security manager right from the
outset.

- Dj ava. securi ty. manager

9.4.2 org.smartfrog.sfcore.security.propFile
The path to a Java properties file that contains SmartFrog-specific security
information.

This file can either be on a path (absolute or relative to the process), or a
resource inside a JAR file on the classpath.

9.4.3 java.security.policy
The path to a policy file, relative to the current directory.

-Dj ava. security. pol i cy==machi nes/ | ocal / security. policy

Note that a double equals sign is used in this assignment, to force in the new
security policy.

9.4.4 org.smartfrog.sfcore.security.keyStoreName
The path to a Java keystore.

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog User Manual v3.06 -28 - last modified on 10-Jul-06 8:33 pm

This file can either be on an absolute path or one relative to the process.
Resource paths may also work.

9.5 Security Property File Configuration
When security is enabled, there is a property file containing extra security
configuration parameters, such as the passphrase to get into the keystore.
These parameters are not documented here; they are autogenerated by the
ant targets that create a new set of security credentials.

9.6 Useful JVM properties
Here are some JVM properties that are useful when configuring a SmartFrog
daemon. Set them with - Dnane=val ue on the command line. When a value
has a space in it, the reliable cross platform quoting mechanism is to quote
outside the whole string:

"-Dnane=val ue wi th spaces"
Name Meaning example

java.library. path List of directories C:\java\lib;c:\bin
containing native .DLL or . /usr/lib/javalextras
SO files to search through
when loading native
libraries

net wor kaddr ess. cache. tt| Time in seconds to cache 120
successful DNS lookups.
This defaults to -1 'forever";
this makes servers brittle
to DNS updates.

9.7 Other JVM options
Options to control memory (-Xmx -Xns -Xincgc ..etc) are matter of

personal preference for the user.

One option we strongly recommend against is - Xr s, which tries to cut down
on the number of signals the process listens to. Setting this stops the engine
from hooking into termination signals and terminating deployments cleanly.

9.8 Error Codes
The program will exit with a return code of 0 for successful operation, -1 for a
failure. It will call systemexit(), so you cannot run it in-JVM, without
creating a security manager to intercept the call.

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog User Manual v3.06 -29 - last modified on 10-Jul-06 8:33 pm

10 Troubleshooting

101

10.2

10.3

104

Here are some common problems that you may encounter, and what the
cause and possible solution(s) may be.

General Diagnostics Test
To run so general diagnostics tests, go to <SFHOME>/test directory and start
the test script:

t est

Check the log files stored in <SFHOME>/test/log

"SMARTFROG SECURITY IS NOT ACTIVE"
This is a warning that the daemon is not running with security enabled.
Anyone who can access the port on which the daemon is listening for
incoming RMI requests is capable of deploying software with the rights of the
daemon.

When running a deployment without a daemon, that is, when using sf Run,
the system is less vulnerable. However, as JAR files will not have their
signatures verified, any loading of remote JAR files exposes a security risk.

Fix: Use SmartFrog security and signed JAR files.

Unresolved reference
This usually means that an attribute which a component requires, was not set.
The exception information will identify both the attribute and the component.
Either an attribute has been omitted, or the spelling is wrong.

Fix: consult the documentation, component declaration, examples and
source to see what the required attributes of a component are.

Areference to a component is not resolving to the right type; it is resolving to a
ComponentDescription.
This occurs in the following situation

conponent s ext ends Compound {
Fi | eToTouch extends TenpFil e {
prefix "tenp";
suffix "txt";

}

touch extends TouchFile {
filenanme Fil eToTouch;

}
}

When this is deployed, the t ouch component does not pick up the name of
the file to touch, instead it complains that the filename is of the wrong type.

The underlying problem here is that the fi | ename attribute is bound at parse
time to a copy of the FileToTouch component declaration, before the
component is actually instantiated.

Fix: to get a reference to the actual component, you need to declare a LAZY
binding.

touch extends TouchFile {
filename LAZY Fil eToTouch;

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog User Manual v3.06 -30- last modified on 10-Jul-06 8:33 pm

10.5

10.6

10.7

Nested components are not deployed
A component declaration has nested components. Either these components
are seemingly not deployed, or the container component complains that they
are of type ComponentDescription, when they should have another type.

touch extends TouchFile {
fil ename extends TenpFile {
prefix "tenp";
suffix "txt";

The problem here is that a component has to explicitly deploy its child
components, which is something only done by all component implementations
that extend Conpound! npl . Non-compound components do not (currently)
deploy nested components.

Fix:

« Move the nested declaration into a compound component the declares
both components

- If the outer-level component is a custom component, consider having
extend Conpount | mpl and so be able to deploy nested components.

A future release of SmartFrog is likely to make it easy for all components to
deploy and manage their children, by refactoring the relevant Conpoundi npl
code into utility methods, methods that will be moved up into the Pri m npl
class.

Components declared in a Compound component are not deployed in order
By default, there is no explicit ordering of how components in a compound
component are deployed or terminated; it may be that they are deployed in
parallel. Any code that assumes that components are deployed in order may
not work correctly.

Fix: to declare that you wish to deploy and terminate components in the order
of declaration, set the sf SyncTer ni nat e flag:

conmponent s ext ends Conpound {
sf SyncTerm nate true;

Fi | eToTouch extends TenpFile {
prefix "tenmp";
suffix "txt";

}

touch extends TouchFile {
filename Fil eToTouch;

}
}

JVM Properties appear incorrect
A descriptor uses PROPERTY to extract a JVM system property -such as
user . hone, finds that the value is not correct for a remote deployment:

Fi | eToTouch extends TenpFile {
di r PROPERTY user. hone
prefix "temp";
suffix "txt";

}

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog User Manual v3.06 -31- last modified on 10-Jul-06 8:33 pm

The problem here is that these properties are evaluated when the descriptor
is parsed, which is in the JVM initiating the deployment, not the one hosting
the deployed components.

In a local deployment, with the same user running the daemon and the parser
JVM, there is often no difference between the system properties, to the
descriptor will appear to be correct. It is only when doing remote deployments
that the fact that java.io.tmpdir can be "C:\temp" on the local machine, and
"tmp" on the remote system that problems surface.

Fix: use LAZY property assignment to get the properties on the remote
system. Note that these are not available at the time functions are evaluated.

Fi | eToTouch extends TenpFil e {
dir LAZY PROPERTY user. hone
prefix "tenp";
suffix "txt";

}

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

