SmartFrog Reference Manual v3.06 -1- last modified on 23 Aug 2006

The SmartFrog Reference
Manual

A guide to programming with the SmartFrog

Framework

For SmartFrog Version 3.06

Localized for UK English / A4 Paper

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 -2- last modified on 23 Aug 2006

Table Of Contents

PART 1: AN INTRODUCTION TO SMARTFROG 5
| B S 3:06) 010 e & () EE N 6
2 AMS OF THE SMARTFROG FRAMEWORK = BASIC...uuuvuviiiiiiiiiiiiiiii ittt e e e 7
2.1 CORFIGUIALION. ...ttt ettt st s 7
2.1.1 Increased operational reliabilityccoccveeierieriiiierieiere e e 7
2.1.2 TMPIOved qUALILY.....ceeiiieieiieieiieieet ettt sttt ae st sae st et e sseesesseensesseesseennesseensensens 7
2.1.3 REAUCEA COSL..uuviiiiiiiiiitii ettt ettt ettt ettt e eveeete e eabe e aaeeareestaeenseeeaseereenaneenns 7
2.1.4 Assured correctness and CONSISTEINCY.......uevuireerrerrierrerirerteetesteesseeseeseeseesseessesseessesseessesses 8
2.1.5 INCIEASEA SECUITLY....uiivieiiieieireeeieteeieteeetesteeetesteesteeteessesreessesaeessesssessesssessenssesseessesseessenseenes 8
2.1.6 Improved Customer EXPEIiCNCE.cccviivieiiriieiictieiieteeieeeesteereesteseee e e aesteessesreessesseessenns 8
2.2 The SmartFrog FrameEWOTK............ccccccoiiiiiieiiiiee sttt 8
2.3 INOTQLION. ... ettt et e 9
2.4 COMPONEALS. ...ttt ettt ettt e et e at et et e et st e et eseeeaeesaeeneeseenneenee e 9
2.5 ERVIFONMCHL. ...ttt 10
2.6 FINAL COMMENLS. ..ottt e 11
3 THE ANATOMY OF SMARTEROGciiiiiiiiiiiiiiiieeeeee ettt e e e e e e e e e e e e e aeas 12
4 BUILDING SYSTEMS WITH SMARTEFROG......eiiiiiiiiiiiiii ittt e et eearaeaee e 13
PART 2: THE SMARTFROG NOTATION AND CORE DATA MODEL 14
1 INTRODUCTION......utverieeeieiteeee e eeetteee e e e ettt e e e eetaeeeeeeeeaaaaeeeeeenaareeeeeesestaseeeeeeaaeseeseensaseeeeeenareeseeeensrenens 15
2 THE PRIMARY SMARTFROG NOTATION......ciiiiiiiiiiiiiieiiieie ettt eeae e e eeaaaae e e e e saaeeeeeeens 18
2.1 BACKGUOUNC. ...ttt 18
2.2 AFIDULICS. ... e 18
2.2.1 SIMPIE VAIUES. ...cotiieiiiieieit ettt ettt s e et st ae et e e et e eneenes 19
2.2.2 Component DESCIIPLIONS.ccueiierierieitieieeteeteett et eteete e steseesaeeeesbeeeesreentesseeneeeneeeeens 21
2.2.3 TYPES VS. PIOLOTYPES. ..ccutieiiiiiiiiieeite sttt ettt ettt et sttt e s s 23
224 RETEIEIICES. ...vveeiieeeiiee ettt ettt e e et e e e et e e e e seateeeeeseeaaateeesssraaeeessesasaeeesesnes 24
2.2.5 COIMIMENLS.uvieiiiieeieiieeeiteeeeiteeeseteeestteesetteessereeesssaaessssaasssesesssaeessssaeassseeesssseessssesassseennsns 29
2.3 INCHUAC FlES..........cc.ooooeeeeeeeeee e 29
204 STCORLIG. ...ttt ettt b et eae et beereereenaen 30
3 REsoLuTION — SEMANTICS FOR THE SMARTFROG NOTATIONuvvviiiiiiiiiiie e 32
3.1 TYPE RESOIULION. ...ttt ettt ettt et e e s easaesabeesaeenseenneas 32
3.2 Placement ReSOIULION.c.c....oooeeieieiieeceieeeeeeeeee et 33
3.3 LiNK RESOIULION. ... et 35

3.4 The Difference Between Types and LiNKS..............c.ccoociiviiiiiniiiiaiiieeeee e 35

4 TEMPLATE PARAMETERIZATION PATTERN.......uuuiiiiiiiiiiiiiiiiietieeee e et e ee e e e e e e eaaae e e s s sennaaeeessennaneeeseanns 37
5 FUNCTIONS AND OPERATORS......ceeeeeeeuuusurarsrereeereeeeeeeeesseeeeeeseseseesassssssssssssssssesesesesseeeeessesesesmssesssssssssssens 38
6 PREDICATES, ASSERTIONS AND SCHEMAS. ...ceuvteeirteeeereesssseeessseeesssseessssessssseesssseessssesssssessssseessssssssssseenns 39
7 MAPPING TO THE CORE DATA MODEL......ccciiiiiiiiiiiiieieeeeeee ettt e e e e e e e e e 41
8 PRIMARY LLANGUAGE PROCESSING......cccuvviiieiiiiiiiieeeeiiteeeeeeeiteeeeeeeeiareeeeeeeeaaaeeeeeetareeeeeeeanseeeeeeanreeeeenes 42

Bl FUNCIIONS ..o ettt et e e 44

8.2 PrEiCALESooooee e 44

9 PROGRAMMING WITH THE PARSER.......uvviiiiiiiiiiiieiieieiee ettt e ee et eeeeaaeeeeeeeeareeeeeeesanaeseeennnes 45

9.1 BACKGUOUNC. ...ttt ettt ettt ettt aeenees 45

9.2 Summary of Language PrOCESSING..............c.cccccvvecueieeeeiieeieeeieieee e 45

0.3 TRE PAFSOE ...ttt ettt e et e e 46
9.3.1 The Parser APL.........oo e e e et e 46
9.3.2 ENSUIING SECUITEY....teeutitieiietieteeteeteetterteeieesteesee et este bt eseesteeseenseeseesseeneesseeneesseensesaeensesnean 46
9.3.3 InvoKing The ParSerc.coouiiiieiiiieeee et 47
9.3.4 Evaluating The Phases.........ccccevierieiieieeieieei ettt 47
9.3.5 Converting to ComponentDESCIIPLION.c..eeverteriirierieieieiiiteceieeene st 47

10 THE COMMON DATA IMODEL.....uvviiiiiiiiiieeceeeitteee e eeeteeee e eeetee e e e eeetare e e e eeeaaaeeeeeeeataaeeeeeeanrreeeeesnrreeeees 49

JO.1 BASIC VAIUCS. ... e 49

LO.2 REfOIOICE. ..ottt ettt ettt ettt b et be et ens e 49

10.3 COMPONENEDESCFIDIION.cc.eeieeeiie et ee ettt ste et stee et e staesabeesteeenseenseesnseenee e 50

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 -3- last modified on 23 Aug 2006

JO3.T COTC ittt sttt ettt et ettt sttt et a et sae et sae e naees 50
10.3.2 COPYINEZ..cutieiriiiieieeiieieitentestesteetesseestesseessesseessesseessesssessesssessesssessesssensesssessenssensenssensennes 50
10.3.3 ReferenCeRESOIULION.eouiiiiiieieieieieeeitei ettt sbe s 51

11 THE SMARTFROG GRAMMAR RULES....cutiiiiiiiieiiiiie ittt ettt ettt te ettt et et e et e snnesneees 52
12 THE SMARTFROG LEXICAL RULES....ccutiiitiiiiiiiiiicie ettt sttt ettt et este e e snneesaesnneenes 54
13 PREDEFINED SMARTFROG FUNCTIONS.iitiiiiiiiieciiieie ettt sttt ettt et e eveessae e neeeennees 56
L13.1 URGEY OPEFALOFS. ...ttt ettt ettt e e ene e 56

0 2 O o AR PRSP 56

13.2 BiRAFY OPEFALOFS. ..ottt ettt ettt ettt eae et eae e saeeneesaeesenaeens 56
13.2.1 IMIIUS...utieieieeiie sttt ettt ettt e et e st eesbeestbeesbeestbeesbeessseessaassseanseessseesseesseansaassseenseesssennsenns 56
13.2.2 AIVIAC...eeuieeieiieiieiieiettete ettt ettt ettt ettt et eae bbb et e b e b e st esae st eneest et e eneeneeteeneenen 57
13.2.3 EQ, NE .. ettt ettt b st sttt 57
13.2.4 GE, GT, LE, LT ...ttt st 57

13.3 INGEY OP@FALOTS......eoeeeeeee et ettt ettt ettt et ettt e eaaeenteesabeenbeestaeenseenane s 57
I3.30] COMEAL...c.eiitiitetieitete ettt ettt st sttt e b e et be et sae et sbeeaeeaees 58
13.3.2 PPN ..ccuiieiiiiceeie ettt ettt ettt be e b e tb e be et b e be st e reesbeereenbeereensenees 58
13,303 SUIML ittt ettt et bt et sttt s b et bbbt e bbbt e a e bt eate bt et e sbeenees 58
13.304 PIOGUCT.....eieieeiie ettt ettt et e st e et e st e e beessaeebeessbesnsaessbaenseessbesnsaensseenseanssennses 59
13.3.5 @M. ettt b et eh et ea ettt enaeeeenbeeneen 59
2 2L T OSSR UU RPN 59

13.4 OFRET FUNCHIONS.ccueeeeveeieeeee et ee ettt et ettt e ettt e ease e st e esaeestseesbeesaeesebeesaeeenreens 59
13.4.1 TETRENEISC......eiiiieiieiii ettt ettt ettt e e st eebe e s b e esveesabeesbaessseenreesssesnseenes 59
L3042 VECTOT c.eeiiie ittt ettt ettt st ettt e b e s it e b e s a bt e b e sab e et e sht e e bt e bt e eabe e aeesats 60
13.4.3 fOIMALSIIING.cuieieeieieie et eie ettt ettt et et e e ett e seeseesseenaesseensesseensesseensenseensenseenes 60
13.4:4 TANAOIML c.cutiniiiiiceee ettt ettt sb ettt b e bbbt nee 60
I314.5 DXLttt ettt ettt ettt et et h et h et b et bt nae e nae e 61
131416 T ..ottt ettt b e e 61
L3147 Ot a et b bbbt bbbttt enean 61
13,48 USCIIMPUL.c..uveeuiieeiieesiieeieeree et etteeteeteesbeesteessbeessaeesseessaeanseenseesnseenssesnseenssesnseessesnsesnseean 62

T4 SCHEMAS. cuvttitteetteettestte et estteete e teessbeesteesebeesseessseessaeasseenseesssaenseessseenseessseansaensseenseesssasnseessseenseensens 63
15 CoMPARING THE SMARTFROG NOTATION WITH XML....ccueiiiiiiiiieiieiiieiieeie et eiee e e e seeeeve e 66
PART 3: THE SMARTFROG COMPONENT MODEL 69
1 INTRODUCTION. ..ceuttttittetieeettesite et estteeteesttesebeenteesaseesseeenseesaeansaenseesaseenseessseenssessseensaeenseenseesnseenseennsenn 70
L1 COMPORCIES........oeeeeeiie e ettt ettt et e st e bt e s st e e abeeseaeeabeessseesseessesnseenssesaseansaennseenes 70
1.2 Defining Components in the LaNGUAZe...................cccoccoviiiiiiiiiiniiiieeeieeeee e 71

2 THE SMARTFROG COMPONENT IMODEL.....ccutteiuveeiieseieeieesereeseesteeseessseesseessseenseessseensessssesssessssesssessssees 72
2.1 Applications As Component COUECIIONS..............c..coociiveiiieiieeeiee e 72
2.2 Applications and Component DeSCFIDHIONS.c..cccccueeeaieei ettt 73
2.3 Representing Components With AUVIDULES.................cccccceiviiiiiiiinininineneneeeeeeneee, 74
2.3.1 Defining the Component Class.........c.ccoererieieiieieirineneeenenesteseseesete ettt 75
2.3.2 Controlling DEPlOYMENLc.eeuirieriieieniieieeeeteeeeeestesteseesaesaessessaeseesseseensenseensenseenns 75
2.3.3 0 RMIL ettt et b e bbb 76
2.3.4 Prim and COMPOUNG........cceecuiriieiiiieieitetestesiesee e et e teeaesseesaesseessesseessesseessesssessesssensens 76

204 LIfOCYCLES. ...ttt bttt enees 77
2.5 The SMAFIFTOZ APcc.occoeeeiieeiieeeeie ettt ene s 78

3 PRIMITIVES...euttesuteeteeiteeeteesteeeteestteseteesseeesseesaeessseesteessseesseesssaenseensseansaeassesnseenssessseesssansseenssessesnsenans 80
3.1 Template MEINOUS.cc.cccueieiaiiieii ettt ettt ettt e sabeebaesnseenseas 80
3.2 UBIEY MEIROGS. ... ettt 81

4 COMPOUNDS. .. cecuveeuteeeeseesseesseesseessseessseasseessssasssessesssseesssessseesssessssssssssnseessssssseessssansessssessseessessssessssennn 83
4.1 Compound Component DeSCTIDHONS.cccuivueiieieeieieee ettt neeees 83
4.2 The Compound INEETUCE...............cccccoiriiiriiiiiiiiiceiet ettt 83
4.3 COMPOUNAIMPIL..........ccoccoviiiciiciiiiiiiiiiiie ettt ettt 85

S COMPONENT TEMPLATE....uuttruttetteettentteeteeniteeteesttesateesutesateesbeeesseebeessbeensaesateesssesaseensaesnseenseesnseenaeennne 87
6 WELL-KNOWN ATTRIBUTES. .. eetteettertteeteenitesteenttesteesitesteesseessseesseesnseesseesnseesssessessssesnsessseesssessnesnne 88
PART 4: THE SMARTFROG RUNTIME 920
1 DEPLOYMENT IN DETAIL....eiitiiitiiiiieeieeiie sttt sttt et et e steeteessbeesseeesseesssesnseenseesnseenssesnseesssennsennes 91
1.1 Selecting DePIOYers...........cccuoiieiiieiii ettt 92
1.2 T@FMUENATION ...ttt ettt e e e et e e e e taeesb e e st e esbeesaeeabeessseenseeneeas 93
1.2.1 Synchronous Terminationcccceecereeririerieiierie ettt ettt eeeesee e saeeneeneeas 93

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 -4 - last modified on 23 Aug 2006

1.2.2 ASynchronous TerMINAtiON..........c.ccveeieruerierierieriesresseesesteesesseesesseesesseesesssessesseensessees 93

1.2.3 Terminator TRIEAd.........coveiiiiieiiiece ettt e 94

2 ATTrRIBUTES, LAZY LiNKS AND RMI OBJECT REFERENCES.......vviiiiiiiieeiiieciieeeciree ettt e 95
2.1 Accessing AHributes At RUNIIMEc.ccoveieeerieeiiiieieeeeeeeeeeeese e ese e sse e sse e eae e eneenas 95
2.2 LAZY Iinks ANA RMIcc.ooooiiiieieeee et 95
2.3 The MOVING ROOTccoooci ittt ettt 96
2.4 Modifying AriDULES VAIUES............coocceiiiiiiieie et 96
2.5 Trapping Accesses And Reference AAAPIOFS............cccoocuieeeiiieneiieeiaeeee e 97
2.6 SfHOSt Nnd SfPrOCESS AHFIDULES...........cc.oceeeeieeieeeeee et 98

3 ATTRIBUTE SERIALIZATION.....uteeetreeeereeeseseessssesesssessssseessssesssssssesssesssssssssssesesssssssssseessssesesssesssssseessssees 99
4 LIVENESS...teeuteetteeteette st et e ettt e sb et et e bt s bt e bt e et e e shteeabe e s bt e ea bt e bt e e bt e e a b e e a bt e sab e e bt e shte e bt e eabe e beeeabeebeens 101
5 HOOKS ittt et h e ettt e a e saeenae st e s 103
6 PROCESSES AND JAVA VIRTUAL IMACHINES.eertieiiieniieeiieniieeieesieesteesitesateesatesabeesbtesseenseesabeenaeesnseas 104
6.1 SmartFrog ReSOUFCE RefErenCeS...............c.ccuviecueiiaiiiiiieiieiieieeieeee et 104
0.2 SmartFrog ACtion DESCHIPIOT..........cccoeciiiieeiieeiee ettt ettt saee e siae e ees 104
6.2.1 NAME ...ttt bttt sttt ettt a bt eaeeae s 104
6.2.2 ACTION. ...ttt ettt ettt b ettt st et e e et et e st e st e st ebeebeebeebeeaesbesaens 105
6.2.3 SFREF ...ttt ettt ettt sttt ettt ae b eaeeaeas 105
6.2.4 SUBREF ..ottt ettt ettt sttt ettt ettt ettt et e ereeaeeaeeaeeaesaen 105
LT T = (O 1 RO 106
6.2.6 PROGCESS......ooeoeeeeeeeet ettt ettt sttt ettt ne e st ese e st eseesessessesseesessensensensans 106
LT B 2 1111 o) <SS 106

6.3 SFSystem And Command-Line Parameters..............c....cccucereeerinicoieorioiiiaieeneseseneneenes 106
0.4 ProceSS COMPOUNCS...........cc.ccueoueiiiiiiiaiiaiiit ettt ettt ettt 107
0.5 TYDES Of PPOCESSES.......oocuveveeiieiieeiieieei ettt sae et eae et e bt sae e eneennas 107
0.0 ProCeSS AHFIDULES. ...ttt 108
6.7 Accessing Process Compounds And AUFIDULES.cc.ccveveiieeiiiiieiieiesieeieeieeseeeeenns 109
6.8 Creating And Naming SUD-PrOCESSES.............cc.ccecevvieieiiieieiieiiieieesieeeese s ssesse e ese s 109
0.9 NAMING APPLICATIONS.........cceev oottt ettt e seestaeesbeeseesnbeenseenanes 110
6.10 HOST and PROCESS LiRKS.........ccccoioiiiiiieeeee et 110

7 THE SMARTFROG SECURITY IMODEL......ccittiuiitieiiintieiestce ettt et sttt sttt b et e st e b e eneeneeeee 111
71 IREFOAUCIION ...ttt ettt eean 111
7.2 Threat MOdelcoocooiieiiieeeeee ettt 111
7.3 SECUFILY POLICY ..ottt ettt 111
7.4 Security MECRANISIScc.coveiiiiiiiiiiiit ettt e 112
7.4.1 Built-in security MEChANISIMS.c.ccuerieriiiierieeierie ettt se e seeneenees 112
TA.2 ASSUMPLIONS.coruieieiieieeiieteeteeteeteeteetteteetesseessesseensesseessessaensessaensenssenseassesseessesseenses 113
7.4.3 Known limitations and future enhancementsc..coceverererenenienieneneieieeseeesee 113

8 PROPERTIES. ...eeutteiutieiieeittenite et entteeteettesateesetesateestteesseenseesaseensaesateenssesnseessseenseensseenseenssesnseenssesnseens 115
PART 5: A SMARTFROG EXAMPLE 117
I ERAMPLE ...t ittt ettt ettt et h e e bt e h e st e s a b et e e bt e e bt e bt e sabeebeesabe e beesateen 118
L1 THE PFIREEE ...ttt b et b et ebe et estese s e sbeenaesneenae 118
1.2 THE GENEIALOF ...ttt ae et ebe s et e s se s e 119
1.3 Compiling the COMPONERLS...............ccoccvevuieeeeieeiieieeeiesseeteeseete e ese e ese e esse s eseessesesesenns 121
1.4 The Combined APPLICALION...............c..c.occuevuieciieiieieeieeie ettt ea s 121
APPENDIX A 124
1 EXIT CODES FOR SMARTFROG SCRIPTS.ecutitieuientieieetieieetcesteeetesteetesteetesbtetesseenteeseenseeneesaeeneeseeenees 125

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 -5- last modified on 23 Aug 2006

Part 1: An Introduction to SmartFrog

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 -6- last modified on 23 Aug 2006

1 Introduction

This manual is aimed at those wanting to use and understand the workings of
SmartFrog. It is not a basic tutorial, though hopefully it is not too obscure,
either. The notation is described fully, as is the component model. The
framework, however, is only outlined. For a detailed reference description of
the framework APls, users should refer to the accompanying Javadoc files.

The manual is divided into several sections:

1. The aims of the SmartFrog system: defining the basic goals of
the system, thus ensuring that there is an awareness of these
aims to aid in understanding the technical details.

2. The SmartFrog notation, describing the details and semantics of
the first configuration description notation to be supported by the
SmartFrog framework; other notations are in preparation but are
not included in this manual.

3. The SmartFrog component model and framework, defining how
to write components and run them within the SmartFrog system.

4. The SmartFrog security infrastructure, describing how SmartFrog
ensures that systems are appropriately protected.

A separate document covers the details of installing and running the
SmartFrog system. A number of examples are also provided and documented
as part of the framework.

This document contains sections that assume differing levels of knowledge
and familiarity with the SmartFrog system. It is suggested that a first-time user
read only those parts that are essential before experimenting, then
progressing to more advanced topics as familiarity develops. To aid in this,
sections or sub-sections are tagged with one of the following labels: basic,
advanced and expert indicating progressively more advanced topics. If a
section is tagged as a particular level of complexity, and a sub-section is
considered to be of higher level, the sub-section will be tagged with this higher
level.

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 -7- last modified on 23 Aug 2006

211

21.2

21.3

Aims Of The SmartFrog Framework - Basic

Configuration

For many years HP Labs has been involved in the development of large-scale
distributed systems, and in particular management and measurement
systems. From this experience, it became clear that configuration is often the
major hurdle in the development, adoption and use of such large systems.
This experience is supported by evidence from other domains, such as
telecom service platforms, large scale e-service hosting environments, and so
on. The weight of evidence clearly indicates that many of the problematic
aspects of developing, delivering and maintaining such systems are resolved
by the introduction of a well-designed, intuitive configuration system. These
observations led to the development of the SmartFrog configuration
framework described in this manual.

There are several significant reasons for investing in a powerful and flexible
configuration environment, which in combination illustrate why this area is in
many cases essential for the success of a large system. These are discussed
below as a clear understanding of these reasons help in determining the
requirements for a supporting environment.

Increased operational reliability

Configuration errors are the major cause of system failure. It is no
coincidence that at least one system development inside of HP has termed
the development of a tailored configuration system as its ‘high-availability
programme’. It is pointless spending money on expensive replicated
databases and computation if they contain wrong data, or are carrying out the
wrong calculations. From hard experience, they know that the human element
is by far the weakest point in any system of even moderate complexity.

Many systems are required to be resilient to a (small) number of failures,
providing support for dynamic system reconfiguration in the case of such
failures. This should be provided via failure detection mechanisms triggering
re-configuration actions within the system components themselves (such as
instigating fail-over) and through the configuration system to ensure a
consistent view of the current configuration and to provide appropriate re-
configuration policy (for example, where to create the replacement
components in the case of a processor failure).

Improved quality

After examining the architecture and design of several large-scale systems it
became clear that the developers of the various component sub-systems had
each created their own configuration infrastructure, often not realizing that this
area is of great importance to the overall system. Each makes separate
decisions as to format of the data, how it is stored, and so on. In addition,
since some aspects of configuration such as configuration description or
failure detection and recovery can be extremely complex, the separate
development groups frequently do not utilize best practice.

Reduced cost

Costs can arise for several reasons and in several areas such as
development, installation and maintenance. For each of these, providing well-
defined best-practice procedures and well-implemented support environments
for configuration can save significant time and hence money. From
experience with several systems, the majority of support calls for these
systems (and hence source of recurring cost to the platform provider) come
from configuration issues.

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 -8- last modified on 23 Aug 2006

21.4

21.5

2.1.6

2.2

Assured correctness and consistency

Validation rules need to be provided to ensure that a configuration is correct
before it is deployed into the running system. These rules should include
dependencies between various system components (e.g. version
dependencies) as well as rules governing repetition (e.g. each web server
should run the xxx process and ...), replication (e.g. two cooperating
instances of this component should exist for reliability...), location (e.g. this
component should be close to the database...), and so on. Tools for modelling
and reasoning about the configurations are required.

Given a configuration that has been defined and validated, the configuration
must then be correctly and verifiably instantiated, preferably automatically,
with appropriate error handling in the case of failure. Discovery services must
be present to enable binding of services to each other as defined in the
configuration, and status monitoring capabilities are required to provide
management tools with the ability to monitor the overall state of the system
and to ensure it is correct with respect to the desired configuration.

Complex systems may in fact be impossible to configure manually if the
requirements change faster than individuals ability to track these changes and
carry out the complex reconfiguration tasks. In these cases, automated,
adaptive configuration, driven from general rules and auto discovery, is the
only solution.

Increased security

System configurations are vital to the integrity of the system. Consequently, in
many environments where physical and network isolation cannot be
guaranteed, a high level of basic system security must be provided. This
involves not only protecting the configuration data itself from unauthorized
access, but also the run-time environment must be secure. This includes
discovery protocols, component instantiation services, management services
and so on. It is typically hard to provide a secure environment when many
independent and diverse techniques are used to provide the configuration, so
again a single solution implementing best practice is an essential step to
ensure system integrity.

Improved Customer Experience

A major issue to be considered in designing systems is that different classes
of user have different requirements. All too frequently, the configuration
information is designed for the convenience of the system developer not the
system operator. Data is required in a form that often does not reflect the
skills of the administrator, or maybe is replicated in several files, or distributed
over many processors, each of which can lead to a slow and error-prone
configuration process. Configuration should be done in ways useful to the
operator and adapted to the system and not by expecting the operator to
adapt. This can be expensive and hard to implement unless there is extensive
support for the systems developers.

The SmartFrog Framework

SmartFrog is a framework for the development of configuration-driven
systems. It was originally designed as a framework for building and managing
large monitoring systems where flexible configurations are essential.
SmartFrog is currently in use within several products, though it is not a
product in its own right.

The name reflects its basic design concept — the Smart Framework for Object
Groups. It defines systems and sub-systems as collections of software
components with certain properties. The framework provides mechanisms for
describing these component collections, deploying and instantiating them and
then managing them during their entire lifecycle.

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 -9- last modified on 23 Aug 2006

2.3

2.4

The framework consists of three major aspects:

1. The SmartFrog configuration description environment, consisting of a
description notation and tools to enable the storage, validation and
manipulation of these descriptions.

2. The SmartFrog component model, defining the interfaces that a software
component (or a management adapter for a component) should
implement. These interfaces are to support the various lifecycle
operations such as creation, versioning and termination, as well as
management actions such as accessing status information.

3. The SmartFrog configuration management system, which uses these
descriptions and management adapters to instantiate the software
components and to monitor them throughout their lifecycle in a secure
way, including an integrated run-time environment providing capabilities
such as discovery and naming.

Notation

The SmartFrog ‘notation’ is in fact defined as a set of open data structures. In
principle, this definition can support a number of parsers that provide different
textual versions of the notation (for example using XML as a surface syntax).
Additionally, it's possible to develop GUI tools that allow the users to “drag-
and-drop” their configurations using the data structures as the common form.
At this stage, no generic GUI tools are available for SmartFrog, though
experimental versions have been built; usually such tools are normally best
tailored to a specific class of system.

The notation is object-oriented, supporting inheritance and extension of
configuration descriptions. These descriptions consist of component
definitions, associations and relationships between the components, and
workflows associated with the lifecycle of the components and the system as
a whole. The descriptions may be parameterized enabling multiple
instantiations with different configuration data, and validations may be
provided which verify that these instances are correct before an attempt is
made to deploy the configuration.

The current version of SmartFrog, though in principle able to support multiple
textual languages, just provides its own specialized notation “out-of-the-box”.
Others are in preparation for future releases.

The notation is not used to define behaviour, merely the structure of
collections of components and their relationships with other collections. It is
not a programming language. The behavioural part of a component is
assumed to be defined in an existing programming language (such as C or
Java) and the component will be started as needed by the SmartFrog
configuration management system. Currently only Java is tightly integrated.
Java adaptors must be used to wrap code written in other languages, and
these are relatively simple to implement.

Components

The component model supported by SmartFrog is a simple, extensible set of
interfaces providing access to key management actions — such as instance
creation, configuration, termination, and so on. A component may be fully
integrated (i.e. it may implement the defined management interfaces directly,
and hence be written in Java) or it may be independent, in which case a
management adapter must be provided. Several standard management
adapters or base integrated components have been written to provide
common behaviours and these may be extended or modified as appropriate.

Each component (or adapter) must implement a standard lifecycle,
implemented as a set of action routines that the environment invokes in the

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 -10 - last modified on 23 Aug 2006

2.5

appropriate order and at the right time to carry out the configuration or other
management task required. The lifecycle process is governed and controlled
by the definition of workflows within the SmartFrog system to provide a very
flexible and adaptable environment for carrying out the various configuration
tasks.

A complete set of APIs is available to the components that allow them to
access the configuration information, locate other components as defined in
the configuration and to alter the running configuration if so desired.

Environment
The SmartFrog configuration and management infrastructure is supported by
a collection of services, such as:

e deployment — the distribution of code, configuration data and the
instantiation of components in the right place with certain ‘transactional’
guarantees

e discovery and naming — providing a number of binding services to allow
components to locate each other and communicate

e management — every component is manageable via tools provided with
the framework, via the web, or other consoles (if so configured) with no
developer effort.

These services are incorporated so as to provide a seamless and coherent
programming and configuration model. The benefits of this approach are in
providing configuration abstractions to component developers that allow
multiple configurations of different scale to be produced without altering the
components in any way. The environment is broken into several well-defined
functional units, each of which has some specific role to play. Furthermore
each of these operates through well-defined and open interfaces, so it is easy
to replace the existing functional units, or even to make the selection of which
functional unit to use part of the configuration description.

For example, suppose a component, say an SS7 stack, requires the use of
another, a real-time database for storing connection information to help the
recovery process in the case of system failure. This may be done in many
ways. For example, the database could name itself under some well-known
name in some well-known naming service, and the stack could find it there.
Alternatively, the system may use SLP discovery to locate the database, or
perhaps look in a file for this location information. Each approach has
advantages in different system contexts, but the programmer typically has to
decide up front which to support.

Not so with the SmartFrog integrated environment. The SmartFrog system
supports the notion of a binding and provides multiple ways — determined by
the environment and driven by the configuration descriptions — for these
bindings to be resolved. This includes all the above approaches and others
may be added as required. So a programmer need only obtain its binding
from the environment and the precise mechanism is handled by the
SmartFrog environment as defined by the configuration.

SmartFrog is a framework, and is designed to make it easy to provide
additional binding mechanisms as they are required — for example changing
the naming service or adding a specialized binding service which uses some
other technologies such as databases or directories.

This is equally true of the other services. Consider deployment; it is possible
to provide different mechanisms for ensuring that a component is created in
the right place. For instance, it might be by hosthame, or perhaps by some
computer’s role within the system, or perhaps it needs to be close to another

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 -11- last modified on 23 Aug 2006

2.6

existing component. Each of these location mechanisms may be integrated
into the run-time environment and then referenced freely within the
configuration descriptions.

Final Comments

The design goals for SmartFrog were to produce a very lightweight and
flexible configuration and management infrastructure capable of scaling from
small systems to very large. This has been achieved through the use of the
framework concept and providing users with the ability to alter the low-level
semantics by replacing functional units, yet providing standard capabilities by
offering default implementations of these units. The system also provides a
flexible configuration description notation, with potential for multiple textual or
GUI syntaxes to be used targeted at specific system architectures.

Applications of SmartFrog have clearly demonstrated that systems are more
quickly implemented using the technology, and that the structure imposed
upon the implementations by the use of SmartFrog is beneficial to long-term
reliability, usability and manageability.

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 -12- last modified on 23 Aug 2006

3 The Anatomy of SmartFrog

This section attempts to lay out the main aspects of the SmartFrog service
deployment framework, describe their relationships, and map them into the
structure of the reference document.

As described in the introduction, it consists of three main aspects:

1.

The SmartFrog notation, a language in which to describe the
configurations, also known as service descriptions.

The SmartFrog component model, the way in which programmers create
components that are created and managed by SmartFrog as part of a
service and which can interact with the system. These are deployed
according to the service description.

. The SmartFrog runtime, the collection of services that exist as part of the

SmartFrog system. This is also know as the deployment engine, but is
strictly a misnomer since it is in reality a collection of predefined
components.

These various components can be seen from the following outline diagram of
a SmartFrog system.

* Which service components?
. * Running where?
bl * How are components initialised?

Descriptions

* How are components connected?
* What order is used for
component start-up?

i T B
= B =
Ly =r>
_— = L ==
—
= s =
- i e
= >
_—— = ==

SmartFrog Runtime

These three aspects will now be examined in a little greater detail.

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 -13- last modified on 23 Aug 2006

4 Building Systems with SmartFrog

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 -14 - last modified on 23 Aug 2006

Part 2: The SmartFrog Notation and

Core Data Model

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 -15- last modified on 23 Aug 2006

1 Introduction

The statement that there is a SmartFrog notation is a simplification of reality.
SmartFrog may support many notations, though it provides a 'standard'
primary notation out of the box. To enable this, SmartFrog provides a well-
defined interface between the language processing parts of SmartFrog and
the run-time as a well-defined data model: the set of Java classes that must
be used by the language processing to represent the data delivered to the
runtime system.

Roughly speaking, the model of SmartFrog language handling is shown in the
following diagram:

text

text 0

graphical
or

programmatic

other
notation
(e.g. cdl)

other
language
) processing X
primary possible
language format
processing conversion

data in standard
core format
(ComponentDescription)

I deployment or

other use

primary sf
notation

As is illustrated in this diagram, there may be many notations, each with their
own language processing, which at the back-end of that processing produces
an instance of the data model that can be understood by the remainder of the
SmartFrog system. Alternatively, programmes such as a drag-and-drop gui
can produce the data in the correct form directly.

To support the development and use of additional languages, the SmartFrog
framework provides a rudimentary structure for integrating language
processors. A language processor is assumed to consist of three major steps:
parsing, executing some processing phases, and then conversion to the
standard data format. The set of processing phases are assumed to be
language specific, including having the empty set of phases.

text
in some
notation

sfResolvePhase(X)

N N T
|language-specific| language-specific|
representation representation

sfAsComponentDescription(X)

model as
ComponentDescriptions

This is illustrated in the diagram above, also showing the associated Java
calls used within the framework. These are not important at this stage and are
explained in detail later in the reference manual.

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 -16 - last modified on 23 Aug 2006

Note that the core data mode and the primary notation are closely coupled.
This means that in effect the core model can in some ways be seen as a true
subset of the primary notation — it could be unparsed into the primary notation
and parsed back directly into the core form without requiring any language
processing.

Indeed, the two are sufficiently close that the Java classes that are used to
directly represent parse-trees of the notation are derived from those of the
core model, and much of the same terminology is used in both. So for
example, an attribute-set in both is called a Component Description, the only
difference being that in the primary notation this may have a super-type from
which it inherits, whereas in the core model it may not.

Each notation is assumed to have an associated name, and this name is
used in the construction of a parser (selected via a standard language-name
to parser-classname mapping). Furthermore, if text files or URLs are handled
by the SmartFrog system, the extension associated with that file is assumed
to indicate the name of the notation in use. Thus for the primary notation, files
should end with “.sf”.

Once converted to the core format, the data represented may be used in
several ways:

1. It can be data that is passed to components in the same way as any other
data. Indeed many of the components provided as part of the Smart frog
distribution exchange such data through their APIs.

2. It can represent the set of components that should be deployed by the
SmartFrog run-time.

Now the second case is in fact just a special case of the first, where the data
is passed to one of the standard SmartFrog 'Compound’' components, such
as the ProcessConpound, that understands how to interpret these
descriptions as that of a distributed set of components. This duality is
described in the following diagram:

Interpret as

Application
Description SmartFrog User
Data
Structures
(core model) I
Create
Application
SmartFrog Run-Time
Description Use as Data Structure Running SSiceR

(in Notation)

Application

The reference manual the primary notation and the core data model.

1. The primary notation is covered in this part of the reference manual. This
is the only notation covered in the reference manual.

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 -17 - last modified on 23 Aug 2006

2. The programming model for interacting with the language framework is
given in section REF. This provides details of how to invoke a parser for a
specific notation, how to drive the phase-resolution steps of the language,
and finally how to covert to the standardized form for handling within the
rest of the SmartFrog framework.

3. The core data model is described in section REF. This is only a partial

description and the primary source of this information should be the
Javadoc for the classes involved.

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 -18 - last modified on 23 Aug 2006

2.2

The Primary SmartFrog Notation
Background

The primary SmartFrog notation has been designed to provide users of the
SmartFrog framework a simple, yet powerful, attribute description language.
As such, the language has similar aims to that of XML - though it predates
XML by a couple of years. There are a number of significant differences
between XML and the SmartFrog notation that are worth explaining and this is
done in a section 15.

The primary notation is designed to be very close to the common core data
model, but provides a number of additional important useability features,
including inheritance, linking, attribute placement, functions and various types
of well-formedness predicate. Indeed all of the classes used by the parser to
represent the abstract syntax tree are derived from those of the core data
model.

Attributes

A SmartFrog description consists of an ordered collection of attributes. The
attributes are ordered because several of the operations in the SmartFrog
framework require an order, for example the order in which the configuration
should be instantiated.

Each attribute has a name and a value, this value being either a simple value
(integer, string, etc.), or an ordered collection of attributes known as a
component description. This recursion provides a tree of attributes, the leaves
of which are the basic values. A value may also be provided by reference to
another attribute. This is described by the following BNF, where Stream
indicates the entry point to the SmartFrog parser.

Stream ::= Attributelist

AttributeList::= (Attribute
| #include String

8
Attribute::= Name Val ue

// allow arbitrary extra ";"

Nane::= -- | (WORD [: Nane])

Val ue: : = Conponent
| SinpleVval ue ;
|5 /'l instance of SFNull

From this it is clear that the input to the parser is a collection of attributes,
each named and having an optional value. If the value is not present, the
value is defined to be an instance of the class SFNul | (note that the other
way of defining a value of class SFNul | is to use the basic value NULL). The
reason for providing this feature is to enable the use of attributes where the
presence of the attribute is what is important, not its value.

The syntax for a name will be covered later, but for now it can be considered
to be either a simple sequence of letters and digits, starting with a letter, or
the double-hyphen “- - “). The double hyphen is for use at times when the
attribute name is not important and so a new unique name is generated and
used. This is particularly useful with the function syntax described in Section
4, and most specifically the nary operators.

Include files are covered in more detail in section 2.3, but in general they
consist of parseable SmartFrog text which are parsed as attribute lists and
unpacked into place within the container attribute list.

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 -19- last modified on 23 Aug 2006

2.21

Values can be divided up into two main categories: nested attribute sets
(components) and the rest (simple values) which include numbers, strings,
vectors of these, and so on. In addition it is possible not to provide a value for
the attribute, or more precisely to give a null value to it (an instance of the
SFNul | class). This is captured by the third clause of the BNF for values
above.

Simple Values
Values are expressible in several syntactic forms.

Si npl eVal ue: : = Basi c
| Reference

| Operator

| 1 fThenEl se
|

Vect or

Basic Values

The primary way is to provide a basic value, a literal syntactic form for the
basic core values in the SmartFrog language. The syntax for the basic values
is best given by example.

I nteger: 345
Long: 65325L or 65325I
Float: 34.76F or 34.76f or 34.76E-10F or 34.76e+10f or 34.76E10f
Doubl e: 1534.45 or 1534.45D or 1534.45d or 1534.45E10 or 1534. 45E- 10D
String: "this is a string"
Mil ti-line String: ## This is a string
Over many lines #
Bool ean: true
SFNul | : NULL [/ alternatively, |eave the value enpty
Byte Array: #HEX#AB348eAb#

Consequently, an example of a piece of SmartFrog text is as follows

port Num 4074;
host nane "ahost.snartfrog.org";
isHighPriority false

defining three attributes with the appropriate values.

In addition to these basic values, it is also possible to give vectors of basic
values (as opposed to the more extensive vector syntax given below). These
vectors are limited to containing basic values, and other vectors of basic
values.

userList [| "fred", "harry" |];

empty [| [];
listOfLists [| [| 1,2,3 11, [| 4,56 |1 |1;

The full syntax for the basic values is
Basic::= String
| Nunber

| Bool ean

| ByteArray

| [| [Basic (, Basic)*] |]
| NULL

Nunber : : = DOUBLE

| FLOAT

| I NTEGER
| LONG

String::= STRI NG I "
| MULTI LI NESTRING // ##....#

Bool ean::= true | false

ByteArray::

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 -20- last modified on 23 Aug 2006

| #BINg. ... #
| #B64#. ... #

Note that byte arrays will be definable as hexadecimal (HEX), decimal (DEC),
octal (OCT), binary (BIN) and base64 (B64), however only hexadecimal is
currently implemented. Depending on the definitional form, the characters that
may be used and the number that must be present are different. White space
characters are ignored so that neat tabbed layouts may be used. They are
treated in the syntax as single tokens.

References

The second form of simple value provided by the language is the reference. A
reference is a link between the value of one attribute and that of another. This
allows for the definition of data in one place and reused in many, easing
maintenance issues for descriptions. References are dealt with in more detail
in section 2.2.4, but as a first example the use of a name in the value position
provides the link to the attribute of the same name. So for example:

X 42;
y X

defines y to be the same value as x, namely 42;

Operators

The remaining three forms of value definition are syntactic sugar for the use
of functions. The semantics of functions are outlined in section 4 and
described in detail in section . However, their syntax is

Qperator:: =
(UnaryOp Si npl eVal ue)
| (SinpleValue [BinaryOp SinpleVal ue])
| (SinpleValue [(NaryQp SinpleValue)*])
)
UnaryQp::= !
BinaryQp::= - | / | == | I=] >=]| >| <=]| <

NaryOp::= + | * | ++ | <> | & | ||

This states that the use of an operator is always defined within brackets (...)
and that there are three types of operator: unary, binary and nary. Although
with the nary operators, more than one instance of the operator symbol is
present, it must always be the same operator; they cannot be mixed.
However, other operators may be nested within another set of (). The
following examples may help to make the syntax clear:

aTrut hVal ue true;

anot her Val ue (! aTruthVal ue) // the only unary operator: not
aNunber 45;

aM nus (100 — aNunber) /1l a binary operator

asum (aNumber + aM nus + 100) // an nary operator

These operators are all converted at time of parsing into the template
representation of a function, and hence at no time willl operators appear in an
description generated from the parsed form.

Note that attribute names can contain rather a large number of special
symbols, such as “+” and “-”. This means that there is a danger that an
operator may lexically stick to a name if not separated from it by white space.
As a consequence, it is good practise to always use white space around
operator symbols.

If-Then-Else

Similarly to operators, if-then-else expressions are shorthand for the template
form. This is described in detail in section . The syntax for this expression
form is

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 -21- last modified on 23 Aug 2006

2.2.2

| f ThenEl se:: = I F Si npl eVal ue
THEN Si npl eVal ue
ELSE Si npl eVal ue
Fl

The line breaks being, of course, optional. The “if’ value is a boolean and
depending on the result the expression takes the value of the “then” or “else”
values. The FI is merely a closing keyword. An example of its use is:-

val 1 42;
val 2 43;
diff IF (vall > val2) THEN (vall - val2) ELSE (val2 - vall) FI;

Vectors

The final form of simple value is the vector. Vectors are lists of values and are
constructed using the vector function described in section . However, to
simplify its use, the following syntactic form has been provided.

Vector::=[[SinpleValue (, SinpleValue) *]]

Thus a vector is a sequence of values separated by “” and delimited by
“[17. If no value is provided within the vector, an empty vector is returned.
Vectors may be nested to produce vectors of vectors. Example uses of
vectors are:

21; /1 same as [[1,2, 3],[9 8, 7]]

Note that there are two syntaxes for vectors — the one given here which
provides the ability to embed references and which therefore requires a
degree of processing (known as resolution). It is parsed into the use of the
vector function rather than directly into a vector. The other form, using the “[|
|I” delimiters, parses directly into a vector and hence may not have references
within the definition. The reason for having simpler form in addition to the
more general form is is that there are times when the fully processed
(resolved) data structures need to be unparsed, and then re-parsed at some
future time without further transformation. A example of this is during the
signing of a description for security purposes.

Values of Other Classes

The set of values that can be described by the use of the language is limited
to a few basic classes and collections of these. It would be useful to be able
to include values from other classes in Java. These in principle can be
generated in functions, or some user-defined phase, and added to the
attribute sets. However, there are problems with this for SmartFrog, and in
particular with some aspects of the security where descriptions transformed to
core form need to be signed and this is restricted to the known classes.

Consequently the conversion to the core form ensures that the values
represented in the attribute sets, the component descriptions, are limited to
these core classes. If other values need to be held within the tree, it is
recommended that they are held in serialized form within a ByteArray value.
This will need to be deserialized by the component at the time of deployment.

Component Descriptions

Attributes may have values that are collections of other attributes, known as
component descriptions. They obtain their name from the fact that they may
be interpreted by the framework as the description of a component, though
they may equally be used to describe structured data.

A component description consists of two parts, a reference to another
component description to act as a source of attributes (the type), and a
collection of attributes that are then added to, or override, the attributes of the
referenced collection (the body). The syntax is:

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 -22- last modified on 23 Aug 2006

Conponent : : = extends [LAZY] Type Body
Type: : = [NULL | BaseReference]

Body ::= (;| { AttributeList })

The LAZY keyword may be largely ignored; it is merely a tag and only has a
semantic effect during the deployment of a SmartFrog application. Extension
of an existing LAZY component description does not inherit the tag.

Both the reference and the attribute list are effectively optional. If neither is
present, the resultant attribute list is defined to be empty. The syntax is most
easily explained through an example:

SFServi ce extends { /] an inplicit extension of NULL
port Num 4047;
host nane "ahost.snartfrog.org";
adm ni strators ["patrick"];

}

Useabl eServi ce extends SFService {
// an extension of the previous conpnent
port Num 4048; /'l override the definition of portNum
users ["fred", "harry"]; // add a new attribute

}
The text consists of two attributes, both of which have values that are

collections of attributes. The second of these, Useabl eSer vi ce, is defined
as an extension of the first SFSer vi ce, with two attributes added to or
overwriting those inherited. The text is semantically identical to the following:

SFServi ce extends {
port Num 4047;
host nane "ahost.smartfrog.org";
admini strators ["patrick"];

}

Useabl eServi ce extends {
port Num 4048;
host nane "ahost.snartfrog.org";
admini strators ["patrick"];
users ["fred", "harry"];

}

Note that the attributes in a component description are ordered and that when
an attribute is overwritten it maintains its position, but when it is a new
attribute it is added to the end. The process of expansion of the inheritance in
this way is known as Type Resolution and is explained further below.

Note also that the parsed stream is considered to be in an implicit,

anonymous (i.e. not named in an outer component description), component
description known as ROOT.

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 -23- last modified on 23 Aug 2006

223

original semantic equivalent
l\‘l‘l’J\LL N&L
“extends “extends
SFService | portNum 4047; SFService portNum 4047;

hostname “ pgoldsac hpl .hp.com™; hostname “pgoldsac hpl .hp.com™;
admininstrators [“patrick”]; admininstrators [“patrick”];

NULL
extends 2
extends

EonNum 4048;
portNum 4048; ostname **pgoldsac. hplkbﬁ).com";

UseableServce r . UseableServce admininstrators [“patricl
users [“fred”, “harry™]; users [“fed”, “hary™];
Implicit Root ComponentDescriptoon Implicit Root Component Description

The example is also shown in the diagram. It clearly shows that there are two
kinds of relationship between component descriptions. One is the
containment relationship, where a component description contains an
attribute that is itself a component description. The second is the inheritance
or extension relationship. This second class of relationship is one that can be
transformed, by type resolution, to an equivalent one containing no extension
(also indicated by the NULL extension).

Whilst the extension relationship is merely a convenient way of defining
attributes, the containment hierarchy is a more fundamental construct. It
should be noticed that that containment hierarchy effectively provides a
naming scheme by which attributes may be referenced. In this it is similar to
other such named hierarchies, such as directory hierarchies common in files
systems.

Types vs. Prototypes

SmartFrog does not define types for attributes and components. Rather it
defines the notion of a prototype (c.f. the programming language Self). Each
attribute whose value is a component description may be considered as a
prototype for another: it may be taken and modified as appropriate to provide
the value for the new attribute. The mechanism for this is the extends
construct.

Any attribute whose value is a component description may be, at a later
juncture, selected and modified to provide a new component description to be
bound to a name. This new attribute may be further modified by subsequent
attributes. In this way, it is possible to provide partial definitions, with default
values for attributes, to be completed or specialized when used. This provides
a simple template mechanism for components.

Consequently, there are no separate spaces of types and instances; every
component is logically an instance, but may also be a prototype for another.
However, it is clear that in providing descriptions, some components will be
defined with the intention that they be used as prototypes for other
components, whilst others will be defined without that expectation. Whilst this
may appear strange in the first instance, it turns out to be one of the main
strengths of the SmartFrog notation.

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 -24 - last modified on 23 Aug 2006

2.2.4 References

References may occur in three places in the syntax: as the name of an
attribute — known as a placement, as a reference to the extended component
(the prototype) of a component description, and as an attribute value referring
to another attribute whose value is to be copied — known as a link.

The primary purpose of a reference is to indicate a path through the
containment hierarchy defined by the components. In this, it is similar to the
notion of path common in file systems in operating systems such Linux. A
path defines a traversal of the directory hierarchy, a structure similar to the
component hierarchy.

The syntax for references is as follows:

Ref erence: : = [LAZY] BaseReference
BaseRef erence: : = ReferencePart (: ReferencePart)*

Ref erencePart:: = ROOT
| PARENT

| (ATTRI B WORD)

| (HERE WORD)

| TH'S

| WORD

| (PROPERTY WORD)

| (1 PROPERTY WORD)

| (HOST (WORD | STRING)
| PROCESS

Thus, a reference is a colon-separated list of parts each of which indicates a
step in the path through the containment tree. Examples of references are:

PARENT: PARENT: f 0o: bar
ATTRIB a: b

ROOT

X

HOST 15. 144. 56. 65: f oo: bar

Normally a reference indicates a path through the containment tree to an
attribute whose value should be copied, or a component description in which
an attribute should be placed. These references are “resolved” during the
language processing to eliminate them and to carry out the appropriate
copying or placement.

However, occasionally the reference itself is the desired value, or the
reference cannot be resolved during language processing as the data
referenced is not available until a later stage. Under these circumstances, the
keyword “LAZY” is prefixed to the reference to indicate that the reference
resolution should be delayed.

The general rule for the interpretation of a reference is that the reference is
evaluated in a context (a component description somewhere in the description
containment tree), and that each step moves the context to a possibly
different component for the remainder of the reference to be evaluated. This
is equivalent to path evaluation in a Linux file system, the path is evaluated in
a current directory, and each part of the path moves the context to another
directory.

The semantics of each of the reference parts is as follows: starting at
component in which the reference is defined...

e PARENT - move context to the parent (container) component if it
exists, fail otherwise (c.f. Linux “..”)

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 -25- last modified on 23 Aug 2006

¢ HERE WORD - look for the attribute named “word” in the current
context, fail otherwise

e ATTRIB WORD - look for the attribute named “word” in the current
context or anywhere in the containment hierarchy (the closest is
chosen), move to the context defined by this attribute, fail if no
attribute is found in the containment hierarchy

e ROOT - switch context to the outer-most component (normally the
implicit root component (c.f. Linux “/ “)

e THIS — keep the context the same, don't switch (c.f. Linux “.”)

e WORD - the interpretation of the WORD depends on the location. If it
is the only part in the reference, or the first part, it is interpreted as
ATTRI B. If it is the second or later part of a reference it is interpreted
as HERE.

Some examples of references (in this case link references) are as follows:

sfConfig extends { sfConfig extends {
foo extends { foo extends {
e fon 1
feb2; | feb2;
mar 3; N mar 3;
} N }
bar extends { N bar extends {
M. ad2; \\1 ad2;
Nk \ b “a string”;
| <¢[,2,3]; c,2,3];
[
| baz extends { “ baz extends {
_ref1 ROOT :sfConfig:bar:b; | ref1 “a string”;
"”‘\ ref2 ATTRIB foojan]—— | ref2 1;
_ref3 ref2; ref3 1;
} }
} }

The arrows in the left-hand text show the path followed as the references are
resolved to obtain the referenced attribute values, noting that the resolution of
ref 3 will follow the resolution of ref2. The contexts traversed as the
resolutions progress are shown boxed and the right-hand text shows the
result of resolving the three links.

In addition to these four structural reference parts, there are four others that

are not appropriate for all circumstances and are not related to the
containment hierarchy. These are

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 -26- last modified on 23 Aug 2006

e PROPERTY WORD - return the value that is the Java system
property named WORD. It may only occur at the end of a reference,
and only in a link. Syntactically it may occur anywhere, however the
remainder of the link is ignored. It is usually used in conjunction with
LAZY. Without LAZY, the value of the property at the time of parsing
will be used; with LAZY the application run-time value of the property
will be used when the link is resolved — see section 2. The property is
always a string.

e |IPROPERTY WORD - as for PROPERTY, but the property is
interpreted as indicating an integer which is parsed and returned as
such.

e HOST (WORD | STRING) — switch to the context of the process
compound on the host name WORD (or STRING — which must be
used if supplying an IP address, but may also be used with a host
name). This reference part is also used in conjunction with the LAZY
keyword and only in links. It is used to provide a naming service for
applications within the SmartFrog system. Again, without LAZY the
parser will look-up the value in the remote process compound, with
LAZY this will be done at run-time when the link is resolved — see
section 2.

e PROCESS - switch to the context of the process compound of the
current process. This is also used in conjunction with the LAZY
keyword and only in links. It is used to provide a naming service for
applications within the SmartFrog system. Again, without LAZY the
parser will look-up the value in the remote process compound, with
LAZY this will be done at run-time when the link is resolved — see
section 2.

The above rules determine the general interpretation of references. However,
each of the syntactic contexts has its own slight semantic variation; these
variations appear in the detailed definition of the semantics for references.

Reference Elimination — Resolution

The key to the semantics of the SmartFrog notation is the process by which
references are eliminated. This is necessary for each of the three syntactic
locations where references may occur — prototype references, placement
references and link references. The process by which references are
eliminated is known as reference resolution. However, each type of reference
has a different notion of resolution and so each has a specific resolution
action — known respectively as type resolution, placement resolution and link
resolution. This last name is historically also known as deployment resolution;
this old name appears in parts of the APl and is kept for backward
compatibility. The resolution steps are described in more detail in the next few
sub-sections, and then revisited as a whole to examine their interaction with
each other.

Prototype References
References to prototypes, as defined in the following syntactic context,

Conponent ::= extends [LAZY] BaseConponent
BaseConponent ::= [Reference] (; | { AttributeList })

are resolved as described above except in one respect: if the reference to the
prototype consists of a single WORD part, it is interpreted as ATTRI B WORD in
the usual way.

Thus, the following are equivalent

Foo extends Bar { .}
Foo extends ATTRIB Bar {.}

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 -27 - last modified on 23 Aug 2006

This is to provide a greater degree of convenience when referring to a
prototype as these are most often defined in the outermost implicit root
context, and frequently defined in an included file. Using this re-interpretation
using ATTRI B, rather than adding an implicit ROOT reference part to the front,
ensures that global definitions of prototypes at the top level may be locally
overridden if required.

The following example demonstrates most of the situations:

Foo extends { a 1; }

Bar extends {
foo extends Foo;
}

Baz extends {
foo extends {
b 2;
}

fool extends Foo; // recall - this is equivalent to ATTRI B Foo
f 002 ext ends ROOT: Foo;

f0oo3 ext ends PARENT: Foo;

f oo4 ext ends PARENT: PARENT: Foo

}

After type resolution, which includes the merging and overwrite of attributes
as described in section 2.2.2, the example is equivalent to:

Foo extends { a 1; }

Bar extends {
foo extends { a 1; } /1 ATTRI B Foo finds the outernost
}

Baz extends {

foo extends { b 2; }
fool extends { b 2; } // ATTRIB Foo finds the cl osest encl osing
foo2 extends { a 1; } // ROOT: Foo finds the one in the root
foo3 extends { b 2; } // PARENT: Foo finds that in the parent
food4 extends { a 1; } // PARENT: PARENT: Foo finds that in
// the root (in this case)
}
Placement References
An attribute’s name may be a reference, as described in the syntactic clauses
Attribute ::= Name Val ue
Nane ::= BaseReference

This is not completely accurate, as the syntax in fact limits references to being
a reference containing WORD values, the other reference parts are considered
erroneous.

The resolution of the reference is again largely as described above, with the
following modification.

The last reference part of the reference must be a WORD and is treated
differently. This word part is not strictly part of the reference, but is used to
identify the name of an attribute that is to be created (as opposed to
referenced) in the context of the prefix part of the name reference. Thus in the
attribute definition

foo: baz: bar 42

the f 00: baz is a reference to a location, bar is the name of the attribute to
be created in that context.

In most cases, the name consists only of that final WORD leaving the prefix
reference empty, indicating the current context. Thus, the attribute is defined

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 -28- last modified on 23 Aug 2006

in that current context. Where a non-empty reference prefixes the final word,
the reference is used to determine the appropriate context and the attribute
with the given name is placed into that context.

Consider the example

Servi ce extends {
port Num 4089;

Servi ce: port Num 4074,
Servi ce: host nane "ahost.smartfrog.org";

The prefix reference Servi ce: is de-referenced to indicate the Service
attribute. The two prefixed attributes are therefore placed within that reference
context, overriding or placed at the end of the context as appropriate. Thus,
the example is roughly equivalent to the following (there are some differences
in their behaviour as prototypes):

Servi ce extends {
port Num 4074;
host nane "ahost.snartfrog.org";

}

The act of placing the attributes into a location is known as placement
resolution, and it occurs simultaneously with the removal of the reference-
prefixed attribute from its defining context.

Placement of attributes can lead to a great deal of confusion if not used
properly. It reacts in interesting ways with type resolution; this interaction
explained in the section on resolution.

Link And LAZY Link References
Frequently, attributes need to take on the same values as other attributes.
This can be for many reasons:

e to avoid repetition of values at many points in a description making it
easier to maintain that description

¢ to hide the structure of the description to a program; explained further
in section 2.

e to provide a means of simple parameterization; explained further in
the section .

This association between the value of one attribute and that of another is
defined by providing a reference in the place of a value of the attribute. This
reference is resolved relative to the context at the point of definition.

Consider the following example, in which a server and a client both need to
know the TCP/IP port on which the server will listen.

Syst em ext ends {
server extends {
por t Num 4089;

client extends {
port Num ATTRI B server: port Num
}

}

The system contains a server and a client. The server and client both have an
attribute por t Num with that of the client being defined as a link to that of the
server.

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 -29- last modified on 23 Aug 2006

2.2.5

There is a resolution step, known as link resolution (and occasionally
deployment resolution), which replaces references by the values that they
reference. During the resolution phase, chains of links are resolved
appropriately.

In the above example, the definition of Syst emis equivalent to the following:

Syst em ext ends {
server extends {
por t Num 4089;

client extends {
port Num 4089;

}

Consequently, both the server and client share the same value and
maintenance is eased in that should the port number need be changed, this
need happen in only one place in the description.

It is frequently the case that the link itself is required as a value; i.e. the link
should not be resolved to the value that it might refer to within the description.
This reference may then be used within a SmartFrog application after
deployment, for resolution at run-time rather than at the time of parsing the
description. The primary use for this is described in section 2.

In order to provide a reference value, rather than have it resolved to the value
of another attribute during link resolution, the keyword LAZY may be prefixed
to the link to indicate that the link resolution should not resolve the link. An
example of this is:

Syst em ext ends {
server extends {
foo 42;

client extends {
nyServer LAZY ATTRI B server;
}

}

In this case, the client’s attribute my Ser ver is a reference to the server, not a
copy of the server component. As is, resolution will have no effect, as the link
will be left to be the attribute value. If the keyword LAZY had not been
present, the following would have been the result of resolution:

Syst em ext ends {
server extends {
foo 42;

client extends {
nmyServer extends {
foo 42;
%
}
The word LAZY is an indication that it will be resolved at run-time — so far as
the notation is concerned, this means that the link is the value.

Comments
The SmartFrog notation follows most modern languages in providing both
end-of-line comments and multi-line bounded comments. The syntax for
these is identical to that of Java, namely

e // this is a coment to the end of the line

e /* this is a comment which is term nated by */

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 -30- last modified on 23 Aug 2006

2.3

Include Files

A stream of text may reference include files at certain points in that text.
Unlike a C include file, though, the include file is not merely textually
embedded into the original stream. Rather the include file is itself parsed (and
must be syntactically correct) as a stream in its own right. Every stream must
parse as a collection of attribute definitions, and this is equally true of the
include files.

Include files may only be used within attribute lists (i.e. at the top level or
within a component definition). The collection of attributes from the include file
are simply added to the attribute list being parsed in the container stream.

Consider the following example:

e file f 00. sf contains:

foo extends {
a 42
}

e the primary stream is:

#i ncl ude "foo.sf"

system ext ends {
nmyFoo extends foo
#i ncl ude "foo.sf"

}

After the parsing is complete (but before type resolution), the following is
obtained:

foo extends {
a 42
}

system ext ends {
nmyFoo extends foo
foo extends {
a 42
}

}

It should be noted that because includes may occur within other component
descriptions, this may be used as a naming mechanism to prevent clashes of
attribute name within multiple include files. Consider

e filefool. sf contains
foo extends { a 42; }
o file f 002. sf contains
foo extends { b 42; }
e the primary stream contains

fool extends { #include "fool.sf" }
foo2 extends { #include "foo2.sf" }
sf Confi g extends {

bar extends ATTRI B fool: foo

baz extends ATTRI B fo002: f oo

}

If the includes had not been buried within separately named components, but
both had been included into the top level, only the second of the two
mentioned f oo attributes would have been available for extension. The
second would override the first.

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 -31- last modified on 23 Aug 2006

2.4

sfConfig

A stream contains a whole collection of attributes at the top level. Most are
merely there to act as building blocks — prototypes for building others.
Typically, there is only a single attribute that is the essence of the description
— that which describes the desired configuration and is not merely a building
block on the way. By convention in SmartFrog, the reserved attribute name
sf Conf i g defines this special attribute and all the tools provided respect this
convention.

Thus, when a stream is parsed to an attribute set, the top-level attribute
sf Confi g defines the system; the rest are ignored, apart from providing
definitions for extensions and other resolutions. This is equivalent to the Java
language use of the “special” method mai n(..) to indicate the entry point to a
program. The entry point to a configuration description is sf Conf i g.

Thus in the following example, the attributes def 1, def 2 and def 3 are only
present for the purposes of defining sf Conf i g, and it is only this last attribute
that represents the actual configuration description.

def1 extends Prim{.}

def 2 extends Conpound {
foo extends Prim{.}
bar extends Prim {.}

}
def 3 extends Prim{.}

sf Confi g extends Conpound {
dl extends def1;
d2 extends def2;
d3 ext ends def 3;

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 -32- last modified on 23 Aug 2006

3.1

Resolution — Semantics For The SmartFrog Notation

Resolution is the process by which the raw SmartFrog definitions, with their
extensions, placements and links, are turned into the set of attributes that
they semantically represent.

In addition to these three steps, there are other steps (phases) in the
complete semantic manipulation of the SmartFrog notation, such as function
resolution, predicate checking and any user-defined phases. These are
described in separate sections as they are somehow less core to
understanding the language.

There are two ways of representing the semantics, both roughly equivalent.

1. By defining how the value of an attribute identified by a reference is
obtained from a description; defining the semantics by providing a
function from reference to value for all possible references.

This would be the ideal way of defining the semantics, however for
pragmatic reasons the semantics are less “pure” than may be
desired and it is hard to define the semantics in this way. Two
aspects that are particularly hard to define in this style are the order
of type resolution and the placement of attributes.

2. By defining a set of transformation rules that eliminate the complexity
of the typing (by expansion), placement (by relocation) and linking (by
value copy), resulting in a normalized form of a description containing
merely a hierarchical set of attribute lists.

Either of these two forms of semantic definition would do, however the
definition of the semantics through transformation has a distinct advantage:
these transformations are required in practice and hence are implemented
within the SmartFrog system. Thus, an understanding of these
transformations is essential to the use of SmartFrog.

The three transformation steps are known in SmartFrog as resolution steps.
These are respectively type resolution, placement resolution and link
resolution. They are carried out in that order: first the types are expanded,
then attributes placed into the correct context from the context in which they
were defined, and finally links are resolved.

It should be noted that the entire description is type and place resolved, but
only the top-level sf Confi g attribute is normally link resolved. In general if
the other top-level attributes are link resolved, errors will occur; they are only
present to be available as prototypes. Further, unnecessary work will have
been done.

The algorithms defined here for the transformations are the result of much
empirical experimentation — other transformation algorithms produce more
regular semantics, others are more efficient. However, those presented here
are a balance between performance and semantic simplicity. They provide a
great deal of control over the semantics of the resolution process.

Type Resolution

Type resolution is the expansion of the prototype reference optionally
provided in the ext ends part of a component description. The syntactic form
for a component description is roughly

nane extends Reference { AttributeList }

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 -33- last modified on 23 Aug 2006

3.2

The reference refers to a prototype that is to be extended by the attributes in
the provided attribute list. This process of type resolution is a depth-first pass
over the root component description, in the order of definition of the attributes.

e Copying the prototype indicated by the reference, creating a new
component description

e Replacing the attribute values of the new component description also
mentioned in the attribute list (i.e. the value, but not the order,
changes)

e Adding the remaining attributes at the end of the new prototype.

e Type-resolving each of the component description’s attributes if they
are component descriptions.

If the prototype reference indicates a component description that is not yet
resolved, it resolves it first before copying: i.e. each type resolution is carried
out with respect to the location where the prototype is defined. The other point
to note is that if the reference is only a word, it is interpreted as ATTRI B
word for the purposes of locating the prototype for the component
description.

If, at the end of the process, one or more component descriptions have failed
to resolve, in that their prototypes cannot be found, the whole resolution
process ceases and an exception is thrown indicating the missing prototypes
and the locations at which they are referenced.

Note that any references that may be copied as part of the extension process
are not modified. Hence, copied placements are now relative to the new
location and copied links similarly. Prototype references are never copied
since a prototype is always resolved before copy.

Placement Resolution

Placement resolution is the process by which the attributes are placed into the
correct location. Attributes are named, and this name may contain a reference
to a component description as well as the name by which it is to be known in
that component description. If the reference is not present, the attribute is
assumed to be in the correct component description as defined.

Thus in the example attribute declaration:
foo: bar: baz 42;

The f oo: bar: defines the target component description, and baz defines
the name for the attribute in that component description.

Placement resolution is the transformation process that results in the attribute

definitions being removed from their point of definition and placed in the target

component descriptions. The process is a multi-pass process, for each pass:
e traverse the component description hierarchy

o depth first

o visiting the attributes in the order of definition (as determined
by type resolution)

e each attribute visited is examined, if it should be placed elsewhere —
try to do so, if it fails — leave as is.

The pass is repeated until one of the following occurs:

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 -34- last modified on 23 Aug 2006

e there are no placements left to transform

e no placements have been successfully carried out, and at least one
placement has failed

In the first instance, the placement resolution has successfully completed, the
second it has not and an error is generated.

To see why multiple passes are necessary, consider the following:

foo extends {
a 21;

foo: bar:a 42;
foo:bar extends { b 34; }

In the first pass, the attribute f 0o: bar : a is first to be placed, but it fails since
f oo does not yet contain f 00: bar as a component description. Also in the
first pass, but later since it is defined later, f 00: bar is placed, giving

foo extends {

a 21;

bar extends { b 34; }
}

foo: bar:a 42;

This leaves a placement incomplete so a second pass is required. This time it
succeeds, resulting in

foo extends {
a 21;
bar extends {
b 34;
a 42;
}
}

This order dependency does not have much of an effect, except for when two
identically named attributes are placed into the same component description.
At this point understanding the order of resolution becomes important.

Since placement resolution is carried out after type resolution, the following
consequences should be noted:

e As type resolution is carried out before placement, attributes placed
into a prototype will not be inherited by those extending the prototype.

e Again, as type resolution is carried out before placement, do not
place an attribute that is to be used as a super-type; it will not be
found.

e Wherever possible, placement should be restricted to referencing
downwards into a structure from the point of attribute definition.
Descriptions can be very hard to understand if PARENT, ROOT or
ATTRI B are used in a placement reference; this particularly so within
a component description to be used as a type. As a consequence,
this release of SmartFrog does not permit these reference parts to be
used in a placement.

The reason why type resolution is done before placement resolution is that
the normal use for placement is to “fill-in” empty “attribute slots” in a
prototype. As each instance of the prototype will in general need differently
filled slots, placement must be done after the type has been resolved for each
instance.

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 -35- last modified on 23 Aug 2006

3.3

3.4

Note that placement of attributes whose values are links do not modify the
links to correct for the new location. Thus, links are resolved with respect to
where they are placed, not where they are defined.

Link Resolution

Link resolution is the most straightforward of the three forms of resolution; all
links are resolved in their location after type and place resolution, and the
referenced value replaces the link as the value of the attribute. There are a
number of points to note:

e Only links that are not LAZY are resolved; those that are LAZY are
left unresolved with the link itself being the value.

e If the value of the attribute is a link, this is first resolved and the result
of that resolution is used.

e Links are always resolved in the contexts in which they are located
after the type and placement resolution phases are over, not
necessarily those in which they were defined.

e Links referring to an attribute whose value is a LAZY link will leave the
LAZY link unchanged, this being the attribute’s value.

e In resolving a link, the value of the attribute referenced is not copied,
but shared, at the original point of definition if this is relevant (e.g. For
component descriptions and their parent). Thus any operation that
affects the value of this data has an impact on all parts of the tree that
share this data. The only operations that affect attribute values in this
way are functions (or possibly a user phase).

Sharing has almost no effect on the language semantics unless the
data shared is a component description. In this case the parent of the
data remains that of the location of definition. This has an impact on
how links within that component description are resolved, using the
original parent, and not relative to the context in which the link was
defined.

An explanation of the consequences of sharing is given in section
REF.

The Difference Between Types and Links
On the surface, there are many similarities between the definitions of x and y
in:

Foo extends {
a 10;
}

X extends Foo;
y Foo;

They both appear to end up by having the definition of a component
description containing a.

One obvious difference is that since they occur each side of place resolution,
a placement into Foo will affect y but not x. However there are more subtle
differences to do with the sharing of data with links, rather than the copying of
data with extends. Consider the following example:

data 1;

Foo extends ({
a data;
}

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 -36 - last modified on 23 Aug 2006

exanpl e extends {
data 100;
X extends Foo;
y Foo;

}

In this definition, example:x:a has the value 100, whereas example:y:a has
the value 1. The reason for this discrepancy is that the extends copies the
definition of Foo and the following link resolution for data is done relative to
the copy's location. The link, on the other hand, simply links to the definition of
Foo in its existing position, and there the value of data on resolution is 1.

The difference can also be highlighted using one of the functions, such as
next that return a different value at each use. Consider the following
description:

#i ncl ude "org/smartfrog/functions.sf"
exanpl e extends {

X extends next;

y extends Xx;

Z X;

}

Assuming that this is the first use of next, example:x will have the value 1,
example:y will have the value 2, but example:z will have the value 1. This is
because it shares the result of the function bound to example:x.

Note that at the very end of the language processing as part of the conversion

to the core data model, the sharing is eliminated and each attribute will have
its own copy of the value. This is explained in detail in section REF.

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 -37- last modified on 23 Aug 2006

4 Template Parameterization Pattern

When extending a prototype, it is normal to override the values of certain
attributes to customize the prototype to its actual use. The simplest way is to
extend with the replacement attribute — however this only works for a top-level
attribute. Modification of attributes deep in the structure requires the
placement of the overriding attribute into the correct context, as in the
example:

Service extends {
host nane "I ocal host";
port Num 4567,

Servi cePair extends {
servi cel extends Service ;
servi ce2 extends Service ;

sfConfig extends ServicePair {
/1l user needs to know structure of ServicePair
servicel: hostname "riker.smartfrog.org";
servi ce2: host name "ackbar.smartfrog.org";

}

This works adequately, but it has the disadvantage that the use of the
ServicePair prototype requires knowledge of its structure, though it does have
the advantage that any attribute in the structure may be changed if necessary.
However, under normal circumstances, there are attributes whose values are
expected to change, and others that are not. Under these circumstances, it
would be good if the description could be parameterized on these attributes.
However, the normal form of parameterization as provided in programming
language functions is not a good fit to the SmartFrog notation semantics — so
the language provides a way of finding a way of hiding the structure of a
description and making it easier to override “deep” attributes.

This technique, more of a pattern for the use of links, is shown in the
following example:

Service extends {
host nane "l ocal host"; // default val ue
port Num 4567;

}

Servi cePair extends {
slHost "l ocal host"; // provide default value
s2Host "l ocal host";
servicel extends Service { hostname slhost; } //
servi ce2 extends Service { hostnane s2host; } //

lift attribute
ditto

sfConfig extends ServicePair {
/] user needn’t know structure of ServicePair
slhost "riker.smartfrog.org";
s2host "ackbar.smartfrog. org";

}

It is clear that the use of Ser vi cePai r requires only the extension with top-
level attributes to set the attributes deeply defined in the Ser vi ce prototype.
This pattern, of the use of links lifting an attribute value to one provided in the
outermost context, is called the parameterization pattern and is very
frequently used.

Note that if a default value for a lifted attribute is not given within the
description (in this case Servi cePai r provides defaults for both the lifted
attributes s1Host and s2Host), a deploy resolution error will occur if the
parameter is not provided at time of use, since the value to resolve the link
will not be found.

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 -38- last modified on 23 Aug 2006

5

Functions and operators

SmartFrog provides users with a small number of predefined functions to
improve the expressiveness of the descriptions. In addition, it provides
mechanisms by which users may add their own functions, effectively providing
an escape mechanism into Java. These functions, whilst not part of the
SmartFrog language, are provided for convenience. The mechanism, a
special case of a more general phase mechanism, is described in detail in
section .

Functions appear, to the language, as predefined component descriptions
that may be extended; the parameters are given as named attributes within
the body of that description. For example, a use of the string concatenate
function is

#include "/org/smartfrog/functions.sf" /1l the standard functions

val 42;

nmyString extends concat {
-- "the neaning of life is "
- val

that results in the value of the ny St ri ng attribute being "t he neani ng of
life is 42". The names of the attributes have no effect in this case, the
strings being concatenated in the order of definition, but may be important for
some other functions.

Functions are evaluated inner-first, providing for the nesting of function
application, and are evaluated after all the other resolutions steps have be
completed. The definitions are themselves affected by these resolutions.
Thus a function may be extended with the resultant extension also be a
function. The current set of predefined functions is given in section 13.

In order to make the use of functions more natural, some syntactic forms are
provided that appear to be infix or prefix operators. However, these are simply
translated into the relevant template form during parsing. A more compete
description of this process is given in section 13.

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 -39- last modified on 23 Aug 2006

6 Predicates, Assertions and Schemas

It is frequently useful to be able to define a set of well-formedness conditions
on the use of a template in order to guarantee that its use is correct. However,
this should be done in a way in which all the benefits of template extension
are not lost. To this end, an additional phase, similar to that defined for
functions, is included which will check predicates defined and attached to a
template.

There are three predicate types provided as part of the SmartFrog framework.
These are the assertion predicates, schema predicates and the TBD (to be
defined) predicates.

The most flexible predefined predicate supplied by the SmartFrog framework
is the schema, a description that describes the set of attributes a template
should contain. Users may add their own predicate types through a similar
escape mechanism to Java provided for functions. Schemas are described in
detail in section 14.

Schemas are best described through the use of an example, in this case of a
template for a web server component. The example defines a schema for a
web server template, and defines the template linked to the schema.

/1l the definition of schenmas
#i ncl ude "/org/smartfrog/ predicates.sf"

WebSer ver Schema ext ends Schema {
port extends |nteger;
directory extends Optional String;

}

WebServer Tenpl at e extends Prim {
schema ext ends WebSer ver Scheng;
port 80; // default val ue

Note that the name for the attribute linking the template to its schema need
not be, as in this case, schema. Indeed, a template may have more than one
schema attached as attributes, in which case the uses of the templates are
checked against all schemas attached. Schemas must extend the base
schema template Schena.

Schemas may be extended in the same way as other templates, and their
uses may easily be extended through placement as illustrated in the following
examples.

/1 the definition of schenas
#i ncl ude "/org/smartfrog/ predicates.sf"

Thr eadedWebSer ver Schema ext ends WebSer ver Schema {
m ni munThr eads extends | nteger;
}

Thr eadedWebSer ver Tenpl at e ext ends WebSer ver Tenpl at e {
/] overwite existing schema with extended schenma
Schema ext ends ThreadedWebSer ver Schems;
m ni munThr eads 7;
Al ternati veThr eadedWebSer ver Tenpl at e ext ends WebServer Tenpl ate {
// add to existing schema
schema: m ni nunirhr eads ext ends | nt eger;

m ni munirhr eads 7;

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 -40 - last modified on 23 Aug 2006

Note that schemas are entirely optional and need be used only if desired. The
value of a schema is that it provides a strict definition and the potentially type
of the attributes, both required and optional, of a component. This should
make it easier to work with, and so benefit users of the component.

Similarly to schemas, assertions are descriptions that are interpreted as a
predicate. An assertion consists of a description that contains attributes that
should all evaluate to t r ue - any attribute that evaluates to f al se, or indeed
any other value, is considered to be an assertion failure. The names of these
boolean attributes are not significant other than as documentation. There is
an implicit conjunction (and) between the various assertion attributes given.

An assertion description must extend Asserti on, and must be included in
the description to which it applies in the same way as a schema must.

An example of an assertion is

// the definition of assertion
#include "/org/smartfrog/ predicates.sf"

WebServer Asserti on extends Assertions {
portValid ((port == 80) || (port == 8080) || (port == 8088));
}

WebServer Tenpl at e extends Prim {
schema ext ends WebServer Scheng;
assert extends \WebServer Assertion;
port 80; // default value

In the same way that attributes may be added to an existing schema,
attributes may also be placed into an “Assertions” description, or more than
one “Assertions” may be provided.

The TBD predicate is used to indicate that a specific attribute still requires to
be assigned a value. If it has not been assigned, and an attempt is made to
use it, an appropriate error message is given.

An example of the predicate is as follows:

#i ncl ude "/org/smartfrog/ predicates.sf"

aTenpl ate extends Prim {
sfCass “org.smartfrog....";
anAttribute TBD;

}

sf Confi g extends Conpound {
anl nst ance extends aTenpl at e;
anot her | nst ance extends aTenpl ate {
anAttribute 45;

}

Here, the attribute anAttri but e of aTenpl at e is defined as TBD, so any
use of the template that does not set this value will generate an error. In the
definition of sf Confi g, the first use, to define anl nst ance, is erroneous
whereas the second to define anot her | nst ance is valid.

The TBD attribute ("To be determined") is a simple substitute for the more

rigorous schema declaration. Note that the type of the attribute is not defined,
which can be a useful feature.

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 -41 - last modified on 23 Aug 2006

7 Mapping to the Core Data Model

The attribute sets produced by the above phases are now simple enough to
be mapped into the core data structures supported by the SmartFrog runtime.
These data structures do not support extension, placements, functions or
predicates — so all these have to be resolved away. Links are supported, but
they are considered as values and have no further special meaning — they are
all assumed to be LAZY links.

The translation into these core data structures is therefore straight-forward
apart from one additional point: the structures produced by the phases can
share data, but this is eliminated by copying. If this copying involves
Component Descriptions, these are also parented into the part of the tree into
which they are being copied.

The reason for this sharing elimination is to do with the semantics of the
distributed system. Whilst all the data is local it could make sense to share
data as it is more efficient, although care has to be taken when data is
changed behind the scenes with side-effects on other parts of the tree.
However, when parts of the tree get mapped to different processes during
deployment, the data has to be copied and the sharing broken in any case. To
ensure a common semantics between local and remote deployments,
separate copies are taken at all times.

This sharing elimination is illustrated by the following diagram. Note that the

parent link from back from the f 0o attribute's data only exists if the attribute is
itself an attribute set (a component description).

sfAsComponentDescription

NS
N\ N\
bar aifoo fooy bar foo,

AN PARENT
after link resolution, ™\

data is shared
copy

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 -42 - last modified on 23 Aug 2006

8 Primary Language Processing

Phases are a way transforming the SmartFrog parse tree into the final form
ready for deployment (or other purpose). Each phase is a pass over the
component description hierarchy carrying out an action controlled, in the case

of user-defined phases, by attributes defined within the descriptions.

Under normal circumstances users will not need to know about phases or
how to modify on adapt them, the default collection of phases is already

correct for most purposes.

The predefined phases for the default language are as follows:

Phases are triggered in a specific order, as determined by the top-level
attribute phaselL.i st . If the attribute is not present, it is as though the attribute

type — carry out type resolution on the component description
hierarchy; this is predefined and does not rely on attributes in the
tree to trigger it.

pl ace — carry out place resolution on the component description
hierarchy; this is predefined and does not rely on attributes in the
tree to trigger it.

I'i nk — carry out link resolution on the component description
hierarchy; this is predefined and does not rely on attributes in the
tree to trigger it.

sf Config — not really a phase, rather it controls where the
phases are applied. Its effect is that for the remaining phases in
the current phase list, they are only applied to the sf Confi g
attribute.

print — again, not really a phase, but it triggers the printing of
the tree to the standard output. This provides a debugging
mechanism as it can be placed between any other phases to view
the intermediate state of the tree.

function — in reality a user-defined phase, but one which is
provided by default. It causes all the functions to be evaluated. It
is triggered in the same way as the other user-defined phases, by
the occurrence of attributes with the name phase. f uncti on.

predi cate — also a user-defined phase which is provided by
default. It causes all predicates to be checked and errors
reported. The schema mechanism is an instance of the use of
the predicate phase, though others may be added by users. The
phase is triggered in the same way as other user-defined phases,
by the occurrence of the attributes with the name
phase. predi cat e.

were defined as follows:

phaseList [“type”, “place”, “sfConfig”, “link”, “function”,
“predicate”];

This default definition provides the semantics described in the section 1.

In addition to the pre-defined phases, a user may introduce their own. User

phases are defined as follows:

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 -43 - last modified on 23 Aug 2006

e A class must be created which implements the interface
PhaseActi on in package org. snmartfrog. sfcore. parser.
The interface is fully defined in the Javadoc, but in summary, it
provides two methods:

e forComponent — which initializes the instance of the
action with the component description on which it is to
operate

e doit — which triggers the action of the phase,

e In whichever component description the action must take place,
an attribute whose name starts with the string phase. nnn must
be provided, set to the string containing the class name, where
nnn is the desired name of the phase.

e The phaselLi st attribute must be set at the top level of the
description, containing the phase name nnn at the appropriate
point relative to the other phases. It is recommended that this is
placed after all the standard resolution phases, though
occasionally it may be necessary to place the phase earlier.

There are a few points to notice. Firstly, the descriptions are traversed depth-
first so the inner descriptions are visited before the outer. This makes sense
for functions, for example, that are evaluated from the inside. The second
point is that the action is independent of the phase, in that the attribute name
determines the phase; the action is determined by the attribute value. Thus, it
is possible for the same action to be used in two different phases, and for
different actions to be invoked in the same phase — as is the case with all
functions. It is also possible to have more than one action for each phase in a
component description since the attribute name merely needs to start with the
phase. nnn string so several may be provided.

Note that both the phaselLi st attribute and the phase. nnn attributes are
removed from the description after the action is invoked.

Consider the following example. A class is provided that adds the
sf ProcessHost attribute (used to determine on which host a component
should be deployed) to a component description, based on the value of an
attribute sf Logi cal Host . It maps the logical host to the physical host in
some way not defined here — say by using the method napHost .

The class might be defined as follows:

package org.snmartfrog, exanpl e;

cl ass MapHost inpl enments PhaseAction {
Conponent Descri ption cnp = null;

public void forConmponent (ConponentDescription c) {
cnp = c;
}

public void doit() {
String | ogical Hst = c. sfResol ve(
Ref erence. fronttri ng("sf Logi cal Host"));
c.addAttribute("sfProcessHost", mapHost (| ogical Host));

}
private String nmapHost (String logical) { ...}
}

This class may then be used in a description, to be acted on in the phase
mapHost s, as follows

phaseList ["type", "place", "sfConfig", "link",
"function", "predicate", "mapHosts"];

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 -44 - last modified on 23 Aug 2006

8.1

8.2

MappedConpound ext ends Conpound {
phase. mapHosts "org. smartfrog. exanpl e. MapHost *;
}

sf Confi g extends MappedConpound {
sf Logi cal Host "dat abaseHost";
conponent1 extends Prim{ .}
conmponent 2 extends Prim{ ...}

}

The phase list adds the mapping phase to the end, providing for the host
mapping. The MappedConpound, when used, carries its phase attribute with
it. Consequently, it is now contained within sf Confi g. Thus during that last
phase, sf Conf i g will be mapped to the correct physical host.

Functions

Functions are evaluated during a predefined phase, named f uncti on, with
the effect that an attribute obtains the value of the evaluated function. To
make functions easier to write, a predefined abstract PhaseAct i on, called
BaseFunct i on from package

org.smartfrog. sfcore. | anguages. sf.functions

is provided that makes writing new functions easier.

New functions should extend the class BaseFuncti on and provide the
method doFuncti on(), returning the result of the function as an hj ect.
Any attribute may be accessed during the evaluation process.

BaseFunct i on is documented in the Javadoc and predefined functions are
documented in section 13.

Predicates

Predicates are evaluated during a predefined phase, named predi cat e,
with the effect that the associated predicate class is evaluated and any errors
notified to the user by generating an appropriate exception. Most predicates
will be instances of Schema, however users may define their own. To make
user-defined predicates easier to define, a class BasePredi cate from
package

org.smartfrog. sfcore. | anguages. sf. predi cat es

is provided that makes writing new predicates easier.

New predicates should extend the class BasePr edi cat e and provide the
method doPr edi cat e() , throwing the exception

Smar t Fr ogConpi | eResol uti onExcepti on

if there is an error. Any attribute may be accessed during the predicate
evaluation.

BasePr edi cat e is documented in the Javadoc and the predefined predicate
Schema is documented in section 14.

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 -45 - last modified on 23 Aug 2006

9

9.2

Programming with the Parser
Background

The SmartFrog framework is designed to support a range of possible
languages to define configurations for the deployment engine to instantiate.
The languages are all required to follow a common model for their
processing, and to eventually produce data structures that are suitable for the
deployment system. The default language is the base SmartFrog language
defined above, and which uses the file extension “. sf ”.

The first stage of language processing is the parser — a tool for turning text
into data structures for further processing. The parser interface allows
programmers to select the parser based either on the language type of the file
(as defined by file extension), by direct selection, or simply using the default
(sf) parser.

After parsing, the data structures produced must implement an interface for
driving the remaining resolution phases. This interface is

org. smartfrog. parser. Phases

Following the invocation of the various phases, the data is converted into a
hierarchy of data supporting the Conponent Descri pti on interface, which
may then be passed to the deployment system.

Using this model, it is reasonably easy to define a new language and integrate
it into the system. The default SF language is the first such, but others such
as XML based languages, or the more advanced SF2 language currently
under development are also possible.

The remainder of this section describes how to invoke the parser, how to step

the language data structures through the various processing phases, and
finally the nature of the resultant Conponent Descri pt i on data structures.

Summary of Language Processing
All of the tools provided with the SmartFrog system handle a SmartFrog text
in an identical way to produce a fully resolved deployable description. The
process is basically:
e parse the text stream to produce hierarchical data structures
e carry out all the phases, which for the default primary language are
o type resolve the root
o place resolve the root
o extract attribute sf Conf i g from the root
o link resolve sf Confi g
o evaluate any functions in sf Confi g

o check predicates and schemas in sf Confi g

e convert to standard data model, creating simple normalised attribute
tree

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 -46 - last modified on 23 Aug 2006

9.3

The Parser
The SmartFrog parser is implemented as a Java class with a method to parse
an | nput Stream producing an instance of the class

Conponent Descri pti on, the Java class representing the parsed text
allowing programmatic manipulation of the information. Any | nput St r eam
may be used, thus the parser may be invoked on a String,aFile,a URL,
or any indeed any object that provides a stream model.

During parsing, a number of include files or URLs may be specified indicating
text that should be included into the current parse. It should be noted that
unlike C, the text is not merely embedded into the source text, rather the files
are parsed independently by the parser and the consequent data embedded
into the resultant Conponent Descri pti on data structure produced by the
initial stream. Note that in principle, the parsers of include files may be
different from the parser for the main stream, thus providing a means for
including files in different notations. However, the mechanisms for doing so
are not covered in this manual.

9.3.1 The Parser API

Under normal circumstances, users of SmartFrog will not be expected to use
the parser directly. Rather the parser will be invoked on the users behalf by
the tools and scripts provided to start and run the SmartFrog framework.
However, just in case the need arises to invoke the parser within user code
the parser APl is now described.

Two aspects must be considered:

1. Ensuring that security properties are maintained: if security is
required, the appropriate actions should be taken to ensure that only
streams from signed and trusted sources are used.

2. Invoking the parser itself on the stream.

The security model is covered in section 7, and this should be read in detail

before implementing any secure code, however enough of the security API is
defined here for completeness.

9.3.2 Ensuring Security

Two important steps must be carried out to ensure that the security of the
SmartFrog framework is not compromised. The first is to initialize the
SmartFrog security infrastructure, if this is not already done, and the second
is to ensure that every resource (test file, URL, etc) is loaded through the
secure mechanisms provided.

Under normal circumstances, users will be using the parser from within the
SmartFrog system itself; writing components that use the parser. However,
just in case this is not so and security is still required, initializing the security
mechanisms is carried out by invoking the i nit Security() static method
on the SFSecurity class from package
org.smartfrog. sfcore. security, as follows:

inmport org.smartfrog.sfcore.security. SFSecurity;

é#Security.initSecurity();

Once the security has been initialized, streams may be created on strings or
fles as required. However, to ensure that security is maintained, it is
important that the correct class loaders are used for accessing any external
resources. This is achieved by using the following invocation to create a
stream from the resource:

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 -47 - last modified on 23 Aug 2006

9.3.3

9.34

9.3.5

inport org.snmartfrog.sfcore. security. SFCl assLoader ;

I“r‘1put Stream stream = SFCl assLoader. get Resour ceAsStream(url);

Invoking The Parser

Once a stream is created, a parser instance may be created and the input
stream parsed to generate the data model. This is done through the following
code

import org.snmartfrog.sfcore. parser. SFPar ser;
import org.smartfrog.sfcore. parser. SFPhases;

lshases conmponent = new SFParser (). sfParse(strean);

The get Parser () method returns a parser for the currently selected
language (currently only one is available) and this parser supports the
sf Par se(| nput St ream s) method to parse the input stream.

If the parser for a different language is required, say for the sf2 language, the
following code is required

inport org.snartfrog.sfcore. parser. SFPar ser ;
import org.snmartfrog.sfcore. parser. Phases;

IID'Hases conponent = new SFParser ("sf2").sfParse(strean;

The parser is built for the correct language, then asked to parse a stream.

The SFSystem command-line parameters that represent URLs of
descriptions to load are examined to determine from the extension which
parser should be used.

Evaluating The Phases

Once the parser has completed, the resultant data structures must implement
the Phases interface. Through the use of this interface the various phases of
the language processing are carried out — either as a single step or by
carrying them out one at a time. After each phase, date structures that
implement the Phases interface must be returned.

The complete description of the API is given in the Javadoc, but the following
examples are probably sufficient to illustrate the process.

To evaluate all phases in one go:

Phases phases = new SFParser (). sf Parse(stream;
phases = phases. sf Resol vePhases() ;

To extract the phases, then apply them one at a time:

Phases phases = new SFParser().sf Parse(is);
Vector thePhases = phases. sf Get Phases();

for (Enuneration e = thePhases. el enents(); e.hasMreEl enents();) {
phases = phases. sf Resol vePhase((String) e.nextEl ement());
}

Converting to Conponent Descri pti on

Before handing the data to the deployment system, the languages own data
structures must be converted to those expected by the deployment system —
namely the standard data model implementing the
Conponent Descri ption interface (normally, but not necessarily) an
extension of Conponent Descri pti onl npl .

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 -48 - last modified on 23 Aug 2006

This is done using the sf AsConponent Descri pti on method defined in
Phases. The full code for parsing and processing a stream in the default
language is

Phases conponent = new SFParser (). sfParse(strean);
phases = phases. sf Resol vePhases();
Conponent Descri pti on conponent . sf AsConponent Descri ption();

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 -49 - last modified on 23 Aug 2006

10

10.1

10.2

The Common Data Model

This section describes the data structures produced after the complete cycle
of language processing (i.e. phase resolution and conversion to the core data
model using sfAsComponentDescription). These are the structures that are
understood and accepted by the SmartFrog run-time system.

The primary data structures that are generated as the output of this process
implement the interface Conponent Descri ption, and it is this interface
that users must understand to be able to create interesting tools or
components. These data structures define the concept of an ordered attribute
set.

In addition, the classes that are used to represent the various attrubute values
need to be considered: both the basic values such as Integers and Booleans,
and the references (all LAZY by this time).

In all cases, these interfaces and classes are fully defined in the
accompanying Javadoc. The description provided here is only partial and is to
give an overall feeling for the overall structure of the Java representation. The
details of exceptions should also be obtained from the Javadoc.

Basic Values

Each of the basic values that have a syntax in the SmartFrog notation are
mapped to different classes in Java. Wherever possible, they are mapped
directly to the most obvious class in Java.

« Numbers are mapped to the equivalent Java subclass on
j ava. | ang. Nunber .

« Booleans are mapped to the class j ava. | ang. Bool ean.
- Strings are mapped to the class j ava. | ang. Stri ng.

« NULL is mapped to the new SmartFrog class
org.smartfrog.sfcore. common. SFNul | . This is defined so that
there is exactly one value of SFNul | .

« Vectors are mapped toj ava. util . Vector.

- Byte arrays are mapped to the new SmartFrog class
org.smartfrog. sfcore. common. SFByt eArray. From instances of
this class, the byte array (byte[]) can be obtained. Instances are
immutable.

Values of other types can be contained within Component Descriptions, but
these may not be properly handled by some of the operations in SmartFrog.
In particular, although SmartFrog functions can in principle return values of
any class, and these will be patched into the attribute tree, when the
conversion to the final component description form occurs with the
sf AsConponent Descri pti on method, these will be rejected. (This is
because the soon-to-be-introduced description signing will not know how to
handle these arbitrary values properly.) Values of arbitrary types can be
serialized into byte arrays, and then extracted and deserialized at the
appropriate time.

Reference
Ref er ence is the Java representation of the references that may be used in
the three areas: references to super-types, placement references and as

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 -50 - last modified on 23 Aug 2006

10.3

links. References are lists of Ref er encePart, each indicating a single step
in the resolution that must occur.

The only interesting methods are those for constructing references, namely
the constructors and the method f r onSt r i ng. The other methods are typical
of those required for manipulating lists, such as adding and removing parts
and enumerating over the elements.

There are two constructors — one for an empty reference (one with no parts)
and one for constructing a reference with a single part. Other parts must
either be added to these basic references, or the reference may be created by
parsing a string.

static Reference fronBtring (String refString)
Utility method to create a reference from a string. The method
is extremely expensive as it creates an instance of a parser and
should therefore not be used too freely.

Ref er encePart is the parent class of all reference parts, there is one per
syntactic reference part (ROOT, ATTRI B, etc.). Again, the main interest is in
the constructors for these. There are a couple of static helper methods for
their construction defined in Ref er encePart .

ComponentDescription

A Conponent Descri ption is an interface, with default implementation
Conponent Descri pti onl npl , which represents the concept of an attribute
set in the syntax. Consequently, it has a number of methods that enable the
creation and traversal of the containment and extension hierarchies.

Conponent Descri pti on, in addition to defining its own methods, extends
three further interfaces, two of which needs further description:
Ref er enceResol ver and Copying. The third, Conponent Depl oyer,
defines methods that are used internally by the SmartFrog framework.

A base implementation of the interface Conponent Descri ption is the
class Conmponent Descri pti onl npl is provided by the framework. This
class may be generated directly by the language processor, or users may
produce a class which extends it in some way.

The interface can be considered in three parts:
1. the core interface for construction and traversal.

2. a copying interface which provides a deep copy operator essential
when handling descriptions.

3. a reference resolution interface, defining methods to look up attribute
values given references that describe paths through a description
hierarchy.

10.3.1 Core

TO BE DONE

cover add/remove/replace attribute, iterate over attributes, get the parent.

10.3.2 Copying

The interface defines two methods of note — a deep copy operator that returns
an equivalent structure of data and a clone method that returns a shallow
copy. The copy method is recursive, in that it clones the top level component
description, then embeds within it all the data contained in the copied

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 -51- last modified on 23 Aug 2006

description - invoking the copy method first if this data implements the
Copying interface.

public Object copy();
Produce a deep copy of the component description

public Object clone();
Produce a shallow copy of the component description

10.3.3 ReferenceResolution

The reference resolution interface contains a number of methods to locate
attributes within the hierarchy of component descriptions. The main method
provided is the following:

oj ect sf Resol ve(Reference r)
Resolve a given reference in the ComponentDescription hierarchy
starting from this component.

In addition to this method, there is a whole family of variants, such as
methods which take strings rather then references, or define the specific
return type so that users can avoid the class-caste, and so on. These are fully
documented in the Javadoc.

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 -52- last modified on 23 Aug 2006

11 The SmartFrog Grammar Rules

SmartFrog defines the default language's grammar using the Java Compiler
Compiler system from Sun. This is a tool known as JavaCC. The SmartFrog
grammar rules described here are part of the JavaCC input, the file
DefaultParser.jj, which is available in the source distribution. The listing is
derived from this file.

/*
* Main entry point to the grammar
*/
AttributesEntry ::= AttributelList EOF
/*
* Entry point for Reference parser (as used in sfResol veFronParser)
*/
Ref erenceEntry ::= Reference EOF
/*
* Entry point for any value parser (used in tools such as sfCGui)
*
/
AnyVal ueEntry ::= Val ue EOF
/*
* Entry point for primtive value parser (used in tools such as sfCui)
*/
Primtiveval ueEntry ::= Basic EOF
/*
* Main body of grammar
*
/

AttributeList::= Attribute

(
| #include String
5

Attribute::= Nane Val ue

Name: : = -- | (WORD [: Name])

Val ue: : = Conponent
| Sinpl eVal ue ;
I

Si npl eVal ue: : = Ref erence
| Basic

| Operator

| 1 fThenEl se

| Vector

Qperator:: =

(
aryQp Sinpl eVal ue)

Un
| ESi npl eVal ue [BinaryOp SinpleVal ue])
| (SinpleValue [(NaryQp SinpleValue)* 1)
)

| f ThenEl se:: = | F Sinpl eVal ue THEN Si npl eVal ue ELSE Si npl eVal ue FI
Vector::=[[SinplevValue (, SinpleVvalue) *]]

Conponent : : = extends [LAZY] Type Body

Type: : = [NULL | BaseReference]

Body ::= (;| { AttributeList })

Ref erence: : = [LAZY] BaseReference

BaseRef erence: : = ReferencePart (: ReferencePart)*
Ref erencePart:: = ROOT

| PARENT

| (ATTRI B WORD)

| (HERE WAORD)

| TH'S

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 -53- last modified on 23 Aug 2006

| WORD

| (PROPERTY WORD)

| (1 PROPERTY WORD)

| (HOST (WORD | STRING))
|

|

PROCESS
WORD
Basic::= String
| Nunber
| Bool ean
| ByteArray
| [| Basic (, Basic)* |]
| NULL
Nunber : : = DOUBLE
FLOAT
| | NTEGER
| LONG

String::= STRI NG
| MULTI LI NESTRI NG

Bool ean:: = true | false

Byt eArray: : = Hex| Dec| Cct | Bi n| B64
/1 only Hex currently inplenented

UnaryQp:: = !
BinaryQp::= - | / | == | !=] >=] >| <=| <

NaryQp::= + | * | ++ | <> | & | []

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 -54 - last modified on 23 Aug 2006

12

The SmartFrog Lexical Rules

The SmartFrog lexical rules described here are part of the JavaCC input, the
file DefaultParser.jj, which is available in the source distribution. The listing
here is a slight simplification of this file.

/* White Space */
SKIP : ™ "] "\t"| "\n"| "\r"|] "\f"

/* Comments */
SI NGLELI I\ECGVI\/ENT "//"(["\n" "\rt])*
FORMALCOMMVENT: "/ ***"

MULTI LI NECOMVENT: “/* ”*/

/* Reserved Tokens */

RESERVED: ™" | " | "{" | "}" ["[" | "1" | ":" |
"true" | "false" | "NULL" | "--" |
"extends" | "LAZY" | "ROOT" | "ATTRIB" | "HERE" |
"TH'S” | "PROPERTY" | "IPROPERTY" | "PARENT" |
"HOST" | "PROCESS' | "#include" | "(" | ")"
mm=w | pEt | Me=t | st | te=t | &t | otk | M0
F I IS W A IR By B N
"IE" | "THEN' | "ELSE" | "FI"

/* Tokens — using Unicode */
WORD: LETTER (LEl'TER| DI €] T| SPECI AL) *

SPECIAL: [".", "_", "-", @, e, e, e, e
LETTER

"\u0024",

"\'u0041"-"\u005a",

"\ u005f ",

"\ u0061"-"\u007a",
"\u00c0"-"\u00d6",
"\ u00d8"- "\ uoof 6",
"\ uoof 8" - "\ uoof f "
"\u0100"-"\ulfff"
"\ u3040"-"\u318f"
"\ u3300"-"\u337f"
"\ u3400"- "\ u3d2d"
"\ u4e00"-"\u9fff"
"\uf 900" -"\uf af f"

]
DIGT:

[

“\'u0030" - "\ u0039",
"\ u0660"- "\ u0669",
"\ u06f 0" - "\ uo6f 9",
"\ u0966" - "\ uo9ef ",
"\'u09e6" - "\ u09ef ",
"\'u0a66" - "\ uoa6f ",
"\'uOae6"- "\ ulaef ",
"\ uOb66" - "\ uob6f ",
"\ uObe7"-"\ uObef ",
"\'u0c66" - "\ u0cef",
"\ uOce6"-"\uOcef",
"\'u0d66" - "\ uodef ",
"\ u0e50"-"\ udes59",
"\ uOed0" - "\ u0ed9",
"\'ul040"-"\ul049"

|
/* Literals */
STRING ("\"" (
(~["\" n","\r"])
| ("\\"
(["n","t","b", "r", N]
| [roneray oy ot
)
) i)
MULTI LI NESTRI NG (" ##"
(~{"#","\\"])
| "\
(["n", "t b, N]

n", "t
| ["0"- 3][0-7][0-7]

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 -55-
)

) #)
NUMBER: <I NTEGER> | <FLOAT> | <LONG> | <DOUBLE>
INTEGER (("-")? ["1"-"9"] (["0"-"9"])*) | "O"
FLOAT BASE: ("-")?

((["0"-"9"])+ "." (["0"-"9"])* (<EXPONENT>)?

| "." (["0"-"9"])+ (<EXPONENT>)?

| (["0"-"9"])+ <EXPONENT>

| (["0"-"9"])+ (<EXPONENT>)?

)

EXPONENT: ["e","E'] (["+","-"1)? (["0"-"9"])+ >
DOUBLE: <FLOAT_BASE> (["d", "D'])?

LONG <INTEGER> (["I", "L"])?

FLOAT: <FLOAT BASE> ["f", "F"]

Hex: "#HEX#" (["A"-"F', "a-f", "0"-"9", "\n", "\t", 1)*
Qct: "#OCT#" (["0"-"7", "\n", "\t" 1)* "#
Bin: "#BINg" (["0"-"1", "\n", "\t" 1)* "#
Dec: "#DECH#" (["0"-"9", "\n", "\t" 1)* "#
B64: "#B6A#" (["A'-"Z", "a-z","0"-"9", /", "4" "\n", "\t

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

last modified on 23 Aug 2006

SmartFrog Reference Manual v3.06 -56 - last modified on 23 Aug 2006

13

13.1

Predefined SmartFrog Functions

SmartFrog provides a number of functions. These functions are all available
as templates that are defined in a file which must be included if they are to be
used. However, some are also available as operators, using the SmartFrog
operator syntax, and in this case the include file is not required.

The operators are all converted into an instance of the expanded template at
time of parsing, so may in every respect be treated in the same way as a use
of the template itself. Furthermore, it should be noted that any references that
are used within an expression containing operators, these references will be
resolved in the context of the templates — this means that use of reference
parts such as PARENT are hard to use. ATTRI B reference parts are useable
in the normal way.

Note also that since attribute names may contain many of the operator
symbols, it is best to always surround the operators with space characters to
ensure that they do not accidentally “stick” to the names.

The functions are defined by including the f unct i ons. sf file as follows:
#i ncl ude "org/smartfrog/functions.sf"

The functions defined as operators may be grouped into three main
categories: unary, binary and nary.

Unary Operators
There is currently only one unary operator, the Boolean negation operator.
The syntax for unary operators is

(opsynbol val ue)

The surrounding () symbols must be present. All templates for unary
operators have as their parameter the attribute “dat a”. Other attributes are
allowed, but are ignored for the purpose of evaluating the function. They may,
of course, be used for the definition of the data attribute during earlier phases.

13.1.1 not

13.2

Operator symbol: !

The function not is defined as the negation of the boolean attribute “dat a”. If
the attribute is not present or of the wrong type, an exception is reported.

X true;

foo (' x);

bar extends not {
data x;

}
Binary Operators

There are a number of binary operators covering primarily the arithmetic,
comparison and logical operators. The syntax for binary operators is

(val ue opsynbol val ue)

The surrounding () symbols must be present. All templates for binary
operators have as their parameter attributes the names “l ef t” and “ri ght ”,
to indicate which value it is. Other attributes may be present and are ignored
whilst evaluating the operator.

13.2.1 Minus

Operator symbol: -

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 -57- last modified on 23 Aug 2006

The minus operator subtracts the right attribute from the left, resulting in a
number which satisfies the Java rules for numbers. If either of the two
attributes are not numbers, an exception is thrown. Other attributes that may
be defined in the template are ignored.

m nus10 extends m nus {
val ue;
| eft val ue;
ri ght 10;

}

foo extends m nusl0 {
val ue 34;
}

aFoo (34 - 10);

13.2.2 divide

Operator symbol: /

The divide operator divides the left attribute by the right, resulting in a number
which satisfies the Java rules for numbers. If either of the two attributes are
not numbers, an exception is thrown. Other attributes that may be defined in
the template are ignored.

percent extends product {
fracti on extends divide {
enunm denom
left enum
ri ght denom

}
- 100;
}
foo extends percent {

fraction: enum 34;
fracti on: denom 56;

13.2.3 EQ, NE

Operator symbols: ==, | =

These operators are the comparator operators, equals and not equals
respectively. The two attributes, left and right, are compared using the Java
equals method (I ef t. equal s(ri ght)). The result of the function is the
boolean value that is returned by that test.

13.2.4 GE, GT, LE, LT

13.3

Operator symbols: >=, >, <=, <

These operators are the numeric value comparators, testing to see if the left
attribute value is greater than or equal to (or whatever operator is used) the
right attribute. The Java rules for numeric comparison are used.

Nary Operators

Nary operators are operators that are may have a arbitrary number of attribute
parameters. All the attributes provided within the template are assumed to be
part of the function, and the names used to provide these attributes are
ignored. Thus the “unique” name — is normally used for these operators.

The syntax for an nary operator is as follows:

(val ue opsynbol val ue opsynbol val ue opsynbol ...)

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 -58- last modified on 23 Aug 2006

Each of the operator symbols must be identical, though other may be used by
nesting the use of operators wherever a value is expected. The above form is
converted to the expanded template form during parsing, so any references
that are used when a value is expected is resolved relative to the template
and not the operator expression.

13.3.1 concat
Operator symbol: ++

The concatenate function takes each of its attribute parameters and
concatenates them in the order of definition. These attributes are converted to
strings using the t oSt ri ng() Java method. An example of the use of the
concatenate function is:

nyString extends concat {
a "the neaning of life is "

b 42;
c extends concat {
a" b

y
b "Dougl as Adans";
}
}

which results in the string “the meaning of life is 42 by Douglas Adams”.

13.3.2 append
Operator symbol: <>

The append function is similar to the vector function, except that all
parameters must be vectors and these are expanded in-line. The difference
can be seen by considering the same example

nyVect or extends vector {
- ["the neaning of life is "];
- [42];
- extends vector {
-- by
- "Dougl as Adans";

}

which results in the vector
[“the neaning of life is", 42, "by", "Douglas Adans"]

The operator form can be used for the same purpose. The following definition
is equivalent to the definition of myVect or above.

My Vect or (["the neaning of life is"]
<> [42]
<> ["by", "Douglas Adans"]);

13.3.3 sum
Operator symbol: +

The sum function sums each of its attributes which must be numbers, failure
will result in an exception. The names of the attributes are, of course,
irrelevant. An example of the use of the sum function is:

val 1 34;

val 2 45;

num ext ends sum {
- val 1;
- 345;
- val 2

This will result in numbeing set to 424. An equivalent expression is

num (val 1 + 345 + val 2);

© Copyright 1998-2005 Hewlet