
SmartFrog Reference Manual v3.06 - 1 - last modified on 23 Aug 2006

The SmartFrog Reference
Manual

A guide to programming with the SmartFrog

Framework

For SmartFrog Version 3.06

Localized for UK English / A4 Paper

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 - 2 - last modified on 23 Aug 2006

Table Of Contents

 PART 1: AN INTRODUCTION TO SMARTFROG ... 5

1 INTRODUCTION ... 6
2 AIMS OF THE SMARTFROG FRAMEWORK - BASIC... 7

2.1 Configuration...7
2.1.1 Increased operational reliability ...7
2.1.2 Improved quality... 7
2.1.3 Reduced cost... 7
2.1.4 Assured correctness and consistency.. 8
2.1.5 Increased security..8
2.1.6 Improved Customer Experience..8

2.2 The SmartFrog Framework... 8
2.3 Notation... 9
2.4 Components... 9
2.5 Environment...10
2.6 Final Comments...11

3 THE ANATOMY OF SMARTFROG.. 12
4 BUILDING SYSTEMS WITH SMARTFROG... 13

 PART 2: THE SMARTFROG NOTATION AND CORE DATA MODEL................................14

1 INTRODUCTION.. 15
2 THE PRIMARY SMARTFROG NOTATION...18

2.1 Background..18
2.2 Attributes..18

2.2.1 Simple Values... 19
2.2.2 Component Descriptions... 21
2.2.3 Types vs. Prototypes... 23
2.2.4 References... 24
2.2.5 Comments..29

2.3 Include Files.. 29
2.4 sfConfig..30

3 RESOLUTION – SEMANTICS FOR THE SMARTFROG NOTATION ..32
3.1 Type Resolution... 32
3.2 Placement Resolution.. 33
3.3 Link Resolution.. 35
3.4 The Difference Between Types and Links..35

4 TEMPLATE PARAMETERIZATION PATTERN.. 37
5 FUNCTIONS AND OPERATORS.. 38
6 PREDICATES, ASSERTIONS AND SCHEMAS.. 39
7 MAPPING TO THE CORE DATA MODEL... 41
8 PRIMARY LANGUAGE PROCESSING..42

8.1 Functions ... 44
8.2 Predicates ... 44

9 PROGRAMMING WITH THE PARSER.. 45
9.1 Background..45
9.2 Summary of Language Processing.. 45
9.3 The Parser... 46

9.3.1 The Parser API.. 46
9.3.2 Ensuring Security.. 46
9.3.3 Invoking The Parser ... 47
9.3.4 Evaluating The Phases.. 47
9.3.5 Converting to ComponentDescription...47

10 THE COMMON DATA MODEL..49
10.1 Basic Values...49
10.2 Reference... 49
10.3 ComponentDescription.. 50

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 - 3 - last modified on 23 Aug 2006

10.3.1 Core ..50
10.3.2 Copying... 50
10.3.3 ReferenceResolution... 51

11 THE SMARTFROG GRAMMAR RULES..52
12 THE SMARTFROG LEXICAL RULES...54
13 PREDEFINED SMARTFROG FUNCTIONS...56

13.1 Unary Operators..56
13.1.1 not..56

13.2 Binary Operators... 56
13.2.1 Minus...56
13.2.2 divide...57
13.2.3 EQ, NE.. 57
13.2.4 GE, GT, LE, LT.. 57

13.3 Nary Operators..57
13.3.1 concat.. 58
13.3.2 append... 58
13.3.3 sum.. 58
13.3.4 product.. 59
13.3.5 and...59
13.3.6 or... 59

13.4 Other Functions... 59
13.4.1 IfThenElse... 59
13.4.2 vector...60
13.4.3 formatString.. 60
13.4.4 random...60
13.4.5 next..61
13.4.6 ref.. 61
13.4.7 date.. 61
13.4.8 userinput..62

14 SCHEMAS..63
15 COMPARING THE SMARTFROG NOTATION WITH XML.. 66

 PART 3: THE SMARTFROG COMPONENT MODEL..69

1 INTRODUCTION.. 70
1.1 Components.. 70
1.2 Defining Components in the Language... 71

2 THE SMARTFROG COMPONENT MODEL.. 72
2.1 Applications As Component Collections... 72
2.2 Applications and Component Descriptions... 73
2.3 Representing Components With Attributes.. 74

2.3.1 Defining the Component Class..75
2.3.2 Controlling Deployment ...75
2.3.3 RMI... 76
2.3.4 Prim and Compound..76

2.4 Lifecycles... 77
2.5 The SmartFrog API..78

3 PRIMITIVES... 80
3.1 Template Methods..80
3.2 Utility Methods.. 81

4 COMPOUNDS... 83
4.1 Compound Component Descriptions...83
4.2 The Compound Interface... 83
4.3 CompoundImpl.. 85

5 COMPONENT TEMPLATE..87
6 WELL-KNOWN ATTRIBUTES..88

 PART 4: THE SMARTFROG RUNTIME...90

1 DEPLOYMENT IN DETAIL.. 91
1.1 Selecting Deployers... 92
1.2 Termination ...93

1.2.1 Synchronous Termination .. 93

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 - 4 - last modified on 23 Aug 2006

1.2.2 Asynchronous Termination... 93
1.2.3 Terminator Thread.. 94

2 ATTRIBUTES, LAZY LINKS AND RMI OBJECT REFERENCES.. 95
2.1 Accessing Attributes At Runtime ...95
2.2 LAZY links And RMI ... 95
2.3 The Moving ROOT...96
2.4 Modifying Attributes Values.. 96
2.5 Trapping Accesses And Reference Adaptors... 97
2.6 sfHost and sfProcess Attributes.. 98

3 ATTRIBUTE SERIALIZATION..99
4 LIVENESS..101
5 HOOKS...103
6 PROCESSES AND JAVA VIRTUAL MACHINES... 104

6.1 SmartFrog Resource References... 104
6.2 SmartFrog Action Descriptor.. 104

6.2.1 NAME... 104
6.2.2 ACTION..105
6.2.3 SFREF... 105
6.2.4 SUBREF..105
6.2.5 HOST.. 106
6.2.6 PROCESS... 106
6.2.7 Examples... 106

6.3 SFSystem And Command-Line Parameters...106
6.4 Process Compounds...107
6.5 Types Of Processes.. 107
6.6 Process Attributes.. 108
6.7 Accessing Process Compounds And Attributes... 109
6.8 Creating And Naming Sub-Processes..109
6.9 Naming Applications... 110
6.10 HOST and PROCESS Links...110

7 THE SMARTFROG SECURITY MODEL..111
7.1 Introduction .. 111
7.2 Threat Model ... 111
7.3 Security Policy ... 111
7.4 Security Mechanisms ... 112

7.4.1 Built-in security mechanisms.. 112
7.4.2 Assumptions... 113
7.4.3 Known limitations and future enhancements .. 113

8 PROPERTIES.. 115

 PART 5: A SMARTFROG EXAMPLE..117

1 EXAMPLE... 118
1.1 The Printer ..118
1.2 The Generator ...119
1.3 Compiling the Components..121
1.4 The Combined Application.. 121

 APPENDIX A.. 124

1 EXIT CODES FOR SMARTFROG SCRIPTS...125

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 - 5 - last modified on 23 Aug 2006

 Part 1: An Introduction to SmartFrog

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 - 6 - last modified on 23 Aug 2006

1 Introduction
This manual is aimed at those wanting to use and understand the workings of
SmartFrog. It is not a basic tutorial, though hopefully it is not too obscure,
either. The notation is described fully, as is the component model. The
framework, however, is only outlined. For a detailed reference description of
the framework APIs, users should refer to the accompanying Javadoc files.

The manual is divided into several sections:

1. The aims of the SmartFrog system: defining the basic goals of
the system, thus ensuring that there is an awareness of these
aims to aid in understanding the technical details.

2. The SmartFrog notation, describing the details and semantics of
the first configuration description notation to be supported by the
SmartFrog framework; other notations are in preparation but are
not included in this manual.

3. The SmartFrog component model and framework, defining how
to write components and run them within the SmartFrog system.

4. The SmartFrog security infrastructure, describing how SmartFrog
ensures that systems are appropriately protected.

A separate document covers the details of installing and running the
SmartFrog system. A number of examples are also provided and documented
as part of the framework.

This document contains sections that assume differing levels of knowledge
and familiarity with the SmartFrog system. It is suggested that a first-time user
read only those parts that are essential before experimenting, then
progressing to more advanced topics as familiarity develops. To aid in this,
sections or sub-sections are tagged with one of the following labels: basic,
advanced and expert indicating progressively more advanced topics. If a
section is tagged as a particular level of complexity, and a sub-section is
considered to be of higher level, the sub-section will be tagged with this higher
level.

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 - 7 - last modified on 23 Aug 2006

2 Aims Of The SmartFrog Framework - Basic
2.1 Configuration

For many years HP Labs has been involved in the development of large-scale
distributed systems, and in particular management and measurement
systems. From this experience, it became clear that configuration is often the
major hurdle in the development, adoption and use of such large systems.
This experience is supported by evidence from other domains, such as
telecom service platforms, large scale e-service hosting environments, and so
on. The weight of evidence clearly indicates that many of the problematic
aspects of developing, delivering and maintaining such systems are resolved
by the introduction of a well-designed, intuitive configuration system. These
observations led to the development of the SmartFrog configuration
framework described in this manual.

There are several significant reasons for investing in a powerful and flexible
configuration environment, which in combination illustrate why this area is in
many cases essential for the success of a large system. These are discussed
below as a clear understanding of these reasons help in determining the
requirements for a supporting environment.

2.1.1 Increased operational reliability
Configuration errors are the major cause of system failure. It is no
coincidence that at least one system development inside of HP has termed
the development of a tailored configuration system as its ‘high-availability
programme’. It is pointless spending money on expensive replicated
databases and computation if they contain wrong data, or are carrying out the
wrong calculations. From hard experience, they know that the human element
is by far the weakest point in any system of even moderate complexity.

Many systems are required to be resilient to a (small) number of failures,
providing support for dynamic system reconfiguration in the case of such
failures. This should be provided via failure detection mechanisms triggering
re-configuration actions within the system components themselves (such as
instigating fail-over) and through the configuration system to ensure a
consistent view of the current configuration and to provide appropriate re-
configuration policy (for example, where to create the replacement
components in the case of a processor failure).

2.1.2 Improved quality
After examining the architecture and design of several large-scale systems it
became clear that the developers of the various component sub-systems had
each created their own configuration infrastructure, often not realizing that this
area is of great importance to the overall system. Each makes separate
decisions as to format of the data, how it is stored, and so on. In addition,
since some aspects of configuration such as configuration description or
failure detection and recovery can be extremely complex, the separate
development groups frequently do not utilize best practice.

2.1.3 Reduced cost
Costs can arise for several reasons and in several areas such as
development, installation and maintenance. For each of these, providing well-
defined best-practice procedures and well-implemented support environments
for configuration can save significant time and hence money. From
experience with several systems, the majority of support calls for these
systems (and hence source of recurring cost to the platform provider) come
from configuration issues.

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 - 8 - last modified on 23 Aug 2006

2.1.4 Assured correctness and consistency
Validation rules need to be provided to ensure that a configuration is correct
before it is deployed into the running system. These rules should include
dependencies between various system components (e.g. version
dependencies) as well as rules governing repetition (e.g. each web server
should run the xxx process and …), replication (e.g. two cooperating
instances of this component should exist for reliability...), location (e.g. this
component should be close to the database...), and so on. Tools for modelling
and reasoning about the configurations are required.

Given a configuration that has been defined and validated, the configuration
must then be correctly and verifiably instantiated, preferably automatically,
with appropriate error handling in the case of failure. Discovery services must
be present to enable binding of services to each other as defined in the
configuration, and status monitoring capabilities are required to provide
management tools with the ability to monitor the overall state of the system
and to ensure it is correct with respect to the desired configuration.

Complex systems may in fact be impossible to configure manually if the
requirements change faster than individuals ability to track these changes and
carry out the complex reconfiguration tasks. In these cases, automated,
adaptive configuration, driven from general rules and auto discovery, is the
only solution.

2.1.5 Increased security
System configurations are vital to the integrity of the system. Consequently, in
many environments where physical and network isolation cannot be
guaranteed, a high level of basic system security must be provided. This
involves not only protecting the configuration data itself from unauthorized
access, but also the run-time environment must be secure. This includes
discovery protocols, component instantiation services, management services
and so on. It is typically hard to provide a secure environment when many
independent and diverse techniques are used to provide the configuration, so
again a single solution implementing best practice is an essential step to
ensure system integrity.

2.1.6 Improved Customer Experience
A major issue to be considered in designing systems is that different classes
of user have different requirements. All too frequently, the configuration
information is designed for the convenience of the system developer not the
system operator. Data is required in a form that often does not reflect the
skills of the administrator, or maybe is replicated in several files, or distributed
over many processors, each of which can lead to a slow and error-prone
configuration process. Configuration should be done in ways useful to the
operator and adapted to the system and not by expecting the operator to
adapt. This can be expensive and hard to implement unless there is extensive
support for the systems developers.

2.2 The SmartFrog Framework
SmartFrog is a framework for the development of configuration-driven
systems. It was originally designed as a framework for building and managing
large monitoring systems where flexible configurations are essential.
SmartFrog is currently in use within several products, though it is not a
product in its own right.

The name reflects its basic design concept – the Smart Framework for Object
Groups. It defines systems and sub-systems as collections of software
components with certain properties. The framework provides mechanisms for
describing these component collections, deploying and instantiating them and
then managing them during their entire lifecycle.

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 - 9 - last modified on 23 Aug 2006

The framework consists of three major aspects:

1. The SmartFrog configuration description environment, consisting of a
description notation and tools to enable the storage, validation and
manipulation of these descriptions.

2. The SmartFrog component model, defining the interfaces that a software
component (or a management adapter for a component) should
implement. These interfaces are to support the various lifecycle
operations such as creation, versioning and termination, as well as
management actions such as accessing status information.

3. The SmartFrog configuration management system, which uses these
descriptions and management adapters to instantiate the software
components and to monitor them throughout their lifecycle in a secure
way, including an integrated run-time environment providing capabilities
such as discovery and naming.

2.3 Notation
The SmartFrog ‘notation’ is in fact defined as a set of open data structures. In
principle, this definition can support a number of parsers that provide different
textual versions of the notation (for example using XML as a surface syntax).
Additionally, it’s possible to develop GUI tools that allow the users to “drag-
and-drop” their configurations using the data structures as the common form.
At this stage, no generic GUI tools are available for SmartFrog, though
experimental versions have been built; usually such tools are normally best
tailored to a specific class of system.

The notation is object-oriented, supporting inheritance and extension of
configuration descriptions. These descriptions consist of component
definitions, associations and relationships between the components, and
workflows associated with the lifecycle of the components and the system as
a whole. The descriptions may be parameterized enabling multiple
instantiations with different configuration data, and validations may be
provided which verify that these instances are correct before an attempt is
made to deploy the configuration.

The current version of SmartFrog, though in principle able to support multiple
textual languages, just provides its own specialized notation “out-of-the-box”.
Others are in preparation for future releases.

The notation is not used to define behaviour, merely the structure of
collections of components and their relationships with other collections. It is
not a programming language. The behavioural part of a component is
assumed to be defined in an existing programming language (such as C or
Java) and the component will be started as needed by the SmartFrog
configuration management system. Currently only Java is tightly integrated.
Java adaptors must be used to wrap code written in other languages, and
these are relatively simple to implement.

2.4 Components
The component model supported by SmartFrog is a simple, extensible set of
interfaces providing access to key management actions – such as instance
creation, configuration, termination, and so on. A component may be fully
integrated (i.e. it may implement the defined management interfaces directly,
and hence be written in Java) or it may be independent, in which case a
management adapter must be provided. Several standard management
adapters or base integrated components have been written to provide
common behaviours and these may be extended or modified as appropriate.

Each component (or adapter) must implement a standard lifecycle,
implemented as a set of action routines that the environment invokes in the

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 - 10 - last modified on 23 Aug 2006

appropriate order and at the right time to carry out the configuration or other
management task required. The lifecycle process is governed and controlled
by the definition of workflows within the SmartFrog system to provide a very
flexible and adaptable environment for carrying out the various configuration
tasks.

A complete set of APIs is available to the components that allow them to
access the configuration information, locate other components as defined in
the configuration and to alter the running configuration if so desired.

2.5 Environment
The SmartFrog configuration and management infrastructure is supported by
a collection of services, such as:

 deployment – the distribution of code, configuration data and the
instantiation of components in the right place with certain ‘transactional’
guarantees

 discovery and naming – providing a number of binding services to allow
components to locate each other and communicate

 management – every component is manageable via tools provided with
the framework, via the web, or other consoles (if so configured) with no
developer effort.

These services are incorporated so as to provide a seamless and coherent
programming and configuration model. The benefits of this approach are in
providing configuration abstractions to component developers that allow
multiple configurations of different scale to be produced without altering the
components in any way. The environment is broken into several well-defined
functional units, each of which has some specific role to play. Furthermore
each of these operates through well-defined and open interfaces, so it is easy
to replace the existing functional units, or even to make the selection of which
functional unit to use part of the configuration description.

For example, suppose a component, say an SS7 stack, requires the use of
another, a real-time database for storing connection information to help the
recovery process in the case of system failure. This may be done in many
ways. For example, the database could name itself under some well-known
name in some well-known naming service, and the stack could find it there.
Alternatively, the system may use SLP discovery to locate the database, or
perhaps look in a file for this location information. Each approach has
advantages in different system contexts, but the programmer typically has to
decide up front which to support.

Not so with the SmartFrog integrated environment. The SmartFrog system
supports the notion of a binding and provides multiple ways – determined by
the environment and driven by the configuration descriptions – for these
bindings to be resolved. This includes all the above approaches and others
may be added as required. So a programmer need only obtain its binding
from the environment and the precise mechanism is handled by the
SmartFrog environment as defined by the configuration.

SmartFrog is a framework, and is designed to make it easy to provide
additional binding mechanisms as they are required – for example changing
the naming service or adding a specialized binding service which uses some
other technologies such as databases or directories.

This is equally true of the other services. Consider deployment; it is possible
to provide different mechanisms for ensuring that a component is created in
the right place. For instance, it might be by hostname, or perhaps by some
computer’s role within the system, or perhaps it needs to be close to another

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 - 11 - last modified on 23 Aug 2006

existing component. Each of these location mechanisms may be integrated
into the run-time environment and then referenced freely within the
configuration descriptions.

2.6 Final Comments
The design goals for SmartFrog were to produce a very lightweight and
flexible configuration and management infrastructure capable of scaling from
small systems to very large. This has been achieved through the use of the
framework concept and providing users with the ability to alter the low-level
semantics by replacing functional units, yet providing standard capabilities by
offering default implementations of these units. The system also provides a
flexible configuration description notation, with potential for multiple textual or
GUI syntaxes to be used targeted at specific system architectures.

Applications of SmartFrog have clearly demonstrated that systems are more
quickly implemented using the technology, and that the structure imposed
upon the implementations by the use of SmartFrog is beneficial to long-term
reliability, usability and manageability.

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 - 12 - last modified on 23 Aug 2006

3 The Anatomy of SmartFrog
This section attempts to lay out the main aspects of the SmartFrog service
deployment framework, describe their relationships, and map them into the
structure of the reference document.

As described in the introduction, it consists of three main aspects:

1. The SmartFrog notation, a language in which to describe the
configurations, also known as service descriptions.

2. The SmartFrog component model, the way in which programmers create
components that are created and managed by SmartFrog as part of a
service and which can interact with the system. These are deployed
according to the service description.

3. The SmartFrog runtime, the collection of services that exist as part of the
SmartFrog system. This is also know as the deployment engine, but is
strictly a misnomer since it is in reality a collection of predefined
components.

These various components can be seen from the following outline diagram of
a SmartFrog system.

These three aspects will now be examined in a little greater detail.

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

Service
Descriptions

SmartFrog Runtime

•Which service components?
•Running where?
•How are components initialised?
•How are components connected?
•What order is used for

component start-up?
Deploy

SmartFrog Reference Manual v3.06 - 13 - last modified on 23 Aug 2006

4 Building Systems with SmartFrog

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 - 14 - last modified on 23 Aug 2006

 Part 2: The SmartFrog Notation and

Core Data Model

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 - 15 - last modified on 23 Aug 2006

1 Introduction
The statement that there is a SmartFrog notation is a simplification of reality.
SmartFrog may support many notations, though it provides a 'standard'
primary notation out of the box. To enable this, SmartFrog provides a well-
defined interface between the language processing parts of SmartFrog and
the run-time as a well-defined data model: the set of Java classes that must
be used by the language processing to represent the data delivered to the
runtime system.

Roughly speaking, the model of SmartFrog language handling is shown in the
following diagram:

As is illustrated in this diagram, there may be many notations, each with their
own language processing, which at the back-end of that processing produces
an instance of the data model that can be understood by the remainder of the
SmartFrog system. Alternatively, programmes such as a drag-and-drop gui
can produce the data in the correct form directly.

To support the development and use of additional languages, the SmartFrog
framework provides a rudimentary structure for integrating language
processors. A language processor is assumed to consist of three major steps:
parsing, executing some processing phases, and then conversion to the
standard data format. The set of processing phases are assumed to be
language specific, including having the empty set of phases.

This is illustrated in the diagram above, also showing the associated Java
calls used within the framework. These are not important at this stage and are
explained in detail later in the reference manual.

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

text

primary sf
notation

text

other
notation
(e.g. cdl)

graphical
or

programmatic

data in standard
core format

(ComponentDescription)

primary
language

processing

other
language

processing
possible
format

conversion

deployment or
other use

text
in some
notation

language-specific
representation

language-specific
representation

core
model as

ComponentDescriptions

parse()
sfResolvePhase(X)

sfAsComponentDescription(X)

SmartFrog Reference Manual v3.06 - 16 - last modified on 23 Aug 2006

Note that the core data mode and the primary notation are closely coupled.
This means that in effect the core model can in some ways be seen as a true
subset of the primary notation – it could be unparsed into the primary notation
and parsed back directly into the core form without requiring any language
processing.

Indeed, the two are sufficiently close that the Java classes that are used to
directly represent parse-trees of the notation are derived from those of the
core model, and much of the same terminology is used in both. So for
example, an attribute-set in both is called a Component Description, the only
difference being that in the primary notation this may have a super-type from
which it inherits, whereas in the core model it may not.

Each notation is assumed to have an associated name, and this name is
used in the construction of a parser (selected via a standard language-name
to parser-classname mapping). Furthermore, if text files or URLs are handled
by the SmartFrog system, the extension associated with that file is assumed
to indicate the name of the notation in use. Thus for the primary notation, files
should end with “.sf”.

Once converted to the core format, the data represented may be used in
several ways:

1. It can be data that is passed to components in the same way as any other
data. Indeed many of the components provided as part of the Smart frog
distribution exchange such data through their APIs.

2. It can represent the set of components that should be deployed by the
SmartFrog run-time.

Now the second case is in fact just a special case of the first, where the data
is passed to one of the standard SmartFrog 'Compound' components, such
as the ProcessCompound, that understands how to interpret these
descriptions as that of a distributed set of components. This duality is
described in the following diagram:

SmartFrog

Description

(in Notation)

Java

Data

Structures

(core model)

Run-Time

ServicesRunning

Application
Use as Data Structure

Compilation
“Resolution”

SmartFrog

runtime

Create
Application

Interpret as
Application
Description User

Classes

The reference manual the primary notation and the core data model.

1. The primary notation is covered in this part of the reference manual. This
is the only notation covered in the reference manual.

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 - 17 - last modified on 23 Aug 2006

2. The programming model for interacting with the language framework is
given in section REF. This provides details of how to invoke a parser for a
specific notation, how to drive the phase-resolution steps of the language,
and finally how to covert to the standardized form for handling within the
rest of the SmartFrog framework.

3. The core data model is described in section REF. This is only a partial
description and the primary source of this information should be the
Javadoc for the classes involved.

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 - 18 - last modified on 23 Aug 2006

2 The Primary SmartFrog Notation
2.1 Background

The primary SmartFrog notation has been designed to provide users of the
SmartFrog framework a simple, yet powerful, attribute description language.
As such, the language has similar aims to that of XML - though it predates
XML by a couple of years. There are a number of significant differences
between XML and the SmartFrog notation that are worth explaining and this is
done in a section 15.

The primary notation is designed to be very close to the common core data
model, but provides a number of additional important useability features,
including inheritance, linking, attribute placement, functions and various types
of well-formedness predicate. Indeed all of the classes used by the parser to
represent the abstract syntax tree are derived from those of the core data
model.

2.2 Attributes
A SmartFrog description consists of an ordered collection of attributes. The
attributes are ordered because several of the operations in the SmartFrog
framework require an order, for example the order in which the configuration
should be instantiated.

Each attribute has a name and a value, this value being either a simple value
(integer, string, etc.), or an ordered collection of attributes known as a
component description. This recursion provides a tree of attributes, the leaves
of which are the basic values. A value may also be provided by reference to
another attribute. This is described by the following BNF, where Stream
indicates the entry point to the SmartFrog parser.

Stream ::= AttributeList

AttributeList::= (Attribute
 | #include String
 | ; // allow arbitrary extra ";"
)*

Attribute::= Name Value

Name::= -- | (WORD [: Name])

Value::= Component
 | SimpleValue ;
 | ; // instance of SFNull

From this it is clear that the input to the parser is a collection of attributes,
each named and having an optional value. If the value is not present, the
value is defined to be an instance of the class SFNull (note that the other
way of defining a value of class SFNull is to use the basic value NULL). The
reason for providing this feature is to enable the use of attributes where the
presence of the attribute is what is important, not its value.

The syntax for a name will be covered later, but for now it can be considered
to be either a simple sequence of letters and digits, starting with a letter, or
the double-hyphen “--“). The double hyphen is for use at times when the
attribute name is not important and so a new unique name is generated and
used. This is particularly useful with the function syntax described in Section
4, and most specifically the nary operators.

Include files are covered in more detail in section 2.3, but in general they
consist of parseable SmartFrog text which are parsed as attribute lists and
unpacked into place within the container attribute list.

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 - 19 - last modified on 23 Aug 2006

Values can be divided up into two main categories: nested attribute sets
(components) and the rest (simple values) which include numbers, strings,
vectors of these, and so on. In addition it is possible not to provide a value for
the attribute, or more precisely to give a null value to it (an instance of the
SFNull class). This is captured by the third clause of the BNF for values
above.

2.2.1 Simple Values
Values are expressible in several syntactic forms.

SimpleValue::= Basic
 | Reference
 | Operator
 | IfThenElse
 | Vector

Basic Values
The primary way is to provide a basic value, a literal syntactic form for the
basic core values in the SmartFrog language. The syntax for the basic values
is best given by example.

Integer: 345
Long: 65325L or 65325l
Float: 34.76F or 34.76f or 34.76E-10F or 34.76e+10f or 34.76E10f
Double: 1534.45 or 1534.45D or 1534.45d or 1534.45E10 or 1534.45E-10D
String: "this is a string"
Multi-line String: ## This is a string
 Over many lines #
Boolean: true
SFNull: NULL // alternatively, leave the value empty
Byte Array: #HEX#AB348eAb#

Consequently, an example of a piece of SmartFrog text is as follows

portNum 4074;
hostname "ahost.smartfrog.org";
isHighPriority false

defining three attributes with the appropriate values.

In addition to these basic values, it is also possible to give vectors of basic
values (as opposed to the more extensive vector syntax given below). These
vectors are limited to containing basic values, and other vectors of basic
values.

userList [| "fred", "harry" |];
empty [| |];
listOfLists [| [| 1,2,3 |], [| 4,5,6 |] |];

The full syntax for the basic values is

Basic::= String
 | Number
 | Boolean
 | ByteArray
 | [| [Basic (, Basic)*] |]
 | NULL

Number::= DOUBLE
 | FLOAT
 | INTEGER
 | LONG

String::= STRING // "....."
 | MULTILINESTRING // ##....#

Boolean::= true | false

ByteArray::= #HEX#....#
 | #DEC#....#
 | #OCT#....#

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 - 20 - last modified on 23 Aug 2006

 | #BIN#....#
 | #B64#....#

Note that byte arrays will be definable as hexadecimal (HEX), decimal (DEC),
octal (OCT), binary (BIN) and base64 (B64), however only hexadecimal is
currently implemented. Depending on the definitional form, the characters that
may be used and the number that must be present are different. White space
characters are ignored so that neat tabbed layouts may be used. They are
treated in the syntax as single tokens.

References
The second form of simple value provided by the language is the reference. A
reference is a link between the value of one attribute and that of another. This
allows for the definition of data in one place and reused in many, easing
maintenance issues for descriptions. References are dealt with in more detail
in section 2.2.4, but as a first example the use of a name in the value position
provides the link to the attribute of the same name. So for example:

x 42;
y x;

defines y to be the same value as x, namely 42;

Operators
The remaining three forms of value definition are syntactic sugar for the use
of functions. The semantics of functions are outlined in section 4 and
described in detail in section . However, their syntax is

Operator::=
 (
 (UnaryOp SimpleValue)
 | (SimpleValue [BinaryOp SimpleValue])
 | (SimpleValue [(NaryOp SimpleValue)*])
)

UnaryOp::= !

BinaryOp::= - | / | == | != | >= | > | <= | <

NaryOp::= + | * | ++ | <> | && | ||

This states that the use of an operator is always defined within brackets (...)
and that there are three types of operator: unary, binary and nary. Although
with the nary operators, more than one instance of the operator symbol is
present, it must always be the same operator; they cannot be mixed.
However, other operators may be nested within another set of (). The
following examples may help to make the syntax clear:

aTruthValue true;
anotherValue (! aTruthValue) // the only unary operator: not
aNumber 45;
aMinus (100 – aNumber) // a binary operator
aSum (aNumber + aMinus + 100) // an nary operator

These operators are all converted at time of parsing into the template
representation of a function, and hence at no time willl operators appear in an
description generated from the parsed form.

Note that attribute names can contain rather a large number of special
symbols, such as “+” and “-”. This means that there is a danger that an
operator may lexically stick to a name if not separated from it by white space.
As a consequence, it is good practise to always use white space around
operator symbols.

If-Then-Else
Similarly to operators, if-then-else expressions are shorthand for the template
form. This is described in detail in section . The syntax for this expression
form is

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 - 21 - last modified on 23 Aug 2006

IfThenElse::= IF SimpleValue
 THEN SimpleValue
 ELSE SimpleValue
 FI

The line breaks being, of course, optional. The “if” value is a boolean and
depending on the result the expression takes the value of the “then” or “else”
values. The FI is merely a closing keyword. An example of its use is:-

val1 42;
val2 43;
diff IF (val1 > val2) THEN (val1 – val2) ELSE (val2 – val1) FI;

Vectors
The final form of simple value is the vector. Vectors are lists of values and are
constructed using the vector function described in section . However, to
simplify its use, the following syntactic form has been provided.

Vector::= [[SimpleValue (, SimpleValue) *]]

Thus a vector is a sequence of values separated by “,” and delimited by
“[]”. If no value is provided within the vector, an empty vector is returned.
Vectors may be nested to produce vectors of vectors. Example uses of
vectors are:

v1 [1,2,3];
v2 [9,8,7];
v3 [v1, v2]; // same as [[1,2,3],[9,8,7]]

Note that there are two syntaxes for vectors – the one given here which
provides the ability to embed references and which therefore requires a
degree of processing (known as resolution). It is parsed into the use of the
vector function rather than directly into a vector. The other form, using the “[|
|]” delimiters, parses directly into a vector and hence may not have references
within the definition. The reason for having simpler form in addition to the
more general form is is that there are times when the fully processed
(resolved) data structures need to be unparsed, and then re-parsed at some
future time without further transformation. A example of this is during the
signing of a description for security purposes.

 Values of Other Classes
The set of values that can be described by the use of the language is limited
to a few basic classes and collections of these. It would be useful to be able
to include values from other classes in Java. These in principle can be
generated in functions, or some user-defined phase, and added to the
attribute sets. However, there are problems with this for SmartFrog, and in
particular with some aspects of the security where descriptions transformed to
core form need to be signed and this is restricted to the known classes.

Consequently the conversion to the core form ensures that the values
represented in the attribute sets, the component descriptions, are limited to
these core classes. If other values need to be held within the tree, it is
recommended that they are held in serialized form within a ByteArray value.
This will need to be deserialized by the component at the time of deployment.

2.2.2 Component Descriptions
Attributes may have values that are collections of other attributes, known as
component descriptions. They obtain their name from the fact that they may
be interpreted by the framework as the description of a component, though
they may equally be used to describe structured data.

A component description consists of two parts, a reference to another
component description to act as a source of attributes (the type), and a
collection of attributes that are then added to, or override, the attributes of the
referenced collection (the body). The syntax is:

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 - 22 - last modified on 23 Aug 2006

Component::= extends [LAZY] Type Body

Type::= [NULL | BaseReference]

Body ::= (; | { AttributeList })

The LAZY keyword may be largely ignored; it is merely a tag and only has a
semantic effect during the deployment of a SmartFrog application. Extension
of an existing LAZY component description does not inherit the tag.

Both the reference and the attribute list are effectively optional. If neither is
present, the resultant attribute list is defined to be empty. The syntax is most
easily explained through an example:

SFService extends { // an implicit extension of NULL
 portNum 4047;
 hostname "ahost.smartfrog.org";
 administrators ["patrick"];
}

UseableService extends SFService {
 // an extension of the previous compnent
 portNum 4048; // override the definition of portNum
 users ["fred", "harry"]; // add a new attribute
}

The text consists of two attributes, both of which have values that are
collections of attributes. The second of these, UseableService, is defined
as an extension of the first SFService, with two attributes added to or
overwriting those inherited. The text is semantically identical to the following:

SFService extends {
 portNum 4047;
 hostname "ahost.smartfrog.org";
 administrators ["patrick"];
}

UseableService extends {
 portNum 4048;
 hostname "ahost.smartfrog.org";
 administrators ["patrick"];
 users ["fred", "harry"];
}

Note that the attributes in a component description are ordered and that when
an attribute is overwritten it maintains its position, but when it is a new
attribute it is added to the end. The process of expansion of the inheritance in
this way is known as Type Resolution and is explained further below.

Note also that the parsed stream is considered to be in an implicit,
anonymous (i.e. not named in an outer component description), component
description known as ROOT.

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 - 23 - last modified on 23 Aug 2006

portNum 4047;
hostname “ pgoldsac.hpl .hp.com”;
admininstrators [“patrick”];

portNum 4048;
users [“fred”, “harry”];

Implicit Root ComponentDescriptoon

SFService

UseableServce

extends

NULL

extends

Implicit Root Component Description

UseableServce

extends

portNum 4048;
hostname “ pgoldsac.hpl .hp.com”;
admininstrators [“patrick”];
users [“fred”, “harry”];

portNum 4047;
hostname “pgoldsac.hpl .hp.com”;
admininstrators [“patrick”];

SFService

extends

NULL

NULL

original semantic equivalent

The example is also shown in the diagram. It clearly shows that there are two
kinds of relationship between component descriptions. One is the
containment relationship, where a component description contains an
attribute that is itself a component description. The second is the inheritance
or extension relationship. This second class of relationship is one that can be
transformed, by type resolution, to an equivalent one containing no extension
(also indicated by the NULL extension).

Whilst the extension relationship is merely a convenient way of defining
attributes, the containment hierarchy is a more fundamental construct. It
should be noticed that that containment hierarchy effectively provides a
naming scheme by which attributes may be referenced. In this it is similar to
other such named hierarchies, such as directory hierarchies common in files
systems.

2.2.3 Types vs. Prototypes
SmartFrog does not define types for attributes and components. Rather it
defines the notion of a prototype (c.f. the programming language Self). Each
attribute whose value is a component description may be considered as a
prototype for another: it may be taken and modified as appropriate to provide
the value for the new attribute. The mechanism for this is the extends
construct.

Any attribute whose value is a component description may be, at a later
juncture, selected and modified to provide a new component description to be
bound to a name. This new attribute may be further modified by subsequent
attributes. In this way, it is possible to provide partial definitions, with default
values for attributes, to be completed or specialized when used. This provides
a simple template mechanism for components.

Consequently, there are no separate spaces of types and instances; every
component is logically an instance, but may also be a prototype for another.
However, it is clear that in providing descriptions, some components will be
defined with the intention that they be used as prototypes for other
components, whilst others will be defined without that expectation. Whilst this
may appear strange in the first instance, it turns out to be one of the main
strengths of the SmartFrog notation.

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 - 24 - last modified on 23 Aug 2006

2.2.4 References
References may occur in three places in the syntax: as the name of an
attribute – known as a placement, as a reference to the extended component
(the prototype) of a component description, and as an attribute value referring
to another attribute whose value is to be copied – known as a link.

The primary purpose of a reference is to indicate a path through the
containment hierarchy defined by the components. In this, it is similar to the
notion of path common in file systems in operating systems such Linux. A
path defines a traversal of the directory hierarchy, a structure similar to the
component hierarchy.

The syntax for references is as follows:

Reference::= [LAZY] BaseReference

BaseReference::= ReferencePart (: ReferencePart)*

ReferencePart::= ROOT
 | PARENT
 | (ATTRIB WORD)
 | (HERE WORD)
 | THIS
 | WORD
 | (PROPERTY WORD)
 | (IPROPERTY WORD)
 | (HOST (WORD | STRING))
 | PROCESS

Thus, a reference is a colon-separated list of parts each of which indicates a
step in the path through the containment tree. Examples of references are:

PARENT:PARENT:foo:bar
ATTRIB a:b
ROOT
x
HOST 15.144.56.65:foo:bar

Normally a reference indicates a path through the containment tree to an
attribute whose value should be copied, or a component description in which
an attribute should be placed. These references are “resolved” during the
language processing to eliminate them and to carry out the appropriate
copying or placement.

However, occasionally the reference itself is the desired value, or the
reference cannot be resolved during language processing as the data
referenced is not available until a later stage. Under these circumstances, the
keyword “LAZY” is prefixed to the reference to indicate that the reference
resolution should be delayed.

The general rule for the interpretation of a reference is that the reference is
evaluated in a context (a component description somewhere in the description
containment tree), and that each step moves the context to a possibly
different component for the remainder of the reference to be evaluated. This
is equivalent to path evaluation in a Linux file system, the path is evaluated in
a current directory, and each part of the path moves the context to another
directory.

The semantics of each of the reference parts is as follows: starting at
component in which the reference is defined…

 PARENT - move context to the parent (container) component if it
exists, fail otherwise (c.f. Linux “..”)

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 - 25 - last modified on 23 Aug 2006

 HERE WORD - look for the attribute named “word” in the current
context, fail otherwise

 ATTRIB WORD - look for the attribute named “word” in the current
context or anywhere in the containment hierarchy (the closest is
chosen), move to the context defined by this attribute, fail if no
attribute is found in the containment hierarchy

 ROOT - switch context to the outer-most component (normally the
implicit root component (c.f. Linux “/ “)

 THIS – keep the context the same, don't switch (c.f. Linux “.”)

 WORD – the interpretation of the WORD depends on the location. If it
is the only part in the reference, or the first part, it is interpreted as
ATTRIB. If it is the second or later part of a reference it is interpreted
as HERE.

Some examples of references (in this case link references) are as follows:

sfConfig extends {
foo extends {

jan 1;
feb 2;
mar 3;

}
bar extends {

a 42;
b “a string”;
c [1, 2, 3];

}
baz extends {

ref1 ROOT:sfConfig:bar:b;
ref2 ATTRIB foo:jan;
ref3 ref2;

}
}

sfConfig extends {
foo extends {

jan 1;
feb 2;
mar 3;

}
bar extends {

a 42;
b “a string”;
c [1, 2, 3];

}
baz extends {

ref1 “a string”;
ref2 1;
ref3 1;

}
}

The arrows in the left-hand text show the path followed as the references are
resolved to obtain the referenced attribute values, noting that the resolution of
ref3 will follow the resolution of ref2. The contexts traversed as the
resolutions progress are shown boxed and the right-hand text shows the
result of resolving the three links.

In addition to these four structural reference parts, there are four others that
are not appropriate for all circumstances and are not related to the
containment hierarchy. These are

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 - 26 - last modified on 23 Aug 2006

 PROPERTY WORD – return the value that is the Java system
property named WORD. It may only occur at the end of a reference,
and only in a link. Syntactically it may occur anywhere, however the
remainder of the link is ignored. It is usually used in conjunction with
LAZY. Without LAZY, the value of the property at the time of parsing
will be used; with LAZY the application run-time value of the property
will be used when the link is resolved – see section 2. The property is
always a string.

 IPROPERTY WORD – as for PROPERTY, but the property is
interpreted as indicating an integer which is parsed and returned as
such.

 HOST (WORD | STRING) – switch to the context of the process
compound on the host name WORD (or STRING – which must be
used if supplying an IP address, but may also be used with a host
name). This reference part is also used in conjunction with the LAZY
keyword and only in links. It is used to provide a naming service for
applications within the SmartFrog system. Again, without LAZY the
parser will look-up the value in the remote process compound, with
LAZY this will be done at run-time when the link is resolved – see
section 2.

 PROCESS – switch to the context of the process compound of the
current process. This is also used in conjunction with the LAZY
keyword and only in links. It is used to provide a naming service for
applications within the SmartFrog system. Again, without LAZY the
parser will look-up the value in the remote process compound, with
LAZY this will be done at run-time when the link is resolved – see
section 2.

The above rules determine the general interpretation of references. However,
each of the syntactic contexts has its own slight semantic variation; these
variations appear in the detailed definition of the semantics for references.

Reference Elimination – Resolution
The key to the semantics of the SmartFrog notation is the process by which
references are eliminated. This is necessary for each of the three syntactic
locations where references may occur – prototype references, placement
references and link references. The process by which references are
eliminated is known as reference resolution. However, each type of reference
has a different notion of resolution and so each has a specific resolution
action – known respectively as type resolution, placement resolution and link
resolution. This last name is historically also known as deployment resolution;
this old name appears in parts of the API and is kept for backward
compatibility. The resolution steps are described in more detail in the next few
sub-sections, and then revisited as a whole to examine their interaction with
each other.

Prototype References
References to prototypes, as defined in the following syntactic context,

Component ::= extends [LAZY] BaseComponent
BaseComponent ::= [Reference] (; | { AttributeList })

are resolved as described above except in one respect: if the reference to the
prototype consists of a single WORD part, it is interpreted as ATTRIB WORD in
the usual way.

Thus, the following are equivalent

Foo extends Bar { …}
Foo extends ATTRIB Bar {…}

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 - 27 - last modified on 23 Aug 2006

This is to provide a greater degree of convenience when referring to a
prototype as these are most often defined in the outermost implicit root
context, and frequently defined in an included file. Using this re-interpretation
using ATTRIB, rather than adding an implicit ROOT reference part to the front,
ensures that global definitions of prototypes at the top level may be locally
overridden if required.

The following example demonstrates most of the situations:

Foo extends { a 1; }

Bar extends {
 foo extends Foo;
}

Baz extends {
 foo extends {
 b 2;
 }

 foo1 extends Foo; // recall - this is equivalent to ATTRIB Foo
 foo2 extends ROOT:Foo;
 foo3 extends PARENT:Foo;
 foo4 extends PARENT:PARENT:Foo;
}

After type resolution, which includes the merging and overwrite of attributes
as described in section 2.2.2, the example is equivalent to:

Foo extends { a 1; }

Bar extends {
 foo extends { a 1; } // ATTRIB Foo finds the outermost
}

Baz extends {
 foo extends { b 2; }
 foo1 extends { b 2; } // ATTRIB Foo finds the closest enclosing
 foo2 extends { a 1; } // ROOT:Foo finds the one in the root
 foo3 extends { b 2; } // PARENT:Foo finds that in the parent
 foo4 extends { a 1; } // PARENT:PARENT:Foo finds that in
 // the root (in this case)
}

Placement References
An attribute’s name may be a reference, as described in the syntactic clauses

Attribute ::= Name Value
Name ::= BaseReference

This is not completely accurate, as the syntax in fact limits references to being
a reference containing WORD values, the other reference parts are considered
erroneous.

The resolution of the reference is again largely as described above, with the
following modification.

The last reference part of the reference must be a WORD and is treated
differently. This word part is not strictly part of the reference, but is used to
identify the name of an attribute that is to be created (as opposed to
referenced) in the context of the prefix part of the name reference. Thus in the
attribute definition

foo:baz:bar 42;

the foo:baz is a reference to a location, bar is the name of the attribute to
be created in that context.

In most cases, the name consists only of that final WORD leaving the prefix
reference empty, indicating the current context. Thus, the attribute is defined

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 - 28 - last modified on 23 Aug 2006

in that current context. Where a non-empty reference prefixes the final word,
the reference is used to determine the appropriate context and the attribute
with the given name is placed into that context.

Consider the example

Service extends {
 portNum 4089;
}

Service:portNum 4074;
Service:hostname "ahost.smartfrog.org";

The prefix reference Service: is de-referenced to indicate the Service
attribute. The two prefixed attributes are therefore placed within that reference
context, overriding or placed at the end of the context as appropriate. Thus,
the example is roughly equivalent to the following (there are some differences
in their behaviour as prototypes):

Service extends {
 portNum 4074;
 hostname "ahost.smartfrog.org";
}

The act of placing the attributes into a location is known as placement
resolution, and it occurs simultaneously with the removal of the reference-
prefixed attribute from its defining context.

Placement of attributes can lead to a great deal of confusion if not used
properly. It reacts in interesting ways with type resolution; this interaction
explained in the section on resolution.

Link And LAZY Link References
Frequently, attributes need to take on the same values as other attributes.
This can be for many reasons:

 to avoid repetition of values at many points in a description making it
easier to maintain that description

 to hide the structure of the description to a program; explained further
in section 2.

 to provide a means of simple parameterization; explained further in
the section .

This association between the value of one attribute and that of another is
defined by providing a reference in the place of a value of the attribute. This
reference is resolved relative to the context at the point of definition.

Consider the following example, in which a server and a client both need to
know the TCP/IP port on which the server will listen.

System extends {
 server extends {
 portNum 4089;
 }
 client extends {
 portNum ATTRIB server:portNum;
 }
}

The system contains a server and a client. The server and client both have an
attribute portNum, with that of the client being defined as a link to that of the
server.

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 - 29 - last modified on 23 Aug 2006

There is a resolution step, known as link resolution (and occasionally
deployment resolution), which replaces references by the values that they
reference. During the resolution phase, chains of links are resolved
appropriately.

In the above example, the definition of System is equivalent to the following:

System extends {
 server extends {
 portNum 4089;
 }
 client extends {
 portNum 4089;
 }
}

Consequently, both the server and client share the same value and
maintenance is eased in that should the port number need be changed, this
need happen in only one place in the description.

It is frequently the case that the link itself is required as a value; i.e. the link
should not be resolved to the value that it might refer to within the description.
This reference may then be used within a SmartFrog application after
deployment, for resolution at run-time rather than at the time of parsing the
description. The primary use for this is described in section 2.

In order to provide a reference value, rather than have it resolved to the value
of another attribute during link resolution, the keyword LAZY may be prefixed
to the link to indicate that the link resolution should not resolve the link. An
example of this is:

System extends {
 server extends {
 foo 42;
 }
 client extends {
 myServer LAZY ATTRIB server;
 }
}

In this case, the client’s attribute myServer is a reference to the server, not a
copy of the server component. As is, resolution will have no effect, as the link
will be left to be the attribute value. If the keyword LAZY had not been
present, the following would have been the result of resolution:

System extends {
 server extends {
 foo 42;
 }
 client extends {
 myServer extends {
 foo 42;
 };
 }
}

The word LAZY is an indication that it will be resolved at run-time – so far as
the notation is concerned, this means that the link is the value.

2.2.5 Comments
The SmartFrog notation follows most modern languages in providing both
end-of-line comments and multi-line bounded comments. The syntax for
these is identical to that of Java, namely

 // this is a comment to the end of the line

 /* this is a comment which is terminated by */

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 - 30 - last modified on 23 Aug 2006

2.3 Include Files
A stream of text may reference include files at certain points in that text.
Unlike a C include file, though, the include file is not merely textually
embedded into the original stream. Rather the include file is itself parsed (and
must be syntactically correct) as a stream in its own right. Every stream must
parse as a collection of attribute definitions, and this is equally true of the
include files.

Include files may only be used within attribute lists (i.e. at the top level or
within a component definition). The collection of attributes from the include file
are simply added to the attribute list being parsed in the container stream.

Consider the following example:

 file foo.sf contains:

foo extends {
 a 42;
}

 the primary stream is:

#include "foo.sf"
system extends {

myFoo extends foo;
#include "foo.sf"

}

After the parsing is complete (but before type resolution), the following is
obtained:

foo extends {
a 42;

}
system extends {

myFoo extends foo;
foo extends {

a 42;
}

}

It should be noted that because includes may occur within other component
descriptions, this may be used as a naming mechanism to prevent clashes of
attribute name within multiple include files. Consider

 file foo1.sf contains

foo extends { a 42; }

 file foo2.sf contains

foo extends { b 42; }

 the primary stream contains

foo1 extends { #include "foo1.sf" }
foo2 extends { #include "foo2.sf" }
sfConfig extends {
 bar extends ATTRIB foo1:foo;
 baz extends ATTRIB foo2:foo;
}

If the includes had not been buried within separately named components, but
both had been included into the top level, only the second of the two
mentioned foo attributes would have been available for extension. The
second would override the first.

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 - 31 - last modified on 23 Aug 2006

2.4 sfConfig
A stream contains a whole collection of attributes at the top level. Most are
merely there to act as building blocks – prototypes for building others.
Typically, there is only a single attribute that is the essence of the description
– that which describes the desired configuration and is not merely a building
block on the way. By convention in SmartFrog, the reserved attribute name
sfConfig defines this special attribute and all the tools provided respect this
convention.

Thus, when a stream is parsed to an attribute set, the top-level attribute
sfConfig defines the system; the rest are ignored, apart from providing
definitions for extensions and other resolutions. This is equivalent to the Java
language use of the “special” method main(…) to indicate the entry point to a
program. The entry point to a configuration description is sfConfig.

Thus in the following example, the attributes def1, def2 and def3 are only
present for the purposes of defining sfConfig, and it is only this last attribute
that represents the actual configuration description.

def1 extends Prim {…}
def2 extends Compound {
 foo extends Prim {…}
 bar extends Prim {…}
}
def3 extends Prim {…}

sfConfig extends Compound {
 d1 extends def1;
 d2 extends def2;
 d3 extends def3;
}

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 - 32 - last modified on 23 Aug 2006

3 Resolution – Semantics For The SmartFrog Notation
Resolution is the process by which the raw SmartFrog definitions, with their
extensions, placements and links, are turned into the set of attributes that
they semantically represent.

In addition to these three steps, there are other steps (phases) in the
complete semantic manipulation of the SmartFrog notation, such as function
resolution, predicate checking and any user-defined phases. These are
described in separate sections as they are somehow less core to
understanding the language.

There are two ways of representing the semantics, both roughly equivalent.

1. By defining how the value of an attribute identified by a reference is
obtained from a description; defining the semantics by providing a
function from reference to value for all possible references.

This would be the ideal way of defining the semantics, however for
pragmatic reasons the semantics are less “pure” than may be
desired and it is hard to define the semantics in this way. Two
aspects that are particularly hard to define in this style are the order
of type resolution and the placement of attributes.

2. By defining a set of transformation rules that eliminate the complexity
of the typing (by expansion), placement (by relocation) and linking (by
value copy), resulting in a normalized form of a description containing
merely a hierarchical set of attribute lists.

Either of these two forms of semantic definition would do, however the
definition of the semantics through transformation has a distinct advantage:
these transformations are required in practice and hence are implemented
within the SmartFrog system. Thus, an understanding of these
transformations is essential to the use of SmartFrog.

The three transformation steps are known in SmartFrog as resolution steps.
These are respectively type resolution, placement resolution and link
resolution. They are carried out in that order: first the types are expanded,
then attributes placed into the correct context from the context in which they
were defined, and finally links are resolved.

It should be noted that the entire description is type and place resolved, but
only the top-level sfConfig attribute is normally link resolved. In general if
the other top-level attributes are link resolved, errors will occur; they are only
present to be available as prototypes. Further, unnecessary work will have
been done.

The algorithms defined here for the transformations are the result of much
empirical experimentation – other transformation algorithms produce more
regular semantics, others are more efficient. However, those presented here
are a balance between performance and semantic simplicity. They provide a
great deal of control over the semantics of the resolution process.

3.1 Type Resolution
Type resolution is the expansion of the prototype reference optionally
provided in the extends part of a component description. The syntactic form
for a component description is roughly

name extends Reference { AttributeList }

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 - 33 - last modified on 23 Aug 2006

The reference refers to a prototype that is to be extended by the attributes in
the provided attribute list. This process of type resolution is a depth-first pass
over the root component description, in the order of definition of the attributes.

 Copying the prototype indicated by the reference, creating a new
component description

 Replacing the attribute values of the new component description also
mentioned in the attribute list (i.e. the value, but not the order,
changes)

 Adding the remaining attributes at the end of the new prototype.

 Type-resolving each of the component description’s attributes if they
are component descriptions.

If the prototype reference indicates a component description that is not yet
resolved, it resolves it first before copying: i.e. each type resolution is carried
out with respect to the location where the prototype is defined. The other point
to note is that if the reference is only a word, it is interpreted as ATTRIB
word for the purposes of locating the prototype for the component
description.

If, at the end of the process, one or more component descriptions have failed
to resolve, in that their prototypes cannot be found, the whole resolution
process ceases and an exception is thrown indicating the missing prototypes
and the locations at which they are referenced.

Note that any references that may be copied as part of the extension process
are not modified. Hence, copied placements are now relative to the new
location and copied links similarly. Prototype references are never copied
since a prototype is always resolved before copy.

3.2 Placement Resolution
Placement resolution is the process by which the attributes are placed into the
correct location. Attributes are named, and this name may contain a reference
to a component description as well as the name by which it is to be known in
that component description. If the reference is not present, the attribute is
assumed to be in the correct component description as defined.

Thus in the example attribute declaration:

foo:bar:baz 42;

The foo:bar: defines the target component description, and baz defines
the name for the attribute in that component description.

Placement resolution is the transformation process that results in the attribute
definitions being removed from their point of definition and placed in the target
component descriptions. The process is a multi-pass process, for each pass:

 traverse the component description hierarchy

o depth first

o visiting the attributes in the order of definition (as determined
by type resolution)

 each attribute visited is examined, if it should be placed elsewhere –
try to do so, if it fails – leave as is.

The pass is repeated until one of the following occurs:

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 - 34 - last modified on 23 Aug 2006

 there are no placements left to transform

 no placements have been successfully carried out, and at least one
placement has failed

In the first instance, the placement resolution has successfully completed, the
second it has not and an error is generated.

To see why multiple passes are necessary, consider the following:

foo extends {
 a 21;
}
foo:bar:a 42;
foo:bar extends { b 34; }

In the first pass, the attribute foo:bar:a is first to be placed, but it fails since
foo does not yet contain foo:bar as a component description. Also in the
first pass, but later since it is defined later, foo:bar is placed, giving

foo extends {
 a 21;
 bar extends { b 34; }
}
foo:bar:a 42;

This leaves a placement incomplete so a second pass is required. This time it
succeeds, resulting in

foo extends {
 a 21;
 bar extends {
 b 34;
 a 42;
 }
}

This order dependency does not have much of an effect, except for when two
identically named attributes are placed into the same component description.
At this point understanding the order of resolution becomes important.

Since placement resolution is carried out after type resolution, the following
consequences should be noted:

 As type resolution is carried out before placement, attributes placed
into a prototype will not be inherited by those extending the prototype.

 Again, as type resolution is carried out before placement, do not
place an attribute that is to be used as a super-type; it will not be
found.

 Wherever possible, placement should be restricted to referencing
downwards into a structure from the point of attribute definition.
Descriptions can be very hard to understand if PARENT, ROOT or
ATTRIB are used in a placement reference; this particularly so within
a component description to be used as a type. As a consequence,
this release of SmartFrog does not permit these reference parts to be
used in a placement.

The reason why type resolution is done before placement resolution is that
the normal use for placement is to “fill-in” empty “attribute slots” in a
prototype. As each instance of the prototype will in general need differently
filled slots, placement must be done after the type has been resolved for each
instance.

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 - 35 - last modified on 23 Aug 2006

Note that placement of attributes whose values are links do not modify the
links to correct for the new location. Thus, links are resolved with respect to
where they are placed, not where they are defined.

3.3 Link Resolution
Link resolution is the most straightforward of the three forms of resolution; all
links are resolved in their location after type and place resolution, and the
referenced value replaces the link as the value of the attribute. There are a
number of points to note:

 Only links that are not LAZY are resolved; those that are LAZY are
left unresolved with the link itself being the value.

 If the value of the attribute is a link, this is first resolved and the result
of that resolution is used.

 Links are always resolved in the contexts in which they are located
after the type and placement resolution phases are over, not
necessarily those in which they were defined.

 Links referring to an attribute whose value is a LAZY link will leave the
LAZY link unchanged, this being the attribute’s value.

 In resolving a link, the value of the attribute referenced is not copied,
but shared, at the original point of definition if this is relevant (e.g. For
component descriptions and their parent). Thus any operation that
affects the value of this data has an impact on all parts of the tree that
share this data. The only operations that affect attribute values in this
way are functions (or possibly a user phase).

Sharing has almost no effect on the language semantics unless the
data shared is a component description. In this case the parent of the
data remains that of the location of definition. This has an impact on
how links within that component description are resolved, using the
original parent, and not relative to the context in which the link was
defined.

An explanation of the consequences of sharing is given in section
REF.

3.4 The Difference Between Types and Links
On the surface, there are many similarities between the definitions of x and y
in:

Foo extends {
 a 10;
}

x extends Foo;
y Foo;

They both appear to end up by having the definition of a component
description containing a.

One obvious difference is that since they occur each side of place resolution,
a placement into Foo will affect y but not x. However there are more subtle
differences to do with the sharing of data with links, rather than the copying of
data with extends. Consider the following example:

data 1;

Foo extends {
 a data;
}

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 - 36 - last modified on 23 Aug 2006

example extends {
 data 100;

x extends Foo;
 y Foo;
}

In this definition, example:x:a has the value 100, whereas example:y:a has
the value 1. The reason for this discrepancy is that the extends copies the
definition of Foo and the following link resolution for data is done relative to
the copy's location. The link, on the other hand, simply links to the definition of
Foo in its existing position, and there the value of data on resolution is 1.

The difference can also be highlighted using one of the functions, such as
next that return a different value at each use. Consider the following
description:

#include "org/smartfrog/functions.sf"
example extends {

x extends next;
 y extends x;
 z x;
}

Assuming that this is the first use of next, example:x will have the value 1,
example:y will have the value 2, but example:z will have the value 1. This is
because it shares the result of the function bound to example:x.

Note that at the very end of the language processing as part of the conversion
to the core data model, the sharing is eliminated and each attribute will have
its own copy of the value. This is explained in detail in section REF.

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 - 37 - last modified on 23 Aug 2006

4 Template Parameterization Pattern
When extending a prototype, it is normal to override the values of certain
attributes to customize the prototype to its actual use. The simplest way is to
extend with the replacement attribute – however this only works for a top-level
attribute. Modification of attributes deep in the structure requires the
placement of the overriding attribute into the correct context, as in the
example:

Service extends {
 hostname "localhost";
 portNum 4567;
}
ServicePair extends {
 service1 extends Service ;
 service2 extends Service ;
}
sfConfig extends ServicePair {
 // user needs to know structure of ServicePair
 service1:hostname "riker.smartfrog.org";
 service2:hostname "ackbar.smartfrog.org";
}

This works adequately, but it has the disadvantage that the use of the
ServicePair prototype requires knowledge of its structure, though it does have
the advantage that any attribute in the structure may be changed if necessary.
However, under normal circumstances, there are attributes whose values are
expected to change, and others that are not. Under these circumstances, it
would be good if the description could be parameterized on these attributes.
However, the normal form of parameterization as provided in programming
language functions is not a good fit to the SmartFrog notation semantics – so
the language provides a way of finding a way of hiding the structure of a
description and making it easier to override “deep” attributes.

This technique, more of a pattern for the use of links, is shown in the
following example:

Service extends {
 hostname "localhost"; // default value
 portNum 4567;
}
ServicePair extends {
 s1Host "localhost"; // provide default value
 s2Host "localhost";
 service1 extends Service { hostname s1host; } // lift attribute
 service2 extends Service { hostname s2host; } // ditto
}
sfConfig extends ServicePair {
 // user needn’t know structure of ServicePair
 s1host "riker.smartfrog.org";
 s2host "ackbar.smartfrog.org";
}

It is clear that the use of ServicePair requires only the extension with top-
level attributes to set the attributes deeply defined in the Service prototype.
This pattern, of the use of links lifting an attribute value to one provided in the
outermost context, is called the parameterization pattern and is very
frequently used.

Note that if a default value for a lifted attribute is not given within the
description (in this case ServicePair provides defaults for both the lifted
attributes s1Host and s2Host), a deploy resolution error will occur if the
parameter is not provided at time of use, since the value to resolve the link
will not be found.

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 - 38 - last modified on 23 Aug 2006

5 Functions and operators
SmartFrog provides users with a small number of predefined functions to
improve the expressiveness of the descriptions. In addition, it provides
mechanisms by which users may add their own functions, effectively providing
an escape mechanism into Java. These functions, whilst not part of the
SmartFrog language, are provided for convenience. The mechanism, a
special case of a more general phase mechanism, is described in detail in
section .

Functions appear, to the language, as predefined component descriptions
that may be extended; the parameters are given as named attributes within
the body of that description. For example, a use of the string concatenate
function is

#include "/org/smartfrog/functions.sf" // the standard functions

val 42;
myString extends concat {
 -- "the meaning of life is ";
 -- val
}

that results in the value of the myString attribute being "the meaning of
life is 42". The names of the attributes have no effect in this case, the
strings being concatenated in the order of definition, but may be important for
some other functions.

Functions are evaluated inner-first, providing for the nesting of function
application, and are evaluated after all the other resolutions steps have be
completed. The definitions are themselves affected by these resolutions.
Thus a function may be extended with the resultant extension also be a
function. The current set of predefined functions is given in section 13.

In order to make the use of functions more natural, some syntactic forms are
provided that appear to be infix or prefix operators. However, these are simply
translated into the relevant template form during parsing. A more compete
description of this process is given in section 13.

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 - 39 - last modified on 23 Aug 2006

6 Predicates, Assertions and Schemas
It is frequently useful to be able to define a set of well-formedness conditions
on the use of a template in order to guarantee that its use is correct. However,
this should be done in a way in which all the benefits of template extension
are not lost. To this end, an additional phase, similar to that defined for
functions, is included which will check predicates defined and attached to a
template.

There are three predicate types provided as part of the SmartFrog framework.
These are the assertion predicates, schema predicates and the TBD (to be
defined) predicates.

The most flexible predefined predicate supplied by the SmartFrog framework
is the schema, a description that describes the set of attributes a template
should contain. Users may add their own predicate types through a similar
escape mechanism to Java provided for functions. Schemas are described in
detail in section 14.

Schemas are best described through the use of an example, in this case of a
template for a web server component. The example defines a schema for a
web server template, and defines the template linked to the schema.

// the definition of schemas
#include "/org/smartfrog/predicates.sf"

WebServerSchema extends Schema {
 port extends Integer;
 directory extends OptionalString;
}

WebServerTemplate extends Prim {
 schema extends WebServerSchema;
 port 80; // default value
}

Note that the name for the attribute linking the template to its schema need
not be, as in this case, schema. Indeed, a template may have more than one
schema attached as attributes, in which case the uses of the templates are
checked against all schemas attached. Schemas must extend the base
schema template Schema.

Schemas may be extended in the same way as other templates, and their
uses may easily be extended through placement as illustrated in the following
examples.

// the definition of schemas
#include "/org/smartfrog/predicates.sf"

ThreadedWebServerSchema extends WebServerSchema {
 minimumThreads extends Integer;
}

ThreadedWebServerTemplate extends WebServerTemplate {
 // overwrite existing schema with extended schema
 Schema extends ThreadedWebServerSchema;

 minimumThreads 7;
}

AlternativeThreadedWebServerTemplate extends WebServerTemplate {
 // add to existing schema
 schema:minimumThreads extends Integer;

 minimumThreads 7;
}

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 - 40 - last modified on 23 Aug 2006

Note that schemas are entirely optional and need be used only if desired. The
value of a schema is that it provides a strict definition and the potentially type
of the attributes, both required and optional, of a component. This should
make it easier to work with, and so benefit users of the component.

Similarly to schemas, assertions are descriptions that are interpreted as a
predicate. An assertion consists of a description that contains attributes that
should all evaluate to true - any attribute that evaluates to false, or indeed
any other value, is considered to be an assertion failure. The names of these
boolean attributes are not significant other than as documentation. There is
an implicit conjunction (and) between the various assertion attributes given.

An assertion description must extend Assertion, and must be included in
the description to which it applies in the same way as a schema must.

An example of an assertion is

// the definition of assertion
#include "/org/smartfrog/predicates.sf"

WebServerAssertion extends Assertions {
 portValid ((port == 80) || (port == 8080) || (port == 8088));
}

WebServerTemplate extends Prim {
 schema extends WebServerSchema;
 assert extends WebServerAssertion;
 port 80; // default value
}

In the same way that attributes may be added to an existing schema,
attributes may also be placed into an “Assertions” description, or more than
one “Assertions” may be provided.

The TBD predicate is used to indicate that a specific attribute still requires to
be assigned a value. If it has not been assigned, and an attempt is made to
use it, an appropriate error message is given.

An example of the predicate is as follows:

#include "/org/smartfrog/predicates.sf"

aTemplate extends Prim {
 sfClass “org.smartfrog....”;
 anAttribute TBD;
}

sfConfig extends Compound {
 anInstance extends aTemplate;
 anotherInstance extends aTemplate {
 anAttribute 45;
 }
}

Here, the attribute anAttribute of aTemplate is defined as TBD, so any
use of the template that does not set this value will generate an error. In the
definition of sfConfig, the first use, to define anInstance, is erroneous
whereas the second to define anotherInstance is valid.

The TBD attribute ("To be determined") is a simple substitute for the more
rigorous schema declaration. Note that the type of the attribute is not defined,
which can be a useful feature.

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 - 41 - last modified on 23 Aug 2006

7 Mapping to the Core Data Model
The attribute sets produced by the above phases are now simple enough to
be mapped into the core data structures supported by the SmartFrog runtime.
These data structures do not support extension, placements, functions or
predicates – so all these have to be resolved away. Links are supported, but
they are considered as values and have no further special meaning – they are
all assumed to be LAZY links.

The translation into these core data structures is therefore straight-forward
apart from one additional point: the structures produced by the phases can
share data, but this is eliminated by copying. If this copying involves
Component Descriptions, these are also parented into the part of the tree into
which they are being copied.

The reason for this sharing elimination is to do with the semantics of the
distributed system. Whilst all the data is local it could make sense to share
data as it is more efficient, although care has to be taken when data is
changed behind the scenes with side-effects on other parts of the tree.
However, when parts of the tree get mapped to different processes during
deployment, the data has to be copied and the sharing broken in any case. To
ensure a common semantics between local and remote deployments,
separate copies are taken at all times.

This sharing elimination is illustrated by the following diagram. Note that the
parent link from back from the foo attribute's data only exists if the attribute is
itself an attribute set (a component description).

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

foo

PARENT

bar a:foo

ab

after link resolution,
data is shared

foobar

ab

sfAsComponentDescription

copy

SmartFrog Reference Manual v3.06 - 42 - last modified on 23 Aug 2006

8 Primary Language Processing
Phases are a way transforming the SmartFrog parse tree into the final form
ready for deployment (or other purpose). Each phase is a pass over the
component description hierarchy carrying out an action controlled, in the case
of user-defined phases, by attributes defined within the descriptions.

Under normal circumstances users will not need to know about phases or
how to modify on adapt them, the default collection of phases is already
correct for most purposes.

The predefined phases for the default language are as follows:

 type – carry out type resolution on the component description
hierarchy; this is predefined and does not rely on attributes in the
tree to trigger it.

 place – carry out place resolution on the component description
hierarchy; this is predefined and does not rely on attributes in the
tree to trigger it.

 link – carry out link resolution on the component description
hierarchy; this is predefined and does not rely on attributes in the
tree to trigger it.

 sfConfig – not really a phase, rather it controls where the
phases are applied. Its effect is that for the remaining phases in
the current phase list, they are only applied to the sfConfig
attribute.

 print – again, not really a phase, but it triggers the printing of
the tree to the standard output. This provides a debugging
mechanism as it can be placed between any other phases to view
the intermediate state of the tree.

 function – in reality a user-defined phase, but one which is
provided by default. It causes all the functions to be evaluated. It
is triggered in the same way as the other user-defined phases, by
the occurrence of attributes with the name phase.function.

 predicate – also a user-defined phase which is provided by
default. It causes all predicates to be checked and errors
reported. The schema mechanism is an instance of the use of
the predicate phase, though others may be added by users. The
phase is triggered in the same way as other user-defined phases,
by the occurrence of the attributes with the name
phase.predicate.

Phases are triggered in a specific order, as determined by the top-level
attribute phaseList. If the attribute is not present, it is as though the attribute
were defined as follows:

phaseList [“type”, “place”, “sfConfig”, “link”, “function”,
“predicate”];

This default definition provides the semantics described in the section 1.

In addition to the pre-defined phases, a user may introduce their own. User
phases are defined as follows:

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 - 43 - last modified on 23 Aug 2006

 A class must be created which implements the interface
PhaseAction in package org.smartfrog.sfcore.parser.
The interface is fully defined in the Javadoc, but in summary, it
provides two methods:

 forComponent – which initializes the instance of the
action with the component description on which it is to
operate

 doit – which triggers the action of the phase,

 In whichever component description the action must take place,
an attribute whose name starts with the string phase.nnn must
be provided, set to the string containing the class name, where
nnn is the desired name of the phase.

 The phaseList attribute must be set at the top level of the
description, containing the phase name nnn at the appropriate
point relative to the other phases. It is recommended that this is
placed after all the standard resolution phases, though
occasionally it may be necessary to place the phase earlier.

There are a few points to notice. Firstly, the descriptions are traversed depth-
first so the inner descriptions are visited before the outer. This makes sense
for functions, for example, that are evaluated from the inside. The second
point is that the action is independent of the phase, in that the attribute name
determines the phase; the action is determined by the attribute value. Thus, it
is possible for the same action to be used in two different phases, and for
different actions to be invoked in the same phase – as is the case with all
functions. It is also possible to have more than one action for each phase in a
component description since the attribute name merely needs to start with the
phase.nnn string so several may be provided.

Note that both the phaseList attribute and the phase.nnn attributes are
removed from the description after the action is invoked.

Consider the following example. A class is provided that adds the
sfProcessHost attribute (used to determine on which host a component
should be deployed) to a component description, based on the value of an
attribute sfLogicalHost. It maps the logical host to the physical host in
some way not defined here – say by using the method mapHost.

The class might be defined as follows:

package org.smartfrog,example;

class MapHost implements PhaseAction {
ComponentDescription cmp = null;

public void forComponent (ComponentDescription c) {
cmp = c;

}

public void doit() {
String logicalHost = c.sfResolve(

Reference.fromString("sfLogicalHost"));
c.addAttribute("sfProcessHost", mapHost(logicalHost));

}

private String mapHost(String logical) { … }
}

This class may then be used in a description, to be acted on in the phase
mapHosts, as follows

phaseList ["type", "place", "sfConfig", "link",
 "function", "predicate", "mapHosts"];

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 - 44 - last modified on 23 Aug 2006

MappedCompound extends Compound {
 phase.mapHosts "org.smartfrog.example.MapHost";
}

sfConfig extends MappedCompound {
sfLogicalHost "databaseHost";
component1 extends Prim { …}
component2 extends Prim { … }

}

The phase list adds the mapping phase to the end, providing for the host
mapping. The MappedCompound, when used, carries its phase attribute with
it. Consequently, it is now contained within sfConfig. Thus during that last
phase, sfConfig will be mapped to the correct physical host.

8.1 Functions
Functions are evaluated during a predefined phase, named function, with
the effect that an attribute obtains the value of the evaluated function. To
make functions easier to write, a predefined abstract PhaseAction, called
BaseFunction from package

 org.smartfrog.sfcore.languages.sf.functions

 is provided that makes writing new functions easier.

New functions should extend the class BaseFunction and provide the
method doFunction(), returning the result of the function as an Object.
Any attribute may be accessed during the evaluation process.

BaseFunction is documented in the Javadoc and predefined functions are
documented in section 13.

8.2 Predicates
Predicates are evaluated during a predefined phase, named predicate,
with the effect that the associated predicate class is evaluated and any errors
notified to the user by generating an appropriate exception. Most predicates
will be instances of Schema, however users may define their own. To make
user-defined predicates easier to define, a class BasePredicate from
package

 org.smartfrog.sfcore.languages.sf.predicates

 is provided that makes writing new predicates easier.

New predicates should extend the class BasePredicate and provide the
method doPredicate(), throwing the exception

 SmartFrogCompileResolutionException

if there is an error. Any attribute may be accessed during the predicate
evaluation.

BasePredicate is documented in the Javadoc and the predefined predicate
Schema is documented in section 14.

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 - 45 - last modified on 23 Aug 2006

9 Programming with the Parser
9.1 Background

The SmartFrog framework is designed to support a range of possible
languages to define configurations for the deployment engine to instantiate.
The languages are all required to follow a common model for their
processing, and to eventually produce data structures that are suitable for the
deployment system. The default language is the base SmartFrog language
defined above, and which uses the file extension “.sf”.

The first stage of language processing is the parser – a tool for turning text
into data structures for further processing. The parser interface allows
programmers to select the parser based either on the language type of the file
(as defined by file extension), by direct selection, or simply using the default
(sf) parser.

After parsing, the data structures produced must implement an interface for
driving the remaining resolution phases. This interface is

org.smartfrog.parser.Phases

Following the invocation of the various phases, the data is converted into a
hierarchy of data supporting the ComponentDescription interface, which
may then be passed to the deployment system.

Using this model, it is reasonably easy to define a new language and integrate
it into the system. The default SF language is the first such, but others such
as XML based languages, or the more advanced SF2 language currently
under development are also possible.

The remainder of this section describes how to invoke the parser, how to step
the language data structures through the various processing phases, and
finally the nature of the resultant ComponentDescription data structures.

9.2 Summary of Language Processing
All of the tools provided with the SmartFrog system handle a SmartFrog text
in an identical way to produce a fully resolved deployable description. The
process is basically:

 parse the text stream to produce hierarchical data structures

 carry out all the phases, which for the default primary language are

o type resolve the root

o place resolve the root

o extract attribute sfConfig from the root

o link resolve sfConfig

o evaluate any functions in sfConfig

o check predicates and schemas in sfConfig

 convert to standard data model, creating simple normalised attribute
tree

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 - 46 - last modified on 23 Aug 2006

9.3 The Parser
The SmartFrog parser is implemented as a Java class with a method to parse
an InputStream producing an instance of the class
ComponentDescription, the Java class representing the parsed text
allowing programmatic manipulation of the information. Any InputStream
may be used, thus the parser may be invoked on a String, a File, a URL,
or any indeed any object that provides a stream model.

During parsing, a number of include files or URLs may be specified indicating
text that should be included into the current parse. It should be noted that
unlike C, the text is not merely embedded into the source text, rather the files
are parsed independently by the parser and the consequent data embedded
into the resultant ComponentDescription data structure produced by the
initial stream. Note that in principle, the parsers of include files may be
different from the parser for the main stream, thus providing a means for
including files in different notations. However, the mechanisms for doing so
are not covered in this manual.

9.3.1 The Parser API
Under normal circumstances, users of SmartFrog will not be expected to use
the parser directly. Rather the parser will be invoked on the users behalf by
the tools and scripts provided to start and run the SmartFrog framework.
However, just in case the need arises to invoke the parser within user code
the parser API is now described.

Two aspects must be considered:

1. Ensuring that security properties are maintained: if security is
required, the appropriate actions should be taken to ensure that only
streams from signed and trusted sources are used.

2. Invoking the parser itself on the stream.

The security model is covered in section 7, and this should be read in detail
before implementing any secure code, however enough of the security API is
defined here for completeness.

9.3.2 Ensuring Security
Two important steps must be carried out to ensure that the security of the
SmartFrog framework is not compromised. The first is to initialize the
SmartFrog security infrastructure, if this is not already done, and the second
is to ensure that every resource (test file, URL, etc) is loaded through the
secure mechanisms provided.

Under normal circumstances, users will be using the parser from within the
SmartFrog system itself; writing components that use the parser. However,
just in case this is not so and security is still required, initializing the security
mechanisms is carried out by invoking the initSecurity() static method
on the SFSecurity class from package
org.smartfrog.sfcore.security, as follows:

import org.smartfrog.sfcore.security.SFSecurity;
…
SFSecurity.initSecurity();

Once the security has been initialized, streams may be created on strings or
files as required. However, to ensure that security is maintained, it is
important that the correct class loaders are used for accessing any external
resources. This is achieved by using the following invocation to create a
stream from the resource:

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 - 47 - last modified on 23 Aug 2006

import org.smartfrog.sfcore.security.SFClassLoader;
…
InputStream stream = SFClassLoader.getResourceAsStream(url);

9.3.3 Invoking The Parser
Once a stream is created, a parser instance may be created and the input
stream parsed to generate the data model. This is done through the following
code

import org.smartfrog.sfcore.parser.SFParser;
import org.smartfrog.sfcore.parser.SFPhases;

…
Phases component = new SFParser().sfParse(stream);

The getParser() method returns a parser for the currently selected
language (currently only one is available) and this parser supports the
sfParse(InputStream s) method to parse the input stream.

If the parser for a different language is required, say for the sf2 language, the
following code is required

import org.smartfrog.sfcore.parser.SFParser;
import org.smartfrog.sfcore.parser.Phases;

…
Phases component = new SFParser("sf2").sfParse(stream);

The parser is built for the correct language, then asked to parse a stream.

The SFSystem command-line parameters that represent URLs of
descriptions to load are examined to determine from the extension which
parser should be used.

9.3.4 Evaluating The Phases
Once the parser has completed, the resultant data structures must implement
the Phases interface. Through the use of this interface the various phases of
the language processing are carried out – either as a single step or by
carrying them out one at a time. After each phase, date structures that
implement the Phases interface must be returned.

The complete description of the API is given in the Javadoc, but the following
examples are probably sufficient to illustrate the process.

To evaluate all phases in one go:

Phases phases = new SFParser().sfParse(stream);
phases = phases.sfResolvePhases();

To extract the phases, then apply them one at a time:

Phases phases = new SFParser().sfParse(is);
Vector thePhases = phases.sfGetPhases();

for (Enumeration e = thePhases.elements(); e.hasMoreElements();) {
 phases = phases.sfResolvePhase((String) e.nextElement());
}

9.3.5 Converting to ComponentDescription
Before handing the data to the deployment system, the languages own data
structures must be converted to those expected by the deployment system –
namely the standard data model implementing the
ComponentDescription interface (normally, but not necessarily) an
extension of ComponentDescriptionImpl.

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 - 48 - last modified on 23 Aug 2006

This is done using the sfAsComponentDescription method defined in
Phases. The full code for parsing and processing a stream in the default
language is

Phases component = new SFParser().sfParse(stream);
phases = phases.sfResolvePhases();
ComponentDescription component.sfAsComponentDescription();

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 - 49 - last modified on 23 Aug 2006

10 The Common Data Model
This section describes the data structures produced after the complete cycle
of language processing (i.e. phase resolution and conversion to the core data
model using sfAsComponentDescription). These are the structures that are
understood and accepted by the SmartFrog run-time system.

The primary data structures that are generated as the output of this process
implement the interface ComponentDescription, and it is this interface
that users must understand to be able to create interesting tools or
components. These data structures define the concept of an ordered attribute
set.

In addition, the classes that are used to represent the various attrubute values
need to be considered: both the basic values such as Integers and Booleans,
and the references (all LAZY by this time).

In all cases, these interfaces and classes are fully defined in the
accompanying Javadoc. The description provided here is only partial and is to
give an overall feeling for the overall structure of the Java representation. The
details of exceptions should also be obtained from the Javadoc.

10.1 Basic Values
Each of the basic values that have a syntax in the SmartFrog notation are
mapped to different classes in Java. Wherever possible, they are mapped
directly to the most obvious class in Java.

• Numbers are mapped to the equivalent Java subclass on
java.lang.Number.

• Booleans are mapped to the class java.lang.Boolean.

• Strings are mapped to the class java.lang.String.

• NULL is mapped to the new SmartFrog class
org.smartfrog.sfcore.common.SFNull. This is defined so that
there is exactly one value of SFNull.

• Vectors are mapped to java.util.Vector.

• Byte arrays are mapped to the new SmartFrog class
org.smartfrog.sfcore.common.SFByteArray. From instances of
this class, the byte array (byte[]) can be obtained. Instances are
immutable.

Values of other types can be contained within Component Descriptions, but
these may not be properly handled by some of the operations in SmartFrog.
In particular, although SmartFrog functions can in principle return values of
any class, and these will be patched into the attribute tree, when the
conversion to the final component description form occurs with the
sfAsComponentDescription method, these will be rejected. (This is
because the soon-to-be-introduced description signing will not know how to
handle these arbitrary values properly.) Values of arbitrary types can be
serialized into byte arrays, and then extracted and deserialized at the
appropriate time.

10.2 Reference
Reference is the Java representation of the references that may be used in
the three areas: references to super-types, placement references and as

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 - 50 - last modified on 23 Aug 2006

links. References are lists of ReferencePart, each indicating a single step
in the resolution that must occur.

The only interesting methods are those for constructing references, namely
the constructors and the method fromString. The other methods are typical
of those required for manipulating lists, such as adding and removing parts
and enumerating over the elements.

There are two constructors – one for an empty reference (one with no parts)
and one for constructing a reference with a single part. Other parts must
either be added to these basic references, or the reference may be created by
parsing a string.

static Reference fromString (String refString)

Utility method to create a reference from a string. The method

is extremely expensive as it creates an instance of a parser and

should therefore not be used too freely.

ReferencePart is the parent class of all reference parts, there is one per
syntactic reference part (ROOT, ATTRIB, etc.). Again, the main interest is in
the constructors for these. There are a couple of static helper methods for
their construction defined in ReferencePart.

10.3 ComponentDescription
A ComponentDescription is an interface, with default implementation
ComponentDescriptionImpl, which represents the concept of an attribute
set in the syntax. Consequently, it has a number of methods that enable the
creation and traversal of the containment and extension hierarchies.

ComponentDescription, in addition to defining its own methods, extends
three further interfaces, two of which needs further description:
ReferenceResolver and Copying. The third, ComponentDeployer,
defines methods that are used internally by the SmartFrog framework.

A base implementation of the interface ComponentDescription is the
class ComponentDescriptionImpl is provided by the framework. This
class may be generated directly by the language processor, or users may
produce a class which extends it in some way.

The interface can be considered in three parts:

1. the core interface for construction and traversal.

2. a copying interface which provides a deep copy operator essential
when handling descriptions.

3. a reference resolution interface, defining methods to look up attribute
values given references that describe paths through a description
hierarchy.

10.3.1 Core
TO BE DONE

cover add/remove/replace attribute, iterate over attributes, get the parent.

10.3.2 Copying
The interface defines two methods of note – a deep copy operator that returns
an equivalent structure of data and a clone method that returns a shallow
copy. The copy method is recursive, in that it clones the top level component
description, then embeds within it all the data contained in the copied

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 - 51 - last modified on 23 Aug 2006

description - invoking the copy method first if this data implements the
Copying interface.

 public Object copy();

Produce a deep copy of the component description

 public Object clone();

Produce a shallow copy of the component description

10.3.3 ReferenceResolution
The reference resolution interface contains a number of methods to locate
attributes within the hierarchy of component descriptions. The main method
provided is the following:

Object sfResolve(Reference r)

Resolve a given reference in the ComponentDescription hierarchy

starting from this component.

In addition to this method, there is a whole family of variants, such as
methods which take strings rather then references, or define the specific
return type so that users can avoid the class-caste, and so on. These are fully
documented in the Javadoc.

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 - 52 - last modified on 23 Aug 2006

11 The SmartFrog Grammar Rules
SmartFrog defines the default language's grammar using the Java Compiler
Compiler system from Sun. This is a tool known as JavaCC. The SmartFrog
grammar rules described here are part of the JavaCC input, the file
DefaultParser.jj, which is available in the source distribution. The listing is
derived from this file.

/*
 * Main entry point to the grammar
 */
 AttributesEntry ::= AttributeList EOF

/*
 * Entry point for Reference parser (as used in sfResolveFromParser)
 */
 ReferenceEntry ::= Reference EOF

/*
 * Entry point for any value parser (used in tools such as sfGui)
 */
 AnyValueEntry ::= Value EOF

/*
 * Entry point for primitive value parser (used in tools such as sfGui)
 */
 PrimitivevalueEntry ::= Basic EOF

/*
 * Main body of grammar
 */
 AttributeList::= (Attribute
 | #include String
 | ;
)*

 Attribute::= Name Value

 Name::= -- | (WORD [: Name])

 Value::= Component
 | SimpleValue ;
 | ;

 SimpleValue::= Reference
 | Basic
 | Operator
 | IfThenElse
 | Vector

 Operator::=
 (
 (UnaryOp SimpleValue)
 | (SimpleValue [BinaryOp SimpleValue])
 | (SimpleValue [(NaryOp SimpleValue)*])
)

 IfThenElse::= IF SimpleValue THEN SimpleValue ELSE SimpleValue FI

 Vector::= [[SimpleValue (, SimpleValue) *]]

 Component::= extends [LAZY] Type Body

 Type::= [NULL | BaseReference]

 Body ::= (; | { AttributeList })

 Reference::= [LAZY] BaseReference

 BaseReference::= ReferencePart (: ReferencePart)*

 ReferencePart::= ROOT
 | PARENT
 | (ATTRIB WORD)
 | (HERE WORD)
 | THIS

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 - 53 - last modified on 23 Aug 2006

 | WORD
 | (PROPERTY WORD)
 | (IPROPERTY WORD)
 | (HOST (WORD | STRING))
 | PROCESS
 | WORD

 Basic::= String
 | Number
 | Boolean
 | ByteArray
 | [| Basic (, Basic)* |]
 | NULL

 Number::= DOUBLE
 | FLOAT
 | INTEGER
 | LONG

 String::= STRING
 | MULTILINESTRING

 Boolean::= true | false

 ByteArray::= Hex|Dec|Oct|Bin|B64
 // only Hex currently implemented

 UnaryOp::= !

 BinaryOp::= - | / | == | != | >= | > | <= | <

 NaryOp::= + | * | ++ | <> | && | ||

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 - 54 - last modified on 23 Aug 2006

12 The SmartFrog Lexical Rules
The SmartFrog lexical rules described here are part of the JavaCC input, the
file DefaultParser.jj, which is available in the source distribution. The listing
here is a slight simplification of this file.

/* White Space */
SKIP : " "| "\t"| "\n"| "\r"| "\f"

/* Comments */
SINGLELINECOMMENT: "//"(~["\n”,”\r"])*
FORMALCOMMENT: "/**" ... "*/ "
MULTILINECOMMENT: “/*" ... ”*/"

/* Reserved Tokens */
RESERVED: ";" | "," | "{" | "}" | "[" | "]" | ":" |
 "true" | "false" | "NULL" | "--" |
 "extends" | "LAZY" | "ROOT" | "ATTRIB" | "HERE" |
 "THIS” | "PROPERTY" | "IPROPERTY" | "PARENT" |
 "HOST" | "PROCESS" | "#include" | "(" | ")" |
 "==" | "!=" | ">=" | ">" | "<=" | "<" | "<>" | "!" |
 "+" | "-" | "*" | "/" | "++" | "&&" | "||" |
 "IF" | "THEN" | "ELSE" | "FI"

/* Tokens – using Unicode */
WORD: LETTER (LETTER|DIGIT|SPECIAL)*
SPECIAL: [".", "_", "-", "+", "@", "#", "~", "$", "%", "^", "&"]
LETTER:
 [
 "\u0024",
 "\u0041"-"\u005a",
 "\u005f",
 "\u0061"-"\u007a",
 "\u00c0"-"\u00d6",
 "\u00d8"-"\u00f6",
 "\u00f8"-"\u00ff",
 "\u0100"-"\u1fff",
 "\u3040"-"\u318f",
 "\u3300"-"\u337f",
 "\u3400"-"\u3d2d",
 "\u4e00"-"\u9fff",
 "\uf900"-"\ufaff"
]
DIGIT:
 [
 "\u0030"-"\u0039",
 "\u0660"-"\u0669",
 "\u06f0"-"\u06f9",
 "\u0966"-"\u096f",
 "\u09e6"-"\u09ef",
 "\u0a66"-"\u0a6f",
 "\u0ae6"-"\u0aef",
 "\u0b66"-"\u0b6f",
 "\u0be7"-"\u0bef",
 "\u0c66"-"\u0c6f",
 "\u0ce6"-"\u0cef",
 "\u0d66"-"\u0d6f",
 "\u0e50"-"\u0e59",
 "\u0ed0"-"\u0ed9",
 "\u1040"-"\u1049"
]

/* Literals */
STRING: ("\"" (
 (~["\"","\\","\n","\r"])
 | ("\\"
 (["n","t","b","r","f","\\","'","\""]
 | ["0"-"3"] ["0"-"7"] ["0"-"7"]
)
)
)* "\"")

MULTILINESTRING: ("##" (
 (~["#","\\"])
 | ("\\"
 (["n","t","b","r","f","\\","'","#"]
 | ["0"-"3"] ["0"-"7"] ["0"-"7"]
)

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 - 55 - last modified on 23 Aug 2006

)
)* "#")

NUMBER: <INTEGER> | <FLOAT> | <LONG> | <DOUBLE>

INTEGER: (("-")? ["1"-"9"] (["0"-"9"])*) | "0"

FLOAT_BASE: ("-")?
 (
 (["0"-"9"])+ "." (["0"-"9"])* (<EXPONENT>)?
 | "." (["0"-"9"])+ (<EXPONENT>)?
 | (["0"-"9"])+ <EXPONENT>
 | (["0"-"9"])+ (<EXPONENT>)?
)

EXPONENT: ["e","E"] (["+","-"])? (["0"-"9"])+ >

DOUBLE: <FLOAT_BASE> (["d", "D"])?

LONG: <INTEGER> (["l", "L"])?

FLOAT: <FLOAT_BASE> ["f", "F"]

Hex: "#HEX#" (["A"-"F", "a-f", "0"-"9", "\n", "\t", " "])* "#"
Oct: "#OCT#" (["0"-"7", "\n", "\t", " "])* "#"
Bin: "#BIN#" (["0"-"1", "\n", "\t", " "])* "#"
Dec: "#DEC#" (["0"-"9", "\n", "\t", " "])* "#"
B64: "#B64#" (["A"-"Z", "a-z","0"-"9", "/", "+", "\n", "\t", " "])* "#"

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 - 56 - last modified on 23 Aug 2006

13 Predefined SmartFrog Functions
SmartFrog provides a number of functions. These functions are all available
as templates that are defined in a file which must be included if they are to be
used. However, some are also available as operators, using the SmartFrog
operator syntax, and in this case the include file is not required.

The operators are all converted into an instance of the expanded template at
time of parsing, so may in every respect be treated in the same way as a use
of the template itself. Furthermore, it should be noted that any references that
are used within an expression containing operators, these references will be
resolved in the context of the templates – this means that use of reference
parts such as PARENT are hard to use. ATTRIB reference parts are useable
in the normal way.

Note also that since attribute names may contain many of the operator
symbols, it is best to always surround the operators with space characters to
ensure that they do not accidentally “stick” to the names.

The functions are defined by including the functions.sf file as follows:

#include "org/smartfrog/functions.sf"

The functions defined as operators may be grouped into three main
categories: unary, binary and nary.

13.1 Unary Operators
There is currently only one unary operator, the Boolean negation operator.
The syntax for unary operators is

(opsymbol value)

The surrounding () symbols must be present. All templates for unary
operators have as their parameter the attribute “data”. Other attributes are
allowed, but are ignored for the purpose of evaluating the function. They may,
of course, be used for the definition of the data attribute during earlier phases.

13.1.1 not
Operator symbol: !

The function not is defined as the negation of the boolean attribute “data”. If
the attribute is not present or of the wrong type, an exception is reported.

x true;
foo (! x);
bar extends not {
 data x;
}

13.2 Binary Operators
There are a number of binary operators covering primarily the arithmetic,
comparison and logical operators. The syntax for binary operators is

(value opsymbol value)

The surrounding () symbols must be present. All templates for binary
operators have as their parameter attributes the names “left” and “right”,
to indicate which value it is. Other attributes may be present and are ignored
whilst evaluating the operator.

13.2.1 Minus
Operator symbol: -

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 - 57 - last modified on 23 Aug 2006

The minus operator subtracts the right attribute from the left, resulting in a
number which satisfies the Java rules for numbers. If either of the two
attributes are not numbers, an exception is thrown. Other attributes that may
be defined in the template are ignored.

minus10 extends minus {
 value;
 left value;
 right 10;
}

foo extends minus10 {
 value 34;
}

aFoo (34 – 10);

13.2.2 divide
Operator symbol: /

The divide operator divides the left attribute by the right, resulting in a number
which satisfies the Java rules for numbers. If either of the two attributes are
not numbers, an exception is thrown. Other attributes that may be defined in
the template are ignored.

percent extends product {
 fraction extends divide {
 enum; denom;
 left enum;
 right denom;
 }
 -- 100;
}

foo extends percent {
 fraction:enum 34;
 fraction:denom 56;
}

13.2.3 EQ, NE
Operator symbols: ==, !=

These operators are the comparator operators, equals and not equals
respectively. The two attributes, left and right, are compared using the Java
equals method (left.equals(right)). The result of the function is the
boolean value that is returned by that test.

13.2.4 GE, GT, LE, LT
Operator symbols: >=, >, <=, <

These operators are the numeric value comparators, testing to see if the left
attribute value is greater than or equal to (or whatever operator is used) the
right attribute. The Java rules for numeric comparison are used.

13.3 Nary Operators
Nary operators are operators that are may have a arbitrary number of attribute
parameters. All the attributes provided within the template are assumed to be
part of the function, and the names used to provide these attributes are
ignored. Thus the “unique” name – is normally used for these operators.

The syntax for an nary operator is as follows:

(value opsymbol value opsymbol value opsymbol ...)

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 - 58 - last modified on 23 Aug 2006

Each of the operator symbols must be identical, though other may be used by
nesting the use of operators wherever a value is expected. The above form is
converted to the expanded template form during parsing, so any references
that are used when a value is expected is resolved relative to the template
and not the operator expression.

13.3.1 concat
Operator symbol: ++

The concatenate function takes each of its attribute parameters and
concatenates them in the order of definition. These attributes are converted to
strings using the toString() Java method. An example of the use of the
concatenate function is:

myString extends concat {
a "the meaning of life is ";
b 42;
c extends concat {

a " by ";
b "Douglas Adams";

}
}

which results in the string “the meaning of life is 42 by Douglas Adams”.

13.3.2 append
Operator symbol: <>

The append function is similar to the vector function, except that all
parameters must be vectors and these are expanded in-line. The difference
can be seen by considering the same example

myVector extends vector {
-- ["the meaning of life is "];
-- [42];
-- extends vector {

-- " by ";
-- "Douglas Adams";

}
}

which results in the vector

["the meaning of life is", 42, "by", "Douglas Adams"]

The operator form can be used for the same purpose. The following definition
is equivalent to the definition of myVector above.

MyVector (["the meaning of life is"]
 <> [42]
 <> ["by", "Douglas Adams"]);

13.3.3 sum
Operator symbol: +

The sum function sums each of its attributes which must be numbers, failure
will result in an exception. The names of the attributes are, of course,
irrelevant. An example of the use of the sum function is:

val1 34;
val2 45;
num extends sum {

-- val1;
-- 345;
-- val2

}

This will result in num being set to 424. An equivalent expression is

num (val1 + 345 + val2);

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 - 59 - last modified on 23 Aug 2006

13.3.4 product
Operator symbol: *

The product function multiplies each of its attributes type-cast to integers,
failure will result in an exception. The order is irrelevant. An example of the
use of the product function is:

times10 extends product {
ten 10;
}

myNum extends times10 {
val 34;

}

This will result in myNum being set to 340.

13.3.5 and
Operator symbol: &&

The conjunction operator takes the logical “and” of all its attribute parameters.
Each of the parameters must be a boolean and if they are not, an exception is
thrown. As with all nary operators the names of the attributes are irrelevant.

13.3.6 or
Operator symbol: ||

The disjunction operator takes the logical “or” of all its attribute parameters.
Each of the parameters must be a boolean and if they are not, an exception is
thrown. As with all nary operators the names of the attributes are irrelevant.

13.4 Other Functions
In addition to the operators, there are a number of other functions provided.
Some of these also have specialised syntactic forms – most notably the
ifThenElse and the vector function. These syntactic forms are converted to
the template form at time of parsing, and do not require the use of the include
file “functions.sf”. If the templates are used directly, then this file must be
included.

13.4.1 IfThenElse
The ifThenElse function is provided to conditionally provide a value for an
attribute. The template uses three well-known attributes: if, then and else.
Other attributes may be present but are ignored. If one of the attributes is not
provided, or is the if attribute is not a boolean value, an exception will be
thrown. Since the ifThenElse template is defined through attributes, these
may be changed by extension or placement.

aStepFunction extends ifThenElse {
 boundary 10;
 value;

 if (value > boundary);
 then 20;
 else 30;
}

This may now be used as follows:

aValue extends aStepFunciton {
 value 5;
}

anotherValue extends aStepFunction {
 value 15;

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 - 60 - last modified on 23 Aug 2006

}

Which would give values for these two attributes as 20 and 30 respectively.

The special syntactic form for ifThenElse is as follows:

foo IF (10 > 20) THEN 5 ELSE 15 FI;

defining foo to be 15. Note that as with all special forms, any references used
within it are evaluated relative to the transformed syntax, and not that given.
The definition for foo above is equivalent to:

foo extends ifThenElse {
 if (10>20);
 then 5;
 else 15;
}

13.4.2 vector
The vector function takes each of its attribute parameters in the order
provided and creates a vector whose elements are the values of the attributes
(names are ignored, hence unique naming is useful). An example is

myData extends vector {
-- "the meaning of life is ";
-- 42;
-- extends vector {

-- " by ";
-- "Douglas Adams";

}
}

which results in the vector with three elements, the third of which is itself a
vector.

There is a special syntactic form for vector which is as follows:

myData ["the meaning of life is", "42", ["by", "Douglas Adams"]];

This is the equivalent of the earlier definition using the template. Again, any
reference provided within the vector syntax is resolved relative to the
transformation into the template form.

13.4.3 formatString
FormatString is a function that takes a format string and a set of
parameters and creates a resultant string which has the values of the
parameters embedded. The format string attribute itself should be named
format and the various parameter strings should be named sx where x is a
single digit. The format string should identify the places where the various
parameter strings should be embedded using the characters “$x” for a single
digit x. An example is

myString extends formatString {
format "the meaning of $2 is $1";
s1 42;
s2 "life";

}

The attributes may of course be links to other values, but not LAZY links as
these are not resolved in time for the function phase.

13.4.4 random
The random function, which in truth is not really a function since it returns a
different value for each invocation, returns a random number as follows:

 if the attribute integer is set to true, an integer between
attributes min and max is returned, otherwise a floating point

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 - 61 - last modified on 23 Aug 2006

value between 0 and 1. The default values for min and max are 0
and 10 respectively.

 if the attribute seed is provided, and the random number
generator has not yet been initialized, that seed is used.

Examples of the use of the random are:

dice extends random {
integer true;
min 1;
max 6;

}

myConfig extends Compound {
 throw1 extends dice;
 throw2 extends dice;
}

Each of throw1 and throw2 will be some random integer between 1 and 6.
Note that each invocation in myConfig is independent. Each JVM contains a
single random number generator for use during function resolution.

13.4.5 next
The next function is one that returns a monotonically increasing value,
guaranteed never to return the same number twice within a single description.
Again, it is not strictly a function since it never returns the same value for the
same parameters. The only parameter attribute is the base attribute, setting a
minimum value for the values. If the base is below the next value, it is
ignored. If it is above, the next value will be the base. The default base is 0.

An example of the use of next is

unique extends concat {
prefix "xxyyyqqq";
postfix extends next;

}

myConfig extends Compound {
 name extends unique;
 otherAttr 42;
}

13.4.6 ref
The ref function converts a string to a reference, and then optionally resolves
the reference in place or leaves it as a LAZY link. This allows links to be
created by using functions over strings, such as concatenation, to generate a
reference. The attributes for the ref function are reference which is the
string to convert, and the optional attribute lazy which defaults to false and
controls whether to leave the reference as a lazy link, or to resolve to replace
it with the value obtained.

An example of the use of ref is:

x "ROOT";
y "a";
a 24;

myConfig extends ref {
 reference (x ++ y);
 lazy false; // default
}

This results in myConfig being set to 24.

13.4.7 date
The date function returns a string representation of the current date. There
are no formatting parameters. Again, this is not strictly a function.

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 - 62 - last modified on 23 Aug 2006

13.4.8 userinput
The userinput function asks the user for an input on the command line. It
returns the value entered. The prompting message may be specified in the
prompt attribute.

anything extends userinput {
prompt "Enter any value";

}

This will result in anything being set to whatever has been entered on the
command line. A default value may also be set using the attribute “default”.
This function is not really meant for serious use, but more for experimentation
and testing.

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 - 63 - last modified on 23 Aug 2006

14 Schemas
Schemas are descriptions that may be attached to other descriptions and
cause them to be checked against the schema description. Schemas are
evaluated as part of the standard predicate phase.

Schemas are defined by extending the predefined template Schema, defined
in the file /org/smartfrog/predicates.sf:

mySchema extends Schema {
 // schema entries
}

Each of the schema entries are attributes whose names are to be found in the
template to be validated. Each of these entries must extend a description that
defines certain properties about the attribute. The properties are

 optional: a Boolean that states whether the attribute is optional or
compulsory

 binding: a string which defines whether the attribute must be lazy
"lazy"), must be eager ("eager"), or may be either
(“anyBinding”) – this controls whether a link may exist instead of a
value of the correct class

 class: a string which defines the name of the class which should be
found as the value of the attribute (e.g. “java.lang.Integer”), or
any class (“anyClass”).

Thus entries in a schema for a web server component may be

WebServerSchema extends Schema {
 port extends {
 optional false;
 binding "anyBinding";
 class "java.lang.Integer"; }
 directory extends {
 optional true;
 binding "anyBinding";
 class "java.lang.String"; }
}

However this is rather cumbersome, so some helper templates are defined in
the include file. These are defined as follows, with the obvious meanings.

Compulsory extends {
 optional false;
 binding "anyBinding";
 class "anyClass";
}

Optional extends {
 optional true;
 binding "anyBinding";
 class "anyClass";
}

OptionalBoolean extends Optional {
 class "java.lang.Boolean";
}

Boolean extends Compulsory {
 class "java.lang.Boolean";
}

OptionalInteger extends Optional {
 class "java.lang.Integer";
}

Integer extends Compulsory {

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 - 64 - last modified on 23 Aug 2006

 class "java.lang.Integer";
}

OptionalDouble extends Optional {
 class "java.lang.Double";
}

Double extends Compulsory {
 class "java.lang.Double";
}

OptionalLong extends Optional {
 class "java.lang.Long";
}

Long extends Compulsory {
 class "java.lang.Long";
}

OptionalFloat extends Optional {
 class "java.lang.Float";
}

Float extends Compulsory {
 class "java.lang.Float";
}

OptionalString extends Optional {
 class "java.lang.String";
}

String extends Compulsory {
 class "java.lang.String";
}

OptionalVector extends Optional {
 class "java.lang.Vector";
}

Vector extends Compulsory {
 class "java.lang.Vector";
}

OptionalReference extends Optional {
 class "org.smartfrog.sfcore.reference.Reference";
}

Reference extends Compulsory {
 class "org.smartfrog.sfcore.reference.Reference";
}

OptionalCD extends Optional {
class "org.smartfrog.sfcore.componentdescription.ComponentDescription";
}

CD extends Compulsory {
class "org.smartfrog.sfcore.componentdescription.ComponentDescription";
}

These templates allow for a neater definition of the schema given above;

WebServerSchema extends Schema {
 port extends Integer;
 directory extends OptionalString;
}

To attach a schema to a description, the schema need only be an attribute
within the description to which it applies. Thus we can complete the above
example as follows:

 // the definition of schemas
#include "/org/smartfrog/predicates.sf"

WebServerSchema extends Schema {
 port extends Integer;
 directory extends OptionalString;
}

WebServerTemplate extends Prim {
 schema extends WebServerSchema;

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 - 65 - last modified on 23 Aug 2006

 // default value
 port 80;
}

Note that the name for the attribute linking the template to its schema need
not be, as in this case, schema. Indeed, a template may have more than one
schema attached as attributes, in which case the uses of the template are
checked against all schemas attached.

Schemas may be extended in the same way as other templates, and their
uses may easily be extended through placement as illustrated in the following
examples.

#include "/org/smartfrog/predicates.sf" // the definition of schemas

ThreadedWebServerSchema extends WebServerSchema {
 minimumThreads extends Integer;
}

ThreadedWebServerTemplate extends WebServerTemplate {
 //overwrite with extended schema
 Schema extends ThreadedWebServerSchema;
 minimumThreads 7;
}

AlternativeThreadedWebServerTemplate extends WebServerTemplate {
 // add to existing schema
 schema:minimumThreads extends Integer;
 minimumThreads 7;
}

Note that schemas are entirely optional and need be used only if desired.
They carry no overhead during deployment and at run-time, but they can be
expensive at language processing time.

Prim and Compound templates both have schemas associated with them.
This can be useful to locate errors, but they also have two other effects.
Firstly, when the descriptions are printed in any expanded form the schemas
occupy a rather large amount of the overall description and can hide the
structure of a description. Secondly, they can make a large description very
expensive to process. Consequently, an attribute can be set at the top level to
control whether these schemas should be included. Thus the following would
switch off the use of the Prim and Compound schemas:

sfSchema false;

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 - 66 - last modified on 23 Aug 2006

15 Comparing the SmartFrog Notation with XML
In this appendix, a basic and partial comparison is provided between the
SmartFrog notation and XML. This is intended to explain the rationale behind
the design choices made in the definition of the SmartFrog notation, and to
provide an explanation as to why XML has not been substituted for the
SmartFrog notation (it also happens to predate XML by a couple of years). It
should be noted, however, that XML can be considered as a syntactic
framework within which the SmartFrog language semantics could be
encoded. This is not considered below, and only a direct comparison of the
core notions is made.

The main areas examined in detail are:

6. Naming: how attributes are identified and referenced

7. Composition: how attributes are composed into hierarchies or collections

8. Inheritance: how collections of attributes are built from other collections

9. Schemas, typing and validation: how collections are checked for
correctness, and the correctness constraints defined

10. Templates and parameterization: how the notations provide a degree of
end-user customization of given configuration templates

These are not the only differences, but they are some of the major ones, and
have a particular importance when it comes to examining the requirements for
a rationally designed configuration notation.

Naming and Composition
Perhaps the most striking difference between the two notations is that in
SmartFrog, every attribute is of the same kind (there is no distinction between
attributes and elements), and every attribute is named. In XML, there are
named attributes (given as an addition to the tag) and elements that are un-
named in the parent element.

The tag itself cannot be considered a name for two reasons. First, it is not
required to be unique within the parent element, and secondly it is a property
of the tagged element – the infoset model supported by XML has the tag
belonging to the tagged element rather than merely the name it has in the
parent. If the element were copied elsewhere, it would maintain the same tag.

XML has three types of data that might be considered “attributes” (ignoring
comments and processing instructions which are now obsolete). These are:

 elements – a grouping and composition notion delineated by tags, in
which the order in the parent is important;

 attributes – named values associated with an element;

 character data - strings of text associated with an element, unnamed
but ordered.

Not providing naming has one severe consequence – attributes cannot be
uniquely identified within a structure. This is can be a real problem, though
naming can be replaced by a somewhat heavy query mechanism returning a
(possibly empty) set of elements. This is the Xpath standard in XML.

SmartFrog, on the other hand, has but one notion – that of attributes. These
are values that may be named within an attribute collection (known as a

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 - 67 - last modified on 23 Aug 2006

ComponentDescription), which is in turn an attribute. This provides a
clean model but perhaps without the richness (or complexity) of XML –
however this simplicity is a great advantage when describing and explaining
the notation, and the extra notions present in XML are of uncertain benefit.

To represent the notion of an element tag, SmartFrog would need to encode
that somehow into the attribute structure, perhaps by the inclusion of an extra
attribute in a component description to indicate a tag – for example sfTag.
This, plus any schemas, predicates and default attribute values associated
with that tag, could be encoded as a template to be inherited and used as
required.

Inheritance
Inheritance in this context is the ability to take a description of a configuration
(as a collection of attributes) and extend or redefine some of these to provide
a modified configuration. Its role is identical to inheritance in an object-
oriented language. It is perhaps not a strictly necessary feature in a world
where we have editors, cut and paste operations, and so on – but experience
with OO languages is that without this capability the results are
unmaintainable

SmartFrog provides a model of single inheritance, where one definition may
extend another. This use of single inheritance solves the issue of what
happens when two attributes with the same name are inherited through two
paths in the inheritance hierarchy. However, the model can easily be
extended to provide multiple inheritance if a specific model of attribute
precedence is provided or some name disambiguation scheme is used. The
only other form of combinator provided in SmartFrog is aggregation, where an
attribute set may be a named attribute within another attribute set.

Unfortunately, XML does not provide any form of inheritance. It does provide
a model of aggregation, where an existing document can be embedded into a
new document, but it becomes a single element within that document.

Functions and Phases vs. XSLT
SmartFrog provides a small selection of functions and operators that can be
used within the definition of a description, and a set of user creatable phases
for manipulating the description. XML does not have this notion in quite the
same way. Instead it has a transformational framework, XSLT, which allows
users to provide very general transform rules over the description, sufficiently
general to even encode the notion of extends. Although powerful and
expressive, there are two issues with this. The first is that it can be rather hard
for end users to understand the consequences of using a transform – they are
typically not robust to misuse – and secondly the syntax can be rather
obscure.

Schemas, Typing and Validation
SmartFrog is untyped – the attributes may be any value representable within
the notation, currently various numeric types, strings and attribute sets. Under
inheritance, the type may be changed to another. This has not proved to be a
significant problem, however statically typed descriptions do have distinct
advantages in certain areas. Finally, there is no way of specifying which
attributes should, or should not, be present in a configuration description.
SmartFrog takes a different approach to the problem. There is an optional
way of describing predicates and attaching them as attributes to a
configuration description. Being attributes, they are inherited in the same way
as other attributes are inherited, and hence apply to the new description
(unless explicitly overridden). The predicates may test the existence or type of
any attribute, and may potentially execute arbitrarily complex tests over single
or any combination of attributes taken from the collection of attributes as a
whole. This provides a very powerful mechanism for defining the correctness
of descriptions, without the need for a parallel schema mechanism.

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 - 68 - last modified on 23 Aug 2006

XML documents are basically untyped, or more specifically they only contain
the single basic type “character data” on top of the basic notion of element. To
extend this, a schema mechanism is provided which allows users to specify
which attributes must be present and how the character data should be
interpreted. In addition a small set of simple predicates are provided for
defining such things as sub-ranges of numbers.

XML schemas do provide inheritance in that one schema may be an
extension of another, however this is unmatched in the document space.

Templates
There is a clear requirement to provide templates for configurations that may
be parameterized. We should be able to define a configuration that defines:

4. A set of “parameter” attributes which must be provided to complete a
configuration; this set is itself a configuration.

5. A configuration template which, when instantiated with this set of
attributes, produces a complete configuration.

6. It must be possible to constrain this set of parameter attributes in a
way that guarantees a valid configuration as the result of the
instantiation.

Put simply, the ability to write functions is required, producing a configuration
from a configuration.

XML provides no support for the notion of template. The very fixed notion of a
document, without inheritance, limits the ability to even provide an
approximation.

SmartFrog implicitly supports templates through a combination of capabilities
– inheritance and linking. A requirement for an attribute can be expressed by
providing an un-resolved link to a top-level attribute that may then be
instantiated via inheritance. Although in many ways a satisfactory solution, it
does not provide clear expression of the requirements for instantiation, as the
parameter attributes are never clearly identified. However, even in the rather
limited form provided in SmartFrog, the benefits of providing a template notion
is clear.

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 - 69 - last modified on 23 Aug 2006

 Part 3: The SmartFrog Component

Model

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 - 70 - last modified on 23 Aug 2006

1 Introduction
1.1 Components

Having written the description of a service in a notation, and having had this
processed by the appropriate language processor (done in most instances by
the SmartFrog command-line tools), the simplified models are passed to
SmartFrog to carry out the deployment process. This process consists of the
hierarchical deployment of components as defined by the description. At this
point, ignoring how the description defines which components should run
where, it is worth defining the very notion of a component.

A component is an instance of a Java class that implements a specific Java
interface: the Prim interface. The classes for components are normally
implemented by extending one of the predefined classes that already provide
most of the required semantics, adding to or modifying this behaviour as
appropriate. This interface is quite complex and extensive, however most of it
is for SmartFrog's internal operation. Programmers really only need to use a
subset of these.

The most important aspect, and that which is core to the notion of a
component, is that of the lifecycle and the methods associated with it. A
component has a simple lifecycle to bring it into being, to start its activity, and
eventually to terminate it. This lifecycle is implemented as a set of methods
provided by the programmer (or through inheritance, by one of the classes
provided as part of SmartFrog).

As illustrated by the diagram above, the lifecycle of a component is generally
thought of as the phased start-up of first component creation, then component
initialization (also know as deployment) and finally component initiation:
starting the active parts of the component. Termination and clean-up can
happen asynchronously at any time after the initial creation, triggered
internally by the component, externally by the environment, for example in
response to some form of failure.

In addition to considering a single component and its lifecycle, it is necessary
to consider the lifecycles of collections of components. These collections
might define the set of components in a specific application or service. As
such, the sum of the lifecycles of these components effectively determine the
lifecycle of the service itself. As an example, consider a service that manages
web servers and creates or terminates web servers according to loading . Any
single component has a simple start/stop lifecycle as determined by the
lifecycle model given above, but the collection has a much more complex
lifecycle involving the dynamic modification of the collection of web server
components that are included in the service – sometimes adding and
sometimes removing these web server components.

Now the lifecycle of services, or more generally the service of some collection
of components, are mediated by other components – known as compound
components – that make use of SmartFrog's APIs to interact with the
SmartFrog framework to instantiate and terminate the components for which
it is responsible.

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

component

Deploy

Start

Terminate

Create

SmartFrog Reference Manual v3.06 - 71 - last modified on 23 Aug 2006

Most such compound components are very specific to a service – for example
the component that monitors the response-time of the web servers to decide
whether to deploy or terminate a web server is a specific component to that
service. However there are some generic types of collection that can also be
defined and which can usefully be implemented as part of a core framework
such as SmartFrog.

The most important such specific collection is the Compound (as opposed to
the more general concept of a compound component). The Compound
component is one where every member of the collection shares fate with the
others in the group. Thus they are all created or none are, they are all
initialized or none are, they all start together or none start, and they all
terminate or fail together.

An example of where this Compound behaviour is appropriate might be where
the collection consists of the component to collect service response data and
the component that uses this data to decide how many web servers to be
running. It would not be appropriate to tie the different web servers together in
such a group so that terminating one web server would terminate them all.

All of these group behaviours are mediated by components that can be
defined and then made available for use by other services wherever this is
appropriate. In addition to the pre-defined compound components, such as
Compound, users may define their own specific to their service.

1.2 Defining Components in the Language

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 - 72 - last modified on 23 Aug 2006

2 The SmartFrog Component Model
This section describes how a set of attributes is interpreted by the SmartFrog
framework as a collection of components distributed across a number of
hosts in a network. There are several aspects to consider:

 how attributes indicate type of component.

 how attributes are used to indicate the location of components.

 how the system carries out the creation of components.

 how components are started and stopped.

 how components may use the framework APIs to access
configuration values.

 how components may dynamically interact with the framework to
dynamically modify the sets of components that are created.

First, however, it is worth a general discussion of the concepts behind the
SmartFrog application model.

2.1 Applications As Component Collections
SmartFrog considers a whole system to be a collection of applications running
over a distributed collection of compute resources. This collection of
applications may be dynamic, generated on demand by a variety of external
and internal events, such as a user request or a new resource being started.

Each application is, in turn, a collection of components defined statically via
an application description or generated dynamically at run-time according to
the requirements determined at that time. The components of an application
may be dynamic, changing over time to adjust for circumstances.

These terms, namely system, application and component, deserve better
definition to highlight their respective roles and the ways in which SmartFrog
manages them. It is easier to consider them in reverse order.

Component
A component is defined as a single Java object which implements a specific
API (defined in the Prim interface) and which consequently implements the
specific lifecycle as defined by the SmartFrog component model.

Since the component is implemented as a single object, it resides entirely
within one JVM on a single host. The component may, behind the scenes,
create and manage other objects including other processes and programs
written in other languages. However, for the purpose of SmartFrog, the
management view of component is entirely defined by the Prim object.

Application
An application consists of a collection of components, and consequently it is
not an atomic object as seen by SmartFrog. This means that the lifecycle is
not viewed through a single interface, complicating the handling of the
lifecycle of the whole application. An application has two characteristics that
characterize the notion:

 Each component is tightly bound to the others via a parent-child
relationship, each may be a parent to others and each (unless it is the
root component) has a parent. This transitive closure of the parent-
child relationship is the scope of the application.

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 - 73 - last modified on 23 Aug 2006

 The lifecycle of each component in an application is tied to the
lifecycle of the others via this parent-child relationship – parents are
notified of child death, and vice-versa, and the parents are entirely
responsible for the lifecycle of their children. The order of component
start-up and termination is well defined and may be relied on for the
simplification of component coding.

Components of an application may locate each other, thereby enabling
communication, using the built-in SmartFrog naming capabilities by
following the parent-child relationships. These links between components
are specified via LAZY links.

System
A system is simply a collection of applications, loosely grouped over the
distributed resources. Applications within a system do not have direct links
between their components, nor any direct responsibility for, nor notification of,
their respective lifecycle (though these may be implemented within specific
component behaviour).

Typically, applications locate each other through naming or discovery
services, and they must be able to cope appropriately with the non-existence
of applications on which they depend, both at start-up and during operation.

2.2 Applications and Component Descriptions
As described above, each application is a collection of components
connected via a parent-child hierarchy. Thus an application is a tree structure
similar to the tree structure present in a component description hierarchy, as
described in section 10. Indeed, it is the role of the SmartFrog system to
convert a description into the equivalent running application according to an
appropriate interpretation of attributes present in the description.

The process of taking a description and converting it into a running application
is defined roughly as follows:

 A description in SmartFrog notation is parsed and resolved.

 The specific interesting component description is selected, namely
the sfConfig component description.

 The result is a hierarchy of component descriptions (each extending
NULL, the empty description).

 The role of SmartFrog is to create an equivalent hierarchy of objects,
as determined by the attributes present in the component description
hierarchy.

Consider the following small example:

StatusMonitor extends Prim {
 sfClass "org.smartfrog.examples.StatusMonitor";
}

LogMonitor extends Prim {
 sfClass "org.smartfrog.examples.LogMonitor";
}

sfConfig extends Compound {
 log extends LogMonitor;
 status extends StatusMonitor;
}

Prim and Compound are described in detail in section 2.3.4, but in effect
define collections of attributes that describe leaves (Prim) and nodes
(Compound) of a component hierarchy. Prim is a collection that defines some

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 - 74 - last modified on 23 Aug 2006

basic attributes relevant to all components (such as default code base), and
Compound contains at least the additional attribute:

sfClass "org.smartfrog.sfcore.compound.CompoundImpl";

After all the resolution steps, and after selection of the sfConfig attribute,
the following description is obtained:

sfConfig extends {
sfClass "org.smartfrog.sfcore.compound.CompoundImpl";

 // plus Prim attributes
log extends {

sfClass "org.smartfrog.examples.LogMonitor";
 // plus Prim attributes

}
status extends {

 sfClass "org.smartfrog.examples.StatusMonitor";
 // plus Prim attributes
 }
}

This is a hierarchy of component descriptions. The SmartFrog framework
takes this description and turns it into the following running application: a
component parent-child hierarchy using the sfClass attribute to determine
the class of object to instantiate.

ComoundImpl
Instance

LogMonitor

Instance

StatusMonitor

Instance

contains a Context mapping
Names to RMI Object References

log status

sfParent

ComponentDescription

with attribute

sfClass “CompoundImpl”

ComponentDescription

with attribute
sfClass “LogMonitor”

ComponentDescription

with attribute
sfClass “StatusMonitor”

contains a Context mapping
Names to Values

log status

parent

deploy
described running

In both cases, the described and running, a Context (section 10) is used to
store the attributes. In the described case, the values are the component
descriptions of the next level in the tree, whereas in the running case the
same attributes hold the RMI references to the running components
represented by the equivalent component description.

Consequently, the application forms a naming structure mirroring the one in
the description and indeed, references may be used to traverse the structure
in exactly the same way as with the descriptions. The difference is that once
the application is deployed, references to components return the RMI object
reference to the component rather than a copy of the attributes in the
referenced description.

2.3 Representing Components With Attributes
Applications are described using the SmartFrog notation. To create an
application, its description is parsed, resolved and the sfConfig attribute
extracted. The ComponentDescription obtained is given to the framework
to create and manage the components associated with that description. The
means by which the SmartFrog framework does so depends on the attributes
that are present within the ComponentDescriptions.

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 - 75 - last modified on 23 Aug 2006

Each description that is intended to represent a running component has two
types of attributes, though these are indistinguishable within the notation.
These are

 the template attributes that define the Java class of the component,
where it should be created, and certain other management aspects;
these are all identified by their “well-known” names. All template
attributes start with the letters sf.

 the component configuration attributes containing configuration
information to control the component behaviour; these are all the
attributes other than the template attributes, and their interpretation is
component specific.

This section is concerned only with the template attributes. The template
attributes may be split into several categories, the most important of which are
described in the following sub-sections.

2.3.1 Defining the Component Class
Each component created by SmartFrog is an instance of a class that
implements the Prim interface (and usually extends the class PrimImpl).
The key attribute of any component is therefore defining the identity of that
component class. This is done by providing the well-known attribute sfClass
holding a string representing the full package and class name of the
component. Thus the description:

sfConfig extends {
 sfClass "org.smartfrog.example.AClass";
}

defines an application with a single component, an instance of the class
AClass in the package org.smartfrog.examples.

The code for the component class is normally loaded from the codebase
defined at the point of launching the daemon. However it is also possible to
define a codebase for a specific component, or a whole sub-tree of a
description, by setting the sfCodeBase attribute within the definition. This
also affects all sub-components, which may reset the codebase to the default
by setting the sfCodeBase attribute to the string "default":

sfConfig extends {
 sfcodebase "default";
}

Note that the sfCodeBase defines an additional location where a class may
be found – the default codebase is still searched for the definition.

2.3.2 Controlling Deployment
In addition to specifying the class of the component, it is necessary to define
where the component is to be created. Components are created in SmartFrog
processes known as daemons. Daemons have a variety of flavours, however
all provide the ability for the SmartFrog infrastructure to request the creation
of new components. The two primary flavours are the root daemon that must
run on each host, started manually or automatically at boot time, and named
sub-daemons that may be created on demand by the SmartFrog framework.

SmartFrog provides a mechanism by which daemons may be identified via a
combination of host and process names, however it also provides the means
by which other location identification mechanisms may be implemented; an
example of this being the use of SLP.

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 - 76 - last modified on 23 Aug 2006

The two key attributes for identifying locations are the sfProcessHost and
the sfProcessName attributes, both strings identifying the host and process
respectively. If neither attribute is present, the current process is assumed;
the current process being whichever is currently carrying out the deployment.
If the sfProcessHost attribute is present, but the sfProcessName is not,
the root daemon is assumed. Clearly any such use of the sfProcessHost
attribute assumes that a root SmartFrog daemon is running on the identified
host, and that security settings of the remote host permit the local system to
deploy to it.

Thus, the following example will create the example component in the root
process on the specified host.

sfConfig extends {
 sfClass "org.smartfrog.example.AClass";
 sfProcessHost "15.144.56.243";
}

and the following will place the component into a sub-process named
ExampleProcess, creating it if it does not already exist.

sfConfig extends {
 sfClass "org.smartfrog.example.AClass";
 sfProcessHost "15.144.56.243";
 sfProcessName "ExampleProcess";
}

2.3.3 RMI
SmartFrog relies on Java/RMI to provide the transport layer for carrying out
management tasks, such as initiating the creation of a component. SmartFrog
also makes it easy to use RMI to provide inter-component communication for
application purposes. In particular, the RMI reference of a component is
returned whenever a LAZY link is dereferenced to point to a component.
However, it is an overhead for all components to be full-blown RMI servers; it
is only necessary that the first component of any hierarchy of components in a
daemon be a server, though others may be so if required.

If it is unnecessary for a component to be exported as an RMI server, the
sfExport attribute may be set:

sfConfig extends {
 sfClass "org.smartfrog.example.AClass";

 sfExport "false";
}

It is equally possible to set it to true to ensure that the RMI export is done,
although this is also the default if the attribute is not explicitly set. If the export
is set to "false", only components in the same JVM will be able to access
the component.

2.3.4 Prim and Compound
In the notation, the root of all extensions is the NULL attribute set; this is
normally indicated by extending nothing. However, when components are
being described (as opposed to arbitrary structured data) it is conventional to
use the description Prim as the root of all descriptions. This provides a single
place where default-valued template attributes may be placed, thus
guaranteeing that all components inherit them.

Prim is defined in the file org/smartfrog/components.sf. Thus, this
must effectively be included in every description, as in the following example.

#include "/org/smartfrog/components.sf"
sfConfig extends Prim {
 sfClass "org.smartfrog.example.AClass";
}

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 - 77 - last modified on 23 Aug 2006

In addition to Prim, there is a standard component called Compound defined
in the same components.sf file. This provides the definition of the most
commonly used application-grouping component, which creates a set of
components as part of an atomic collection. Thus, most applications are
similar to the following example in their use of Prim and Compound:

#include "org/smartforg/components.sf"
Service extends Prim {
 sfClass "org.smartfrog.example.Service";
 // and other attributes
}
ServicePair extends Compound {
 service1 extends Service{ … }
 service2 extends Service { … }
}
sfConfig extends ServicePair {
 sfProcessHost "localhost";
}

The Compound description is unlike Prim, in that it contains an sfClass
attribute defining the compound implementation class, which means that it is
directly instantiable in a deployment. Otherwise, it is empty but may be used
to define default template attributes for all compounds.

Compound extends Prim {
 sfClass “org.smartfrog.sfcore.compound.CompoundImpl” ;
}

Compounds are described further in section 4.

2.4 Lifecycles
An important aspect of the SmartFrog component model is the lifecycle. The
lifecycle is implemented as a simple state machine, shown in the following
diagram.

instantiated

initializedterminated failed

running

sfDeployWith(ComponentDescription)

sfDeploy()

sfStart()

sfTerminateWith(TerminationRecord)

The transitions in the state machine are associated with actions implemented
(if required) by the components. The transition actions are implemented by
the invocation of methods on the component, during which the component
may take any appropriate action. These transition methods, also known as
the template methods, are indicated along side the transition in the diagram.

These methods are described more fully in section 3. Default minimal actions
are provided if the component has no specific action to carry out during the
transition.

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 - 78 - last modified on 23 Aug 2006

In an application with multiple components, the lifecycle of the whole system
is defined by the combination of component lifecycles in some order. It is not
completely defined within SmartFrog as to how these lifecycles are composed
as it depends on the specific components used, and specifically those that are
compound components.

The root parent of the parent-child hierarchy is controlled by the framework,
and it is responsible for triggering the lifecycle transitions. It is the
responsibility of that component to transition each of its children. The most
common component used as root, and as intermediate nodes of the hierarchy
is the Compound and this defines a simple combined lifecycle aimed at
providing the notion of a single atomic composition with a shared lifecycle:

 on transition to the instantiated state, all children are similarly
instantiated;

 on transition to the initialized state, all children are initialized;

 on transition to running, all children are started;

 on transition of any component to terminated, all children and the
parent are terminated, and thereby the whole hierarchy is terminated.

This specific semantics has some important properties. The entire application
is stepped through the lifecycle in a synchronous way: all components are
created before any are initialized and all components are initialized before any
are started. Termination is rather different as its occurrence is asynchronous
with respect to the other transitions and any component in the hierarchy may
be the first to transition to the terminated state (i.e. unlike the other transitions,
it is not only the root which may initiate it). Nevertheless, the semantics are
such that the whole application will terminate if any component terminates.

There are other possible semantics for parent-child lifecycle combination
other than Compound, and some are provided by the framework. In particular,
the workflow package provides a number of combinations such as parallel
composition and sequential composition. The workflow package, documented
in an accompanying manual, is designed to provide a simple lightweight
workflow-style capability to the SmartFrog framework.

Only Compound, and its close relative DetachingCompound, will be
considered within this manual, as it is the core implementation of component
composition and is used by all others.

2.5 The SmartFrog API
The SmartFrog API is in essence the interface that each component must
implement. This is the Prim interface (not to be confused with the Prim
description) in the package org.smartfrog.sfcore.prim. All the
SmartFrog capabilities are defined through the methods defined in this
interface. To provide default implementations of these methods, all
components should extend the class PrimImpl to define their default
behaviour and enable access to the framework services.

The API is divided into two parts:

 The template methods that a component may wish to redefine; these
are primarily the lifecycle methods.

 The utility methods that provide the component with the ability to
access the SmartFrog framework capabilities, which includes access
to the component’s configuration attributes. Equally they provide the

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 - 79 - last modified on 23 Aug 2006

SmartFrog system or other components access to the same
capabilities on that component.

Both of these parts are defined in the Prim interface and are fully documented
in the accompanying Javadoc; a partial description of the more important
aspects is given in section 3.

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 - 80 - last modified on 23 Aug 2006

3 Primitives
Primitives are the core of the SmartFrog component model, they are the basis
for all the components that are created to implement application behaviour.
Implementing a prim component in Java is the essence of SmartFrog
programming.

Creating a prim class involves the following steps:

 Inheriting from the PrimImpl class and implementing the Prim
interface (note that although PrimImpl itself implements Prim, it is
necessary for RMI that the component directly declares that it
implements it or another Remote interface.

 Providing an empty default constructor throwing the RMI remote
exception, this constructor is used by SmartFrog to create the
component instance.

 Providing the appropriate lifecycle template methods if they are
required – default methods are provided by the PrimImpl class
should no action be required at a specific point in the lifecycle.

 Implementing any component-specific interface required by the
component.

The component-specific behaviour defined in the template methods or in the
component-specific interfaces may use the utility methods.

3.1 Template Methods
The template methods are defined to be the ones shown in the lifecycle
diagram, namely:

 sfDeployWith(…) is the method that is used alongside the default
constructor for the basic creation of a component. It should not be
overridden with application specific behaviour.

 sfDeploy() is the method that the system invokes to transition the
component from the created state to the initialized state. Users may
override this method to provide component specific initialization code,
though care should be taken to invoke the superclass implementation
to maintain correct behaviour. After this method, components should
be ready to receive requests from other components in the
application. Thus, listener threads must be started but threads that
invoke other components may not. The component may assume that
all other components in the same application have been created, but
may not assume that they have been initialized.

 sfStart() is the method that the system invokes to transition the
component from the initialized state to the running state. Users may
override this method to provide component specific initialization code,
though care should be taken to invoke the superclass implementation
to maintain correct behaviour. The method will start any required
active threads. The component may assume that all other
components in the application have been initialized, but may not
assume that they have been started.

 sfTerminateWith(TerminationRecord tr) is the method that
may be called at any time to transition from any state to the
terminated state. The termination record contains details of the
reason for termination. All threads must be stopped, all resources

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 - 81 - last modified on 23 Aug 2006

must be released, etc. No assumptions may be made as to the state
of any other component in the application. The superclass termination
method must be invoked to ensure correct behaviour.

Thus, a typical SmartFrog primitive has the following shape:

import org.smartfrog.sfcore.prim.Prim;
import org.smartfrog.sfcore.prim.PrimImpl;
import org.smartfrog.sfcore.prim.common.SmartFrogException;

import java.rmi.RemoteException;

public class MyPrim extends PrimImpl implements Prim, … {
 /* any component specific declarations */

 public MyPrim() throws RemoteException {
 }

 public synchronized void sfDeploy()
 throws RemoteException, SmartFrogException {
 super.sfDeploy();
 /* any component specific initialization code */
 }

 public synchronized void sfStart()
 throws RemoteException, SmartFrogException {
 super.sfStart();
 /* any component specific start-up code */
 }

 public synchronized void sfTerminateWith(TerminationRecored tr) {
 /* any component specific termination code */
 super.sfTerminateWith(tr);
 }

 /* any component specific methods */
}

This template is absolutely the key to programming SmartFrog components.
The three template methods may be left out if they are not required. Note the
fact that all the three methods call the super-class method, and note that in
sfDeploy and sfStart this is done before the component specific part,
whilst with sfTerminateWith this is done at the end. The
sfTerminateMethod must also be written so as not to fail if called before
the component was actually started.

3.2 Utility Methods
The utility methods are defined in PrimImpl designed to provide a
component programmer with the key utilities to enable interaction with the
SmartFrog system. These are the ability to find and manipulate attributes,
locate application components and to terminate itself and hence (under
normal circumstances) the whole application.

The utility methods are primarily defined in Prim, however other methods are
defined in the RemoteReferenceResolver interface that Prim extends. A
brief overview of these methods is now given, however a more complete
definition is provided with the Javadoc. The precise signature of these
methods should also be checked in the Javadoc,

Object sfResolve(Reference r)

Locate an attribute when given a reference. This method resolves

from the point in the component hierarchy that is the Prim on

which it is called. References may be constructed using the

class constructor (recommended) or the fromString(“…”) method

defined on Reference to provide a simple, though inefficient,

way of creating complex references. The class Reference is

documented in section .

void sfTerminate(TerminationRecord tr)

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 - 82 - last modified on 23 Aug 2006

Terminate the component and hence (under normal circumstances)

the application. This will cause the termination template method

to be called at some point in the future, though not necessarily

immediately.

void sfDetach()

Split the application tree into two independent components; the

parent-child link becomes severed and thus the lifecycles of the

parent and the child components become separated. The child

component becomes a root component, i.e. one with no parent.

sfAddAttribute/sfReplaceAttribute/sfRemoveAttribute

These are a collection of methods that allow the modification or

removal of the component’s attributes.

Prim sfParent()

Returns the parent of the component, or null if it is a root

component.

Context sfContext()

Each component contains the context that was originally given to

the component as its description. This method returns that

context.

Reference sfCompleteName() throws RemoteException

Returns the complete name of the component from the root of the

application. Throws exception if unable to trace the component

hierarchy starting from the root.

Reference sfCompleteNameSafe()

Returns the complete name of the component from the root of the

application and does not throw any exception.

These methods form the basis of the programming API for components
providing interactions with the SmartFrog system. Other methods, to do with
dynamically modifying the structure of the application hierarchy, such as
deploying new branches of the tree, are covered in the section on
Compounds, section 4.

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 - 83 - last modified on 23 Aug 2006

4 Compounds
SmartFrog provides the ability to create collections of components with
certain semantic guarantees. These collections – whatever their semantics –
are known as compounds. SmartFrog provides a small number of these
collections; others may be defined as required. The primary collection
component is simply known as “Compound” and is the root of all other
collections.

There are three aspects to consider with Compound

 The component description for compound – contained in the file
"/org/smartfrog/components.sf".

 The interface Compound.java.

 the implementation of the base class of all compounds:
CompoundImpl.java.

4.1 Compound Component Descriptions
The component description is an extension of the component description
Prim and adds attributes relevant to the liveness mechanisms and,
importantly, it adds the sfClass attribute to ensure that the compound
component description generates an instance of the CompoundImpl class
when deployed.

In order to define a collection of components, the description must extend
Compound and add any Prims or Compounds that are required. For
example

#include "org/smartfrog/components.sf"
sfConfig extends Compound {
 component1 extends Comopund {
 foo extends Prim { sfClass "…"; }
 bar extends Prim { sfClass "…"; }
 }
 baz extends Prim {sfClass "…"; }
}

defines the system to be a collection containing a sub-collection and a
primitive. The sub-collection component1 contains two primitives. Note that
the extension of the Compound does not contain an sfClass attribute as this
is supplied by the definition of Compound in the include file.

4.2 The Compound Interface
The Compound interface, in the package
org.smartfrog.sfcore.compound, is an extension of the Prim interface,
hence any compound is by definition also a primitive component. It also
defines a number of additional features:

 Compound extends the interface ChildMinder that provides
methods for registering and removing child components. These
methods will rarely be used by SmartFrog programmers as they are
automatically invoked as required by the underlying system. These
methods are documented in the Javadoc for the interface.

 Compound directly defines a number of methods to allow
applications, should they desire it, to deploy additional application
descriptions. Although in the normal course of events this will not be
used directly by SmartFrog programmers, it is sufficiently frequently

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 - 84 - last modified on 23 Aug 2006

used to merit some further explanation here. There are three
methods:

public Prim sfDeployComponentDescription(Object name,
 Compound parent,
 ComponentDescription cmp,
 Context parms)
 throws RemoteException, SmartFrogException;
public Prim sfCreateNewChild(Object name,
 ComponentDescription cmp,
 Context parms)
 throws RemoteException, SmartFrogException;
public Prim sfCreateNewApp(ComponentDescription cmp,
 Context parms)
 throws RemoteException, SmartFrogException;

The first of these is primarily intended to be an internal method for use by the
framework and should be used cautiously by programmers. The method is
given a component description that has already been parsed and resolved
and deploys it (i.e., creates and calls sfDeployWith(...)) with the
following additional aspects:

 A parent, an existing Compound including the one implementing
the called method, may be provided, or null if no parent is
required. If no parent is provided, a wholly new application is
created.

 The name by which this component is to be known within that
parent compound – again may be null if a parent is not required

 A set of additional attributes that should be placed into the top-
level component description before deployment.

This method is used by the SmartFrog system itself to build the complete
component hierarchy. Note that since the remainder of the lifecycle is not
invoked, this is up to the programmer to do, ensuring that no part-deployed
components are left polluting the system. Users must also be careful of
synchronization issues and ensure that lifecycle methods are not invoked
twice by error (easy to do without care)..

The next two methods are designed for component programmers, as they
encapsulate a higher-level of functionality. In particular, they both involve the
whole of the start-up lifecycle (sfDeployWith, sfDeploy and sfStart),
and have standard error handling behaviour, and the handling of the
synchronization and multiple lifecycle aspects.

The first of the two methods, sfCreateNewChild, is used to create a new
application part as a child of an existing compound. The way to achieve this is
by invoking the method on that compound with (in addition to the description):

 The name by which this component is to be known within that
parent compound – again may be null if a parent is not required

 A set of additional attributes that should be placed into the top-
level component description before deployment.

The error handling during the lifecycle is defined to be to detach and
terminate the new child, if necessary, and to throw an appropriate exception in
the calling thread.

The second of these methods, sfCreateNewApp, is used to create a new
application which is its own root – it has not parent. Consequently, no parent
is required, and no name for it to be associated with within a parent.

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 - 85 - last modified on 23 Aug 2006

Consequently, in addition to the description, the only additional data required
is

 A set of additional attributes that should be placed into the top-
level component description before deployment.

The error handling during the lifecycle is defined to be to terminate the
application (there is no need to detach – it is a new root), and to throw an
appropriate exception in the calling thread.

4.3 CompoundImpl
The class CompoundImpl in package
org.smartfrog.sfcore.compound is the implementation of the core
capabilities of SmartFrog collections. In addition to being the class which is
extended whenever a new type of Compound is defined, it provides all the
semantics for one of the most common type of grouping – the shared-lifecycle
component collection.

The purpose of the CompoundImpl is to provide a collection with the
following semantics:

 The Compound provides a notion of child component – one for
whose lifecycle it is responsible. A child is an attribute of the
Compound, but also has a specific relationship relative to lifecycle
management and failure monitoring.

 The Compound and its sub-components share an identical
lifecycle, i.e.

 whenever the compound is created, so are the sub-
components in order of definition

 whenever the compound is initialized, so are the sub-
components in order of definition

 whenever the compound is started, so are the sub-
components in order of definition

 whenever the compound fails or is terminated, so are the
sub-components; this may be done asynchronously or
synchronously in order of definition

This phasing of the lifecycle is of extreme importance to the SmartFrog
system. The phasing carries through the hierarchy of the compounds and
effectively provides a top-down, depth-first traversal of the compound parent-
child containment tree. Thus, each child is guaranteed that each of the other
children (and indeed the entire tree) has been stepped through the previous
phase of the lifecycle before it will step through the next. Thus, all
components will be initialized before any are started, and so on. The only
exception to this is termination, which may occur at any time and may be
completely asynchronous.

 The Compound monitors its children for their status using the
child’s sfPing template method. If there is any failure of this
method (either an exception or the method returning false), the
child is assumed to have died and the compound propagates this
as defined by the shared lifecycle principle. Note that other
semantics for failure recovery, or other semantics for lifecycles,
may be implemented and many are provided within the
accompanying workflow package

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 - 86 - last modified on 23 Aug 2006

5 Component Template
The following text is the typical outline for a primtive component in SmartFrog

import org.smartfrog.sfcore.prim.Prim;
import org.smartfrog.sfcore.prim.PrimImpl;
import org.smartfrog.sfcore.prim.common.SmartFrogException;

import java.rmi.RemoteException;

public class MyPrim extends PrimImpl implements Prim {

/* any component specific declarations */

public MyPrim() throws RemoteException {
}

public synchronized void sfDeploy()
 throws RemoteException, SmartFrogException {

super.sfDeploy();
/* any component specific initialization code */

}

public synchronized void sfStart()
 throws RemoteException, SmartFrogException {

super.sfStart();
/* any component specific start-up code */

}

public synchronized void sfTerminateWith(TerminationRecored tr) {
/* any component specific termination code */
super.sfTerminateWith(tr);

}

 /* any component-specific helper or public methods go below here */

}

The template to write a basic modified compound is similar, but using
Compound and CompoundImpl in place of Prim and PrimImpl.

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 - 87 - last modified on 23 Aug 2006

6 Well-Known Attributes
SmartFrog defines a number of predefined component templates, such as the
ones for ProcessCompound, which require specific attributes to be defined.
These attributes are captured in the interface:

org.smartfrog.sfcore.common.SmartFrogCoreKeys

The special attributes used in the framework are:

• sfProcessHost: Attribute used to determine the host to use to locate the
root process compound on that host.

• sfProcess: Attribute used to determine the process/subprocess name
where a component runs.

• sfProcessName: Attribute used to name a process/subprocess

• sfProcessComponentName: Attribute used to name a component

• sfRootLocatorPort: Registry port used by the rootProcess daemon

• sfSubprocessGCTimeout: Attribute with garbage collection time out for
subprocesses

• sfHost: attribute used to determine the host address where a component
runs

• sfProcessAllow: Attribute used to define if subprocesses can be used

• sfProcessTimeout: Attribute with subprocess deployment timeout

• sfProcessJava: Attribute that holds the process java start command

• sfProcessClass: Attribute that holds the class name for subprocesses

• sfDeployerClass: Attribute that holds the class name for deployer

• sfSyncTerminate: Attribute that determines asynchronous or
synchronous termination of compound

• sfClass: Attribute that holds the class that implements a component

• sfConfig: Attribute that determines the resolution root of a SmartFrog
description

• sfSchemaDescription: Attribute that determines the definition of a
schema

• sfCodeBase: Attribute that defines the codebase for a component

• sfLivenessDelay: Attribute that defines how often to send liveness in
seconds.

• sfLivenessFactor: Attribute that defines how many multiples of the
liveness delay to wait till a liveness failure of the parent is declared

• sfExport: Attribute that defines if a component has to accept remote
method calls

• sfRootLocatorClass: Attribute that defines the root locator class

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 - 88 - last modified on 23 Aug 2006

• sfBootDate: Attribute that hold the boot time of the root process daemon

Some special names used in the framework:

• rootProcess: Name used to name root process

• ROOT: Name used to refer to the root reference in a particular hierarchy of
components or description

• sfRunProcess: Name used to name a root process deployed without
registry

• unnamed_: Prefix use to name unnamed deployments

• sfDeployFailure: Name used to name a deploy phase failure

• sfStartFailure: Name used to name a start phase failure

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 - 89 - last modified on 23 Aug 2006

 Part 4: The SmartFrog Runtime

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 - 90 - last modified on 23 Aug 2006

1 Deployment In Detail
In SmartFrog, the term deployment is used to indicate the creation of the
components in response to the system being given a suitable parsed and
resolved description. A parsed component description may be deployed in two
primary ways:

 by invoking the sfDeployComponentDescription method on
a compound, and passing the parsed component to it – this
would on the whole be restricted to those cases when the
compound is to be the parent, or when it is simply desired to have
the initial deployment occur near the compound (i.e. in the same
JVM).

 by invoking the same method on the ProcessCompound of the
SmartFrog JVM in which the top-level component should be
created, though any use of deployment control attributes, such as
sfProcessHost, may still cause the component to be deployed
elsewhere.

The SmartFrog system uses the second of these two mechanisms for
deploying the descriptions that are given to it on the command-line.

In either case, the deployment semantics are identical and proceeds as
follows:

 The compound passes the top description to the deployer.

 The deployer, if it is the right one, examines the description for
the attribute sfClass, extracts the class-name and creates an
instance of the component class using the default constructor. If it
is not the correct deployer, it locates and passes on the request –
see section 1.1 for a description of how this is done.

 The instance is initialized using the sfDeployWith method,
being passed its component description as a parameter.

 If the component is a prim, it carries out some basic
initialization and returns.

 If the component is a compound, it examines the
attributes of the description and extracts those that are
non-lazy component descriptions. It passes these
descriptions to the deployer to create an instance of its
subcomponents.

 The object reference (possibly remote) is returned as the result of
the sfDeployComponentDescription method call. The
receiving object is then responsible for invoking the remaining
lifecycle methods in the correct order.

A number of facts should be noted. Firstly, that any component tagged LAZY
is not deployed by its parent compound – this leaves the description to be
used as structured data or for later programmatic deployment. Secondly, the
semantics of what is considered a component in a description is not defined
by the framework; rather it is defined by the compound component. This
alternation of responsibility between the deployer to create a single instance
of a component and the component to decide the next steps is an important
feature of the deployment mechanisms within the SmartFrog framework. The
last fact is that the follow-up initialize/start lifecycle is entirely up to the

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 - 91 - last modified on 23 Aug 2006

components that control the deployment – they are responsible for invoking
these methods. It is true that the framework will invoke a specific lifecycle on
the initial descriptions that are passed on the command-line – however, any
other component that initiates a deployment may chose to impose a different
lifecycle if so desired.

1.1 Selecting Deployers
A deployer is a Java object that is capable of creating an instance of a
component in a specific place, as described by attributes in the component
description. SmartFrog comes with three deployers, each providing a little
more capability than the previous. Some of the services supplied with
SmartFrog may add additional deployers. There are two aspects to cover

 how a deployer is chosen

 how each deployer interprets the attributes to select a location for
deployment.

The first of these is either the class defined by the sfDeployerClass
attribute of the component description to be deployed or the default deployer if
this is not provided. The default is an instance of the
PrimProcessDeployerImpl class. Thus in the example

sfConfig extends Compound {
 sfDeployerClass "org.smartfrog.example.NewDeployer";
 …
}

The component will be deployed with the NewDeployer class. If this attribute
had not been present, the default would be used. Each component in a
hierarchy may be deployed with a different deployer.

The three deployers provided by the core SmartFrog system are as follows:

 PrimDeployerImpl – deploys the component in the current
JVM, ignoring any other attributes

 PrimHostDeployerImpl - deploys the component in the root
process compound of the host whose name is provided in by the
sfProcessHost attribute. If no name is provided, the current
JVM is used.

 PrimProcessDeployerImpl – deploys the component in the
named process (or the root process if not provided) of the
specified host. If neither is provided, the deployer uses the
current JVM. The process name is defined using the
sfProcessName attribute, the host using the sfProcessHost
attribute. This is the default deployer.

Thus, the following description will be deployed on the appropriate host and
process, given that the default deployer will be selected.

sfConfig extends Compound {
 sfProcessHost “sfhost.smartfrog.org”;
 sfProcessName “example”;
 …
}

A description of processes, root processes and named sub-processes, is
given in section 6.

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 - 92 - last modified on 23 Aug 2006

1.2 Termination
Termination may be initiated on a component in one of three ways:

 By a call of the API method sfTerminate(…) by a thread
started by the component, or from an external source such as a
management system.

 From the parent of the component.

 From a child of the component, indicating that the child has
terminated – although depending on the semantics of the
compound, this may trigger an action other than the propagation
of termination. The standard CompoundImpl, though, will
propagate this termination to itself, the other children and its
parent.

Whereas for most of the component lifecycle stages, the compounds and
primitives are stepped synchronously through the cycle – each is created
before any are initialized, and each is initialized before any is started – this is
not necessarily a good model for termination. In many cases, termination may
be carried out asynchronously. Indeed, in the case of failure of a component
or the network, this is an absolute necessity. In other cases, it may be
desirable to terminate in a specified order whenever possible.

SmartFrog allows a degree of control over the termination process. The
default model is to terminate asynchronously, notifying parent component and
child components in arbitrary order, and calling the termination template
method on the component – the sfTerminateWith(…) method – at some
point in that process.

If a component must be terminated synchronously, the attribute
sfSyncTerminate must be set to the boolean value true. If not set, or set
to false, the component will terminate asynchronously.

1.2.1 Synchronous Termination
Synchronous termination causes a component to carry out the following steps
in order:

 Inform the children to terminate, waiting for each to be complete
until the next is invoked. This is done in the order of definition in
the component description.

 Terminate self by calling the sfTerminateWith template
method.

 Notify parent that termination has occurred, if not initially told by
the parent to terminate.

Note that a child component need not terminate itself synchronously, this is
set by the attributes within the child. If it is desired that all components
terminate synchronously, the definition of Prim should be modified in the file
components.sf to include the appropriate attribute.

1.2.2 Asynchronous Termination
This is the default mode of termination. The same three steps are
undertaken, though the children are all informed of the need to terminate in
separate threads that are created for this purpose. The implications of this are
that there may be some delay in the termination process, that resources may
not be freed immediately. However, it also means that long termination
sequences are scheduled independently of notifying its termination to its

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 - 93 - last modified on 23 Aug 2006

parent. This fast notification may be important for fault tolerance purposes, for
example.

1.2.3 Terminator Thread
As mentioned in section 9.2.2, asynchronous termination is done using a
separate thread. Terminator thread provides a standard way of
asynchronously terminating SmartFrog components. This class is defined in
org.smartfrog.sfcore.common package. For example:

// create an instance of terminator thread by passing component
reference and termination record
TerminatorThread terminator = new TerminatorThread(compRef,

terminationRec);
// Start the thread
terminator.start();

// Terminator thread object can also be constucted using another
constuctor
public TerminatorThread(Prim target, Throwable t, Reference compId);

Some utility methods are available in the TerminatorThread class:

// returns a TerminatorThread object which does not notify
// components parent while terminating the component
public TerminatorThread quietly();

// returns a TerminatorThread object which
// detaches the component from parent before terminating
// the component
public TerminatorThread detach();

// returns a TerminatorThread object which
// does not terminate the underlying component
public TerminatorThread dontTerminate();

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 - 94 - last modified on 23 Aug 2006

2 Attributes, LAZY Links and RMI Object References
2.1 Accessing Attributes At Runtime

Attributes of a component are stored in a Context, as defined by the
ComponentDescription used to create the component. These attributes
may be accessed using the sfResolve method of the Prim interface. This
method takes a reference and, relative to the component on which it the
method is initially invoked, de-references it to obtain the desired attribute. This
method may equally be used by any component, one that has an RMI
reference to the object or by the component itself. If called within the body of
component, the reference is de-referenced starting with the component itself.

The sfResolve method is defined as follows.

Object sfResolve(Reference r)

Locate an attribute when given a reference. This method resolves

from the point in the component hierarchy that is the Prim on

which it is called. References may be constructed using the

class constructor (recommended) or the fromString("…") method

defined on Reference to provide a simple, though inefficient,

way of creating complex references.

This method will return an Object that may be inspected using reflection or
caste to an appropriate class. For most attributes it is clear from the context
what the value returned should be.

Although the above method is the primary one for accessing attributes, there
are a number of other methods with a number of semantics – they are all
documented in the Javadoc.

2.2 LAZY links And RMI
If the description contained a LAZY link, the link resolution phase would not
have resolved it in advance – rather it would have left the reference to be the
value of the attribute. There are now two possibilities when sfResolve is
invoked:

 That the reference is de-referenced at this point, returning the
appropriate value.

 That the reference itself is returned as the attribute value.

The first of these semantics is that implemented by sfResolve (though not
by all methods in the Prim interface). Consequently, if an attribute is a LAZY
link, it is silently de-referenced at the time it is accessed, following the parent-
child component hierarchy in exactly the same way as is done with
ComponentDescription declarations during link resolution.

Note that the value returned by the resolution is not cached locally. It will be
fetched each time the attribute is accessed. The value should be cached by
the component itself if this is required.

There are several reasons why a LAZY link might be used instead of a normal
link, in spite of the fact that delaying access in this way is much less efficient –
particularly so when the attribute referenced may be remote. These reasons
are all related to the property that the value of the attribute is not available at
time of link resolution.

 The attribute referenced may be set at run-time by the
component, or may continually change its value and must be read

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 - 95 - last modified on 23 Aug 2006

many times. This variability is the reason for not automatically
caching values locally.

 The link may reference a component with the intention of
obtaining the RMI object reference of the component

Consider the following example:

sfConfig extends {
comp1 extends Prim { … }
comp2 extends Prim { …

otherComp LAZY comp1;
 }
}

The link to comp1 from within comp2 is defined as LAZY. This is because the
link, if it de-referenced at the time of link resolution, results in a copy of the
ComponentDescription that is comp1 being placed within that of comp2
under the name otherComp. Thus, if it were not LAZY, after resolution the
result would be the resolved equivalent of

sfConfig extends {
comp1 extends Prim { … }
comp2 extends Prim { …

otherComp extends Prim { … };
 }
}

which is not the intended behaviour. If the link is made lazy, on the other
hand, the resolution is carried out at run-time by the Compound/Prim
hierarchy and instead of the ComponentDescription being copied, the
RMI object reference of the component referenced is returned. Under these
circumstances, comp2 would be able to call the exported methods of comp1.

2.3 The Moving ROOT
The root reference part appears simple, but it can have some unexpected
side effects. The meaning of the ROOT reference part is that, at the time of
resolution, the ComponentDescription or Compound/Prim hierarchy is
traversed upwards from the point of initial resolution until there is no parent.
This top ComponentDescription or Component is the root.

Therefore, when a link is defined using the ROOT reference part, the ROOT
refers to the file itself, the virtual ComponentDescription containing all the
attributes at the top level.

At run-time, however, this ComponentDescription no longer exists – the
component called sfConfig from that file is normally the new run-time root.
Consequently, LAZY links with ROOT resolve differently from the way they
would have done if they had not been lazy and had been resolved at the time
of link resolution.

The situation is even more confused, though, since the structure of the tree
can change during the life of an application. For example, the use of
sfDetach changes the structure of the tree during its execution. This
difficulty in pinning the meaning of ROOT can cause great confusion and
therefore the use of ROOT should be limited to occasions where the semantics
are clear.

2.4 Modifying Attributes Values
Given the use of LAZY links, with the ability to read attribute values many
times, they may be used as a way of passing information between
components. To provide the ability to add, remove and replace attribute
values from the context, three methods are provided as part of the Prim

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 - 96 - last modified on 23 Aug 2006

interface. Note that these descriptions of these methods do not accurately
define the signature. These should be found from the Javadoc.

 public Object sfAddAttribute(Object name, Object value)

Add an attribute to the component's context. Values should be

marshallable types if they are to be referenced remotely at run-

time. If an attribute with this name already exists it is not

replaced.

 public Object sfRemoveAttribute(Object name)

Remove named attribute from component context. Non present

attribute names are ignored.

 public Object sfReplaceAttribute(Object name, Object value)

Replace named attribute in component context. If attribute is

not present it is added to the context.

2.5 Trapping Accesses And Reference Adaptors
Attributes of a component are stored in a Context, as defined by the
ComponentDescription, and made available through the Prim interface
using the sfResolve method. However, it can be useful for a component to
provide an attribute that is not stored within its context but is evaluated on
demand, for example an attribute representing the current load on the
component.

For this, the request for an attribute value must be trapped, diverted from the
lookup in the context, and the correct value returned. This is possible by
understanding how a reference is de-referenced.

The sfResolve method is almost immediately converted into a request to
resolve the reference from a specific index of the reference parts using the
method

Object sfResolve(Reference r, int index)

This method resolves one part to get to another

ComponentDescription, and forwards the request adding one to the

index. In this way the reference is eventually fully de-

referenced and the attribute value returned.

This method is implemented by PrimImpl, and its default implementation is
to look up in the context and forward if the reference is not yet completely de-
referenced.

The accepted way of trapping a request is to override the default
implementation in the appropriate component class, checking to see if the
attribute is one that needs special handling and if not, invoking the super-
class method to continue as normal. If it has to be handled specially, carry out
the appropriate processing and return the evaluated attribute value.

This mechanism has some interesting possibilities. For example, it is possible
to intercept a reference early on in its de-referencing process, within a
component that may then use the rest of the reference parts to be a
parameter to the component to evaluate its attribute value. This may be used,
for example, to provide an adaptor into other naming and discovery
technologies.

Consider a component that uses a database to extract a value for an attribute
given a table name, a key and the column name required. Assume further
that this component has been deployed on a specific host, say
db.smartfrog.org, with the sfProcessComponentName set to
dbAccess. Descriptions may now use references of the form

foo LAZY HOST db.smartfrog.org:dbAccess:ttt:kkk:ccc

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 - 97 - last modified on 23 Aug 2006

where ttt, kkk, ccc are the table name, key and column respectively. This is
again an example of how a component which is accessing the attribute foo
need know little of how the attribute’s value is obtained. This is an issue for
the configuration not for the component code.

2.6 sfHost and sfProcess Attributes
Every component, when created, adds two attributes to its collection of
attributes. These are the hostname and process name in which the
component is running. These are defined in the very earliest phase of the
lifecycle, during construction. Consequently they are present during all other
phases.

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 - 98 - last modified on 23 Aug 2006

3 Attribute Serialization
At run time, when components are scattered across a number of hosts,
components exchange the values of attributes through the use of link
resolution. As these values are passed around, they traverse a number of
hosts. For example, consider the diagram below:

In this diagram, component A requests the attribute “foo” from component B
whenever the attribute “bar” is accessed. This is passed back in response to
the request to resolve the bar attribute. The attribute has to be of a class that
is known to both hosts containing the components A and B, otherwise some
form of exception will occur. However, what is not so obvious is that the
attribute value is also passed through the compound component containing A
and B.

It should be noted that although in the language a very limited number of
classes can be used for attribute values, and these are known everywhere, at
run-time attributes can have other values than these simple ones, indeed any
serializable class, and in particular this will include all the RMI stub classes for
the various components.

Early versions of SmartFrog simply insisted that the classes of attributes that
were passed through intermediate nodes in response to a resolution request
had to be known to those intermediate nodes. This was not an adequate
solution, so an alternative model had to be found.

An attempt at solving this automatically wrapped all attribute values within a
well-known wrapper class (SFMarshalledObject) for passing around. This
wrapper held the actual value as a byte array containing the serialized value.
In this way only the wrapper class needed to be known at every host and the
serialization and deserialization simply occurred transparently at each end of
a link resolution (in this case at the hosts containing A and B). At the
intermediate node, only the wrapper would be handled and the real attribute
value would be held as bytes within it.

This solved many of the problems associated with the need for attribute
classes to be known everywhere, but it introduced others. Consider if two
components are always together on the same host. They locate each other
using a link in the normal way, and use local interfaces to communicate (this
is often done for security reasons, not to expose to remote calls sensitive
interfaces). As the objects are serialized and deserialized within any link
resolution, the result is always a remote object reference even though the
object is local. This cannot be caste to a local-only interface, so it became
impossible to ever call a local interface on a component located through link
resolution. As it is impossible to extract the real object from an RMI Object
Reference, so there is no easy way out of this problem.

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

Compound

BA

foo LAZY B:bar bar someVAlue

host boundary

SmartFrog Reference Manual v3.06 - 99 - last modified on 23 Aug 2006

The final solution, and that in the current version, is for the wrapper to be a
little more intelligent about the serialization of the value it wraps. It only does
so if it is being serialized itself – so if the wrapper is never passed between
hosts, the value it wraps is not serialized either.

This fixes most of the problems associated with local interfaces, as well as
solving the issue of classes having to be known everywhere. However it is not
perfect. If a value is ever passed remotely, even if it ends up on the original
host, it will have become serialized. A classic example of this is shown in the
following diagram.

Although A and B are on the same host, the compound is not and the attribute
referenced will therefore pass through the remote host. So if A and B need to
communicate using local interfaces, this is not a suitable description. An
additional container compound will need to be added on the same host as A
and B to act as the local container and so ensure that the link resolution never
traverses a host boundary. This is also more efficient for deployment and for
liveness, so is anyway to be encouraged.

Note that in the discussion above, for host one should really read process.
Crossing process boundaries, even on the same host, introduces the same
problems.

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

Compound

BA

foo LAZY B:bar bar someVAlue

host boundary

SmartFrog Reference Manual v3.06 - 100 - last modified on 23 Aug 2006

4 Liveness
A feature of SmartFrog is its all-or-nothing semantics for Compounds, its
shared lifecycle for all components. This must be done in a context where any
host within the network or, indeed, the network itself, may fail at any time.
These failures may result in applications losing some components, or perhaps
being partitioned into two or more parts if the network itself fails.

The guarantees that SmartFrog attempts to provide, such as all-or-nothing
deployment, cannot be achieved by purely passive means. The system needs
to monitor the various components to ensure that they are still active, can be
accessed and are in good shape. Detection of the failure of an application
component, or of the network between such components, must be notified to
the application in an appropriate way. Note that the difference between failure
of a node and the failure of the network between nodes cannot normally be
diagnosed from the perspective of another node.

The hierarchical nature of an application provides a natural chain of
responsibility – a parent is responsible for the checking and monitoring of its
children, and vice-versa. Notification of failures will be made to these
components and it is the responsibility of these components to take
appropriate action.

SmartFrog provides a default liveness checking mechanism based on a
parent regularly heart-beating its children. Each component provides a
method sfPing as part of the Prim interface. This method either returns or
throws an exception, and it may be overwritten by the component
implementer to carry out any appropriate checks.

There are two possibilities when this method is called:

 The method succeeds, and returns normally – this is considered
as confirmation that the component is alive.

 The method fails by throwing an exception, implying one of the
following:

 that the remote host has failed.

 that the network has failed and the two components are
out of communication.

 that the component is indicating that an error has
occurred and it should be considered as dead.

The default Compound semantics is to terminate itself under any of these
circumstances and hence the whole application follows suit – again
alternative semantics may be defined.

On the child side, it monitors how frequently the parent is checking its state. If
the parent misses more than a specified number of heart-beats, the child
assumes that the parent has failed, or there is a network failure, and handles
the failure – again the default is to terminate itself (and hence any part of the
application below it in the hierarchy).

Should the parent or network recover, the child will respond with an exception
to any request for status, and the parent and hence the rest of the application
will terminate by default.

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 - 101 - last modified on 23 Aug 2006

 If the default behaviour needs to be changed, the report to the component is
done via a call to the method sfLivenessFailure. This method, in the
default implementation provided by PrimImpl, simply terminates. This
method may be over-ridden if required.

To try to be a little more efficient, the SmartFrog system does not create a
liveness thread for each component. Rather, it creates one for every
component that is in a different process. This thread is responsible for
checking all the components in the hierarchy downwards until it has checked
a single level of remote components. Equally, it is only the “first” component
that monitors whether it is being checked on a regular basis. Consequently,
overheads for large numbers of components on one host are minimal. The
following diagram makes this clear.

c

pp

cpc

p p

hosts
p

threads

The frequency of liveness checking can be modified to balance
responsiveness requirements and overheads in any particular system. Two
attributes may be set:

 sfLivenessDelay: (default 15 seconds) how frequently in seconds
should the liveness be checked. Zero indicates no checking.

 sfLivenessFactor: (default 2 misses) how many missed heart-
beats should be considered a parent failure.

These may be modified for the entire system by setting them in prim.sf, or for
all components rooted in a process by setting the attribute definitions in the
process compound for that process, or it can be set for the sub-tree of a
component by setting it in that component.

Each component searches for the current value of these attributes up the
containment tree up to the root (using an ATTRIB reference part). If it does
not find them anywhere up the tree, including in the root component, the
default is taken from the local process compound (this defines the defaults of
15 seconds and 2 misses given above).

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 - 102 - last modified on 23 Aug 2006

5 Hooks
At times, it is necessary to carry out an action for some or all of the phases of
the lifecycle of every object – a typical use being to trace or log the
components that come and go. To enable this, a set of lifecycle hooks have
been provided, such that at every component lifecycle phase the appropriate
hook is called, parameterized by the component.

The hooks are called in the PrimImpl base class, as part of the default
implementation of the template lifecycle methods. For the hooks to be called,
therefore, it is essential that the superclass template methods are called in
any derived class, as indicated in the primitive template in Appendix E.

To create a new hook class, the class should implement the interface
PrimHook in package org.smartfrog.sfcore.prim. This interface
defines a single method, sfHookAction, which is called when the hook is
invoked. This method is documented in the Javadoc.

To register a hook, an instance of the hook class should be added to one of
the four HookSet members available in Prim (using the addHook method),
namely sfDeployWithHooks, sfDeployHooks, sfStartHooks, and
sfTerminateWithHooks; one for each of the template methods. Note that
the effect of the hook is local to a specific process.

Removal of hooks is also possible, so creating a component that adds a hook
on start, and removes it on termination, is feasible – so for example a
management component could, on demand, capture all the lifecycles for a
period of time at a process and send the information back to some central
console.

The mechanism is primarily intended for debugging and management.

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 - 103 - last modified on 23 Aug 2006

6 Processes and Java Virtual Machines
The SmartFrog system is designed to form the basis for a fully distributed
configuration and programming environment. As such, the system must be
able to deal with deploying components into many processes (Java Virtual
Machines) on many different hosts. This section covers the subject of these
processes, how they may be identified and located, and how they may be
started and managed. It also deals to a degree with the APIs provided to allow
applications to interact with them, however, as usual, the full API is described
in the accompanying Javadoc.

There are two concepts to understand as part of the underlying control of the
SmartFrog system. The first of these is the SmartFrog Resource Reference
(SFREF). This is a URL to a description file to deploy or otherwise use. The
second is an SmartFrog Action Descriptor (SFACT), which is used to indicate
to SmartFrog an action to take. These are now described in more detail.

6.1 SmartFrog Resource References
Throughout the SmartFrog system, including on the command line,
references to SmartFrog resources (i.e. files) may be given in a number of
ways:

 as a URL to the file;

 as a relative or absolute path name to a file;

 as a path to a resource in a jar file on the classpath or code base.

In this last case, the reference should be given as a path relative to the root of
the package structure within the jar file, i.e. without the leading "/". In most
cases this leading "/"is removed by the code, but there may be some
instances where this is not so.

In the following descriptions of the scripts, a reference to such a resource is
referred to as an SFREF.

6.2 SmartFrog Action Descriptor
An action descriptor is used on the command line to describe a certain type of
action that will be carried on by the daemon. An action has a number of “:”
separated fields, most of which may be left blank in many cases.

The format is:

NAME:ACTION:SFREF:SUBREF:HOST:PROCESS

The semantics of the fields are defined as follows:

6.2.1 NAME
The name is a single word, or a SmartFrog reference in which case it must be
surrounded by quotes. The name has one of two interpretations depending on
the action to be taken (see next field).

In TERMINATE, DETACH, DETaTERM, PING, DIAGNOSTICS the name is a
reference to the component on which to apply the action.

In DEPLOY, the name is treated like a placement and the name is split into two:
all but the last part is a reference to another component and the last (or only)
part is the name which will be given to the deployed component within that
referenced component. If the component is not a ProcessCompound, the
component is also made the parent of the deployment.

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 - 104 - last modified on 23 Aug 2006

In all cases, the NAME is resolved relative to the process compound of the
HOST and PROCESS specified by the appropriate fields.

When a name is not provided, it indicates the process compound of the host
and process defined in the HOST and PROCESS fields. Also, in DEPLOY no name
means use the sfProcessComponentName from the description if available
or generate a random name to name the deployed description.

Examples:

foo

"HOST localhost:foo"

6.2.2 ACTION
This field defines the action to be taken on the named component

• DEPLOY a component or application.

• TERMINATE a component or application.

• DETACH a component from its parent.

• DETaTERM detach and terminate a component from its parent.

• PING a component.

• PARSE a description and generates report.

• DIAGNOSTICS a component and generate report.

6.2.3 SFREF
The SmartFrog description (if needed) to be used by ACTION. It is a
SmartFrog Resource Reference see 3.1. It needs to use quotes (“ or ') when
the reference is using “:”. Currently this is only required for a DEPLOY and
PARSE actions and is ignored otherwise.

Examples:

/home/sf/foo.sf

"c:\sf\foo.sf"

'c:\sf\foo.sf'

6.2.4 SUBREF
When the SFREF is parsed and resolved, the result is a component
description containing a number of attributes. In the “sf” language, this is the
contents of the sfConfig definition. Under normal circumstances, it is this
whole definition that is used for the deployment, but occasionally, for testing
purposes perhaps, it is useful to specify some single subcomponent. Under
these circumstances, the name of this attribute, or a reference to a deeply
nested application, may be provided. This is the SUBREF.

Examples:

foo

"fist:foo"

'fist:foo'

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 - 105 - last modified on 23 Aug 2006

6.2.5 HOST
host name or IP from where to resolve the name. If HOST is not present, the
process name is ignored and the process executing is used. If you want to
refer to another process, other than the executing one, on the local host,
"localhost" should be used and the appropriate PROCESS name used.

Examples:

foo.hpl.hp.com

127.0.0.1

6.2.6 PROCESS
process name from where to resolve the name. When empty it defaults to
“rootProcess”.

6.2.7 Examples
These examples show the use of the action descriptors for different purposes.

Example 1: Deploy a description in the local daemon

Ex1:DEPLOY:org/smartfrog/examples/counter/example.sf::localhost:

Example 2. Terminate the local sfDaemon

rootProcess:TERMINATE:::localhost:

or

:TERMINATE:::localhost:

Example 3: Deploy "counterToSucceed" from counter/example2.sf

counterEx3:DEPLOY:org/smartfrog/examples/counter/example2.sf:"testLevel
1:counterToSucceed":localhost:

Example 4: Get diagnostics report for "sfDefault" component running in
localhost

sfDefault:DIAGNOSTICS:::localhost:

6.3 SFSystem And Command-Line Parameters
The main loop of a SmartFrog process is provided by the class SFSystem.
When this class is invoked, it reads various command line parameters and
system properties to generate the appropriate type of SmartFrog process and
to trigger the desired configuration actions. The general form of the
command line for SmartFrog is

java [–D properties] org.smartfrog.sfcore.SFSystem [parameters]

In general the command line will be triggered by a script setting up the
properties as defined and described below, and arranging for the command
line parameters to be correctly defined. The parameters are:

 -a SFACT: SmartFrog Action Descriptors (SFACT). There can be
more than one of this. See format for SFACT in 13.2

 -f SFREF: file that contains a set of file that contains a set of
SmartFrog Action Descriptors (SFACT). There can be more than one
of this. See format for SFREF in 13.1.

 -e : exit after deployment of the configurations is complete.

 -?: usage and help information.

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 - 106 - last modified on 23 Aug 2006

The system properties are rather more complex in their effect. To understand
their effect on SmartFrog behaviour, the concept of a process compound
must be explained. Of course, additional properties may be defined to
parameterize specific applications that require it (this is particularly useful in
conjunction with the PROPERTY and IPROPERTY links).

6.4 Process Compounds
Every process contains a specialized component known as a
ProcessCompound created by SFSystem at start-up. It is a modified
Compound providing the full component creation interface offered by all
compounds. As such, it is the means by which all top-level components within
the process are created. As it is a compound, it also contains attributes and
sub-components:

 It contains attributes that affect the behaviour of the process, such as
security settings, classpath information, and so on.

 It contains an attribute referencing each application that is running in
the process. These applications are all children of the
ProcessCompound, in the sense that the ProcessCompound does
monitor the children for status. This is so they may be removed from
the ProcessCompound on termination. The applications, however,
do not consider the ProcessCompound as their parent.

 It contains, as a child, the ProcessCompound of any sub-process
that may be created during the deployment process: it is possible to
have a simple two-level tree of processes controlled by attributes
within the ComponentDescription to be deployed. A sub-process
does consider the root process as its parent and will terminate if the
root dies.

However, to interact with the ProcessCompound in a process, for example to
initiate a deployment, it is necessary to obtain the RMI object reference to that
ProcessCompound. SmartFrog defines a core mechanism using the RMI
registry for this purpose, though other mechanisms may additionally be
defined. One such is that provided with the SLP discovery infrastructure
described in a separate document. Only the registry-based mechanism is
described here.

6.5 Types Of Processes
Processes come in three main types:

 Root Processes that create an instance of an RMI registry and
register themselves within it so that they may be located. Note that a
host may have several root processes so long as they use different
ports for the registry. However there are restrictions in the current
release that limit the degree of interactions of processes on different
ports and hence this should only be done if the two belong to different
SmartFrog systems. A SmartFrog system is designed so that a single
root process exists on each host, and that these are on the same port
number.

 Sub-processes are processes that register with the root process and
become children of the root process, and hence are named within the
ProcessCompound of the root process. This is the mechanism by
which the sub-processes are located and their RMI references
obtained. Subprocesses may be created in two ways – by explicit
launching from a command line or by defining that an application

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 - 107 - last modified on 23 Aug 2006

should be deployed in a sub-process that is created if it does not
already exist.

 Basic processes are processes that do not use the core SmartFrog
mechanisms to advertise their existence – either because they are
not required to be accessed or because they use other mechanisms
for this purpose.

The normal model for a SmartFrog system is that a root process compound is
created as a service or daemon on each host, possibly at boot time, and that
applications are created (in dynamically created sub-processes if so desired)
as defined by applications that are launched from basic processes that exit
when the application has been successfully deployed.

6.6 Process Attributes
Each process, when it is started, customizes its behaviour dependent on
attributes that are given it in two distinct ways:

 As attributes defined in the processcompound.sf file that is read
at the start-up of any process.

 System properties set on the command line that override the defaults
provided in the above start-up file.

These attributes control aspects of process behaviour such as type of
process it should be, what port is used for the registry within the system,
whether security should be enabled and where remote code is available for
remote downloading. Most of the attributes may be defined in either or both
the above ways, however a few of the attributes must be passed as system
properties. In particular, the security properties need to be set before the
processcompound.sf file is read.

When the processcompound.sf file is parsed, all system properties with
the prefix org.smartfrog.sfcore.processCompound are added to the
context before deployment, thereby creating the process compound itself.
Consequently, using the command line option

-Dorg.smartfrog.sfcore.processCompound.sfRootLocatorPort=2000

when starting Java overrides the default value defined in
processcompound.sf. The attributes from processcompound.sf that
are considered user-modifiable are as follows:

 sfProcessName
(no default value preset in processcompound.sf)

 sfLivenessDelay 15;

how frequently (in seconds) to check children processes and
applications to status

 sfLivenessFactor 5;

how many missed checks from parent process before assuming that
parent process is dead

 sfProcessAllow true;

allow sub-processes – only used with the root process compound

 sfProcessTimeout 60;

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 - 108 - last modified on 23 Aug 2006

how long to wait (in seconds) for a child process to be created before
failure is assumed

 sfRootLocatorPort 3800;

the registry port for the root process compound

6.7 Accessing Process Compounds And Attributes
Attributes may be accessed via the process compound itself. Indeed, the
attributes should never be accessed by requesting the system properties -
they may not have been defined through that mechanism. To access the
attributes, first obtain the process compound of that process then simply
lookup the attribute using the normal SmartFrog supplied methods (it is, after
all, a Prim) as in:

SFProcess.getProcessCompound()
.sfResolve(Reference.fromString("sfRootLocatorPort"));

Note that for efficiency, using the string reference parser should be limited.
Overall, it is better to build and use a reference to avoid the expensive step of
parsing the string as a reference.

If the process compound required is on a different host, or is in a different
sub-process, the mechanism is to first locate the root process compound on
that host, then to find the process of that name as an attribute within the
process compound. This can be done using the following invocation

SFProcess.getRootLocator().getRootProcessCompound("hostname");

Or by making use of the host reference

 sfResolve(Reference.fromString("HOST hostname"));

Attributes may then be queried as before. Once the root process compound is
obtained, sub-processes may be obtained by looking up the process name in
the compound as with any other attribute.

6.8 Creating And Naming Sub-Processes
Sub-processes are created in two ways. A user may create a sub-process of
an existing root process by setting the system property sfProcessName as
follows on the command line to start the daemon:

-Dorg.smartfrog.sfcore.ProcessComopund.sfProcessName=name

By doing so, the process registers with the root under the supplied name. If
the root does not exist, the process will fail and terminate. Note that if the
reserved name “rootProcess” is used, a root process is created.

The second mechanism is via the attribute “sfProcessName” being given in
a component to be deployed as in the following snippet

Foo extends Compound {
 sfProcessName "fooProcess";
 // ...
 }

On deployment, the compound Foo will be deployed in a sub-process
fooProcess, the host depending on the provision of the attribute
sfProcessHost and local if not provided. If fooProcess already exists,
this will be used, otherwise a new process will be created using that name.

It should be noted that in automatically creating this subprocess, the
command line is defined to pass on all system properties of the root, apart
from the org.smartfrog.sfcore.processCompound.sfProcessName
property that set to the appropriate name for the process.

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 - 109 - last modified on 23 Aug 2006

6.9 Naming Applications
As applications are deployed into the various processes, the process
compounds are involved in the creation of the first component of an
application tree in that process (this may not be the root component of the
application tree, just the first in that process). As it does so, the process
compound will keep an attribute referencing this component, the name of the
component being either obtained from the component’s
sfProcessComponentName attribute if it exists, or a random unique name
generated on demand.

This component is not a child of the process compound, though the process
compound does monitor it for status using the liveness mechanism, removing
it if liveness shows that the component has terminated. However, the
provision of this attribute does enable a management system to locate
processes (using the registry and named sub-processes) and then to find all
applications that are resident completely or partially within that process. By
following the hierarchy of parent/child relationships, every component across
all processes of every application can be located.

Using the –n command-line parameter of SFSystem command ensures that
the root component of the associated configuration is given the name
provided on the command line. It is exactly as though application were being
given a name by using the sfProcessComponentName in the application
itself.

6.10 HOST and PROCESS Links
Note that the naming of components in this way also provides a convenient
naming service across a SmartFrog system that could be used by
components to locate each other – for example, a component may wish to log
events at the logging service on a specific host. The normal way in which
components locate each other is, of course, by using a link. To support the
use of the naming capability, a HOST link is provided which will, as it is
resolved, use the root location mechanism to access remote process
compounds, allowing the remainder of the link to be de-referenced in that
context, to a subprocess compound or an application component. The syntax
for HOST references is given in section 2.2.4.

Another link that may be used in a similar way is the PROCESS link that refers
to the process compound of process in which the component is deployed.

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 - 110 - last modified on 23 Aug 2006

7 The SmartFrog Security Model
7.1 Introduction

This section describes the SmartFrog security model. Its design deliberately
had a very simple usage model in mind, so it may not suit all uses. Future
releases of SmartFrog will address more complex scenarios by enhancing
some of the current mechanisms, so even if it does not fully meet your
requirements, some experimentation may still be worthwhile. In addition,
although some penetration testing has been done, security mechanisms are
difficult to get right first time, so unwanted "features" may well appear.

Several aspects are covered in this section. Firstly, the threats that are
considered in the model are described. Secondly, the policies that must be
enforced in order to protect the system from these threats are defined.
Thirdly, the specific mechanisms that have been implemented, and the
assumptions regarding the rest of the system are listed. Finally, a discussion
about the current limitations that will motivate enhancements in future
releases.

7.2 Threat Model
SmartFrog could be an extremely powerful tool to spread viruses. The ease of
deploying and managing the life cycle of a distributed application plays
against you when the application deployed is malign. Therefore, it is critical
that the system controls who can deploy what and where.

In particular, the communication channels between SmartFrog daemons are
not necessarily secure, e.g., they could be Internet connections. An attacker
could modify deployment configurations sent from legitimate daemons, or just
pretend that he is a valid participant and send his own. In addition, he can
obtain critical configuration information, such as passwords, by snooping on
the communication, that he can later use to attack the system.

An important feature of SmartFrog is to dynamically load resources from web
servers while deploying. These resources could be additional configuration
descriptions, Java classes, scripts, executable files and so on. New exploits
on web servers appear every month, and the concern is that these could be
used to modify resources that SmartFrog will download later on.

Making a node "SmartFrog aware" implies installing a permanent service in
this node, opening up a port for incoming requests, creating a special account
to run the service, and so on. This can make that platform more vulnerable if
someone can compromise the service itself, e.g., by exploiting a buffer
overflow.

7.3 Security Policy
The ultimate goal is that a distributed application configured, deployed and
managed by SmartFrog is not more vulnerable than the same application
configured, deployed and managed manually using a local secure procedure.
This means that SmartFrog is not trying to "fix" the security problems of the
application itself by, e.g., constraining what the application can do. However,
the application could indirectly benefit by having a more flexible mechanism to
bootstrap its security, or it could even use directly SmartFrog security
services.

Another desired goal is not to introduce new vulnerabilities in the hosting node
because SmartFrog has been activated. The problem is that the interactions
of SmartFrog with the rest of the system make this goal platform dependent.
Again, SmartFrog cannot "fix" problems in the underlying OS security; it is
simply that SmartFrog must not make them more "visible".

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 - 111 - last modified on 23 Aug 2006

To help clarify the target security model in this release, the concept of a
SmartFrog Trusted Community (SFTC) has been introduced. A SFTC is a set
of principals, typically composed of SmartFrog daemons and administrators
that fully trust each other, i.e., they will do anything that another valid
member requests, and they do not trust anybody else. There is a single
authority that defines who is initially in the community, but a current member
could later on add new members based on its own criteria. A member of an
SFTC should only use resources that are trusted, where trust in this context
means that they were created or authorized by another member of the
community, and nobody has modified them since. In some cases, we want to
enforce confidentiality as well as integrity on these resources, always within
the scope of an SFTC.

As mentioned in the discussion on threats, SmartFrog uses web servers to
dynamically load resources. Web servers are not part of the SFTC, although
they host resources that are trusted by members of the SFTC. Mechanisms
described in the next section will enforce the integrity (but currently not the
confidentiality) of these resources.

There is a strong requirement for knowing what is coming from inside or
outside the community, but it is less valuable to know from whom within the
community the original request came from. This means that accountability of
individual members in the community is very limited, something not surprising
when members fully delegate each other actions, and there are no members
with "special" privileges. Nevertheless, SmartFrog still give different identities
to each principal in an SFTC to make future enhancements easier.

Special care should be taken before authorizing that a particular application
might be deployed in the platform. Deployed components share the same
environment and privileges of the SmartFrog infrastructure and they could
take control of it. The problem is not only deploying a virus, but also deploying
an application with an exploitable vulnerability, that will allow an attacker to get
control of the application, then the SmartFrog local daemon, and finally all the
nodes in the SFTC. In general, ensure that daemons have the minimal
privileges required to carry out the tasks required by the applications.

7.4 Security Mechanisms
In this section, the security mechanisms that have been implemented for
SmartFrog to support SFTCs are described. This implies knowing when a
principal is a valid member of the community, ensuring that interactions over
an insecure network of valid members are safe, and satisfying the integrity
(and authentication) requirements of trusted resources, possibly hosted by
non-members of the SFTC. In addition, other mechanisms that have not been
implemented as part of SmartFrog, but are assumed to be available to make
the model work, are discussed.

7.4.1 Built-in security mechanisms
SmartFrog uses PKI (Public Key Infrastructure) based on X509 certificates to
provide principals of the SFTC with credentials that justify they are valid
members of the community. The centralized CA (Certificate Authority) is
based on openSSL and fully integrated with the rest of the release installation
process (by using Ant). Keys for individual members are actually generated
using Sun's keytool, and Sun's implementation of a keystore (with random
passwords) is used to keep node credentials safe (we assume though that
the centralized CA is in a safe, isolated environment).

Java 2 security mechanisms are leveraged to create a SFTC. In particular,
the Java security policy is set so that, when enforced by a
SecurityManager, gives full privileges to classes loaded from signed jars
(using a trusted key for the SFTC), and none otherwise. These mechanisms
are extended to other resources apart from classes, such as configuration
descriptions, so that they are only loaded if they are in a signed jar (same

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 - 112 - last modified on 23 Aug 2006

signing key as before). This is particularly useful when the jars are hosted by
web servers that are not part of the SFTC. Jars containing classes and
configurations of this release are signed as part of the installation process.
Jars with your classes/configurations could be easily signed with a similar
process (i.e., using Ant).

RMI calls are tunnelled over SSL using the JSSE API and Sun's reference
implementation. SmartFrog forces mutual authentication in the SSL sessions
based on the 1024 bits RSA public/private keys that are discussed above.
Only the SFTC CA keys are part of our trust assumptions so, by validating the
other partner's X509 certificate chain, SmartFrog knows that it belongs to the
community. However, the authenticated credentials of the other session peer
are currently propagated to the application layer, but this will only be useful in
future releases. Current SSL session settings include triple DES encryption,
with HMAC SHA-1 for message authentication. In addition, a similar
mechanism is used to protect access to the RMI registry.

SmartFrog supports dynamic loading of stubs during RMI calls, or arbitrary
resources in signed jar files using an enhanced RMI class loader. In both
cases the loading sources is restricted to a configured codebase, and use the
Java 2 mechanisms for signed JAR files described above.

All SmartFrog core classes use the security hooks described above for
loading resources and communicating with other peers. In addition, the set-up
of the security mechanisms is done as early as possible in the initialization of
daemons to minimize exposure.

7.4.2 Assumptions
The process of setting up the critical components of SmartFrog is safe. For
example, the Zip file containing the release has not been tampered with or, if
keys are centrally created, their confidentiality has not been compromised
when they were ship to the target host.

Similarly, SmartFrog critical components are protected by the underlying OS
after they have been set-up. For example, everything under the directory
"private/" can only be read/modified by the authorized user account that is
using SmartFrog (the security credentials are in that directory). Moreover, an
attacker cannot modify the SF core classes, basic scripts, or the JVM itself. In
general, SmartFrog is not trying to solve vulnerabilities of the platform, just
hoping that things do not get worse.

The current SmartFrog infrastructure is only as secure as the applications that
it deploys, unless significant application customization is done (e.g., spawn
processes under a different user with less privileges).

The implementation of the security mechanisms in SmartFrog uses many
third-party packages to quickly implement the security mechanisms. This
implies that if vulnerabilities are found in one of these components, e.g., Sun's
secure random number generator, this will have a devastating effect on the
implementation.

7.4.3 Known limitations and future enhancements
Some of the security assumptions will be relaxed in future releases of
SmartFrog. The next logical enhancement is to isolate the SmartFrog
infrastructure from the applications that it deploys and manages. Since
restrictions should not be placed on what SmartFrog can deploy, OS support
will be required for that.

Once isolation can be guaranteed, a common platform can be used to deploy
applications for non-mutually trusted clients. This will require virtualizing the
deployment service so that clients just can view and interact with their own
applications.

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 - 113 - last modified on 23 Aug 2006

The next step will be deploying applications that spawn multiple domains of
trust, i.e., multiple SFTC, in which a non-hierarchical trust model and more
accountability is required. This federated model, together with a new
revocation mechanism, will limit the exposure when the security credentials of
a valid member are compromised.

Finally, denial of service attacks are not prevented, and some of third party
packages that are used are particularly exposed to these attacks. Re-
engineering SmartFrog to be more robust against these attacks is a
significant effort.

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 - 114 - last modified on 23 Aug 2006

8 Properties
SmartFrog may have a number of properties defined that alter the behaviour
of the daemon. Some of these are required to be defined on the command
line (typically those that affect the way Java itself works), others may be
defined in a file (often default.ini) and passed to the daemon on the
command line.

These properties are captured in the class:

org.smartfrog.sfcore.common.SmartFrogCoreProperty

Some interesting properties are:

• org.smartfrog.sfcore.common.Logger.logStackTrace:
Optional boolean property to include stack trace with error message.
Default=false.

• org.smartfrog.sfcore.processcompound.sfRootLocatorPort:
SmartFrog daemon connection port. Default=3800.

• org.smartfrog.sfcore.processcompound.sfLivenessDelay: Liveness
check period (in seconds). Default=15.

• org.smartfrog.sfcore.processcompound.sfLivenessFactor. Liveness
check retries. Default = 5.

• org.smartfrog.sfcore.processcompound.sfProcessAllow: Allow
spawning of subprocess. Default=true.

• org.smartfrog.sfcore.processcompound.sfProcessTimeout:
Subprocess creation/failure timeout. Default=60. Slower machines might
need longer periods to start a new subprocess.

Properties that can only be defined using Java -D command line:

• org.smartfrog.sfcore.processcompound.sfProcessName: A
user may create a sub-process of an existing root process by setting this
system property. To start a SmartFrog daemon this property has to be set
to “rootProcess”.

• org.smartfrog.iniFile: to load a file with properties to define JVM
system properties. This file may not contain properties that affect security
or code loading – it is read after these are already initialized.

• org.smartfrog.sfcore.processcompound.sfDefault.REGISTR
ATION_NAME: This property is used to describe some descriptions that
should be deployed in all daemons and sub-processes. Each description
will be registered in the process using REGISTRATION_NAME as name. It
is possible to have many of this properties but the REGISTRATION_NAME
cannot be repeated.

• org.smartfrog.codebase: Property used to define the codebase, a list
of space separated URLs of JAR files used by the daemon.

• org.smartfrog.sfcore.security.keyStoreName: to load the
private keys for the daemon.

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 - 115 - last modified on 23 Aug 2006

• org.smartfrog.sfcore.security.propFile= to load security
properties.

• org.smartfrog.sfcore.security.debug: to enable security debug
information. Default=false;

• java.security.policy: Property to define Java security properties.

• java.security.debug: Property to define debug level in Java security.

• java.rmi.server.logCalls: Property to enable RMI logging. Default=
false;

• sun.rmi.loader.logLevel: Property to define debug RMI level.
Example: .VERBOSE

• java.security.manager: Property to define the Java security
manager.

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 - 116 - last modified on 23 Aug 2006

 Part 5: A SmartFrog Example

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 - 117 - last modified on 23 Aug 2006

1 Example
This section creates a simple example, covering all aspects including the
creation of the SmartFrog description and the necessary Java classes.

The example is a variant on the normal “hello world” that is so favoured by
books on programming. There will be two components – a printer and a
message generator. The message generator will locate the printer, send a
series of messages to it, and terminate. The printer, on the other hand, will
wait until it is given a message, and then print it. It will terminate when told to
do so.

The example is supplied with the SmartFrog distribution and is in package
org.smartfrog.examples.helloworld.

For each of the two components, two aspects must be considered:

 How the description for the component is defined, what attributes
must be provided and what the default attribute values are

 How the implementation is to be written, what is to be done in the
various lifecycle phases and what threading is required

Following the definition of the components, consideration must be given as to
how they are to be combined into a single application.

1.1 The Printer
The printer is a very simple component. It offers a single method that must be
accessible via RMI, namely printIt, which must take a string and print it on
the standard output. It has no specific initialization requirements, no threading
and no specific need to clean up on termination.

To make it a little more interesting, the printer will prefix the output message
with an identifier - either the name attribute if it is provided, or the name the
component has in the application tree if it is not.

The Description – file “printer.sf”
The description needs only to link the component type to the implementing
class. It does not need to provide a default value for the name of the printer,
since the use of no name will cause a default to the name within the
component tree.

Printer extends Prim {
 sfClass "org.smartfrog.examples.helloworld.PrinterImpl";
 name ""; //name – if empty, uses sfCompleteName
}

This fully describes the basic printer component. Host bindings will be done
as part of the complete application description.

The Interface – file “Printer.java”
Since the printer has an RMI accessible method, that method must be
described in an interface that extends Remote, and the method must throw
the appropriate RemoteException. The interface is very simple:

package org.smartfrog.examples.helloworld;
import java.rmi.*;

public interface Printer extends Remote {
 public void printIt(String message) throws RemoteException;
}

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 - 118 - last modified on 23 Aug 2006

This interface will be used by RMIC to generate the appropriate stub for the
PrinterImpl class enabling other components to remotely call this method.

The Implementation – file “PrinterImpl.java”
The PrinterImpl class is a primitive component and so must follow the
outline template provided in section . In addition, it must implement the Printer
interface.

Note that since there are no specific start or termination actions to carry out,
there is no need to provide the sfStart or sfTerminateWith methods.

package org.smartfrog.examples.helloworld;
import org.smartfrog.sfcore.prim.*;
import java.rmi.*;
import org.smartfrog.sfcore.Reference.*;
import org.smartfrog.sfcore.prim.*;

public class PrinterImpl extends PrimImpl implements Prim, Printer {

 /* any component specific declarations */

 // my name
 String name = "";

 // reference to my name attribute
 Reference nameRef = new Reference(ReferencePart.here("name"));

 // standard remotable constructor – must be provided
 public PrinterImpl() throws RemoteException {
 }

 // initialization template method
 public synchronized void sfDeploy()
 throws RemoteException, SmartFrogException {
 super.sfDeploy();
 /* any component specific initialization code */
 name = sfResolve(nameRef, "", false);
 if (name.equals("") name = sfCompleteName().toString();
 }

 /* component specific methods */
 public void printIt(String message) throws RemoteException {
 system.out.println(name + ": " + message);
 }
}

1.2 The Generator
The generator is a slightly more complex component. In particular, it must
locate the printer, and call it with a sequence set of messages. This must be
done in a separate thread started during the sfStart lifecycle method. The
thread must be terminated during the termination template method if it has not
already done so.

In addition to locating the printer, the component must obtain its set of
messages and a frequency with which it should print these messages
(defaulting to, say, one every 10 seconds).

The Description – file “generator.sf”
The description needs to link to the component type to the implementing class
and define the other attributes with their default values. The link to the printer
component, which will be LAZY because the RMI reference is required,
cannot be provided until the whole application is created.

Generator extends Prim {
 sfClass "org.smartfrog.examples.helloworld.GeneratorImpl";
 frequency 10; // default value set to 10 seconds
 messasges []; // a vector of messages
 printer; // link to the printer component
}

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 - 119 - last modified on 23 Aug 2006

The Implementation – file “GeneratorImpl.java”
Unlike the printer, the generator has no externally accessed methods apart
from those related to being a primitive component. Consequently, no
additional interface needs to be defined. The generator, though, requires a
thread – this may be done in many ways but extending Runnable and creating
a thread from itself is the easiest.

package org.smartfrog.examples.helloworld;
import org.smartfrog.sfcore.Reference.*;
import org.smartfrog.sfcore.prim.*;
import java.util.*;
import java.rmi.*;

public class GeneratorImpl extends PrimImpl implements Prim,Runnable {

 /* any component specific declarations */
 Reference messagesRef = new Reference(
 ReferencePart.here("messages"));
 Reference printerRef = new Reference(
 ReferencePart.here("printer"));
 Reference frequencyRef = new Reference(
 ReferencePart.here("frequency"));

 Printer printer;
 Vector messages;
 int frequency;

 Thread sender;
 boolean terminated = false; // notify the thread to terminate

 public GeneratorImpl() throws RemoteException {
 }

 public synchronized void sfDeploy()
 throws RemoteException, SmartFrogException {
 super.sfDeploy();

 printer = (Printer) sfResolve(printerRef, true);
 messages = sfResolve(messagesRef), [], true);
 frequency = sfResolve(frequencyRef,0,true)* 1000;
 }

 public synchronized void sfStart()
 throws RemoteException, SmartFrogException {
 super.sfStart();

 // create and start the thread
 sender = new Thread(this);
 sender.start();
 }

 public synchronized void sfTerminateWith(TerminationRecord tr) {
 // terminate the thread nicely if needed, can wait for it to
 // awake to actually do so

 terminated = true;
 super.sfTerminateWith(tr);
 }

 public void run() {
 // the body of the thread
 try {
 for (Enumeration en = messages.elements();
 en.hasMoreElements() & !terminated;) {
 printer.printIt(en.nextElement().toString());
 if (frequency > 0) {
 Thread.sleep (frequency)
 }
 }
 } finally {
 // it doesn't matter calling this many times
 sfTerminate(TerminationRecord.normal(null));
 }
 }
}

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 - 120 - last modified on 23 Aug 2006

1.3 Compiling the Components
The two classes and the interface all need to be compiled using the javac
compiler. This has been done in the distribution and the classes are in the
sfExamples.jar file.

Further, the two classes must be prepared for RMI by creating and compiling
the stubs and skeletons. This is done using the rmic compiler that is invoked
on the class:

rmic org.smartfrog.examples.helloworld.PrinterImpl
rmic org.smartfrog.examples.helloworld.GeneratorImpl

Both the classes must be rmic’ed because although the generator has no
interface as part of its own specialized behaviour, it does implement the Prim
interface which may be access remotely – for example in the case of remote
deployment.

If either of the classes will never be remotely accessed – for example if the
entire application will always be run in a single JVM – the rmic steps may be
skipped. In this case, the attribute sfExport must be set to false in the
appropriate component descriptions. If this is not done, the SmartFrog system
will attempt to load the stubs and skeletons for the classes and make the
objects accessible remotely.

Again, the stubs and skeletons have been pre-compiled and are in the jar file.

1.4 The Combined Application
Now that the various parts are defined and compiled it is possible to define a
few applications, consisting of one or more generators and printers, deployed
on one or more hosts, as required.

Starting with the simplest, one of each on the same host:

#include "org/smartfrog/components.sf"
#include "org/smartfrog/examples/helloworld/printer.sf"
#include "org/smartfrog/examples/helloworld/generator.sf"

// the application must be called sfConfig
// a compound is a collection of components
sfConfig extends Compound {
 g extends Generator {
 messages ["hello", "world"];
 printer LAZY ATTRIB p; // link to the instance of the printer
 }
 p extends Printer {
 name "myPrinter";
 }
}

Note that the printer is given a name rather than using the name derived from
the tree (which would be “p” as the name is from, but not including,
“sfConfig”). The generator uses the default frequency of 10.

The next example shows that it’s possible to have more than one generator
using the same printer:

#include "org/smartfrog/components.sf"
#include "org/smartfrog/examples/helloworld/printer.sf"
#include "org/smartfrog/examples/helloworld/generator.sf"

// the application must be called sfConfig
// a compound is a collection of components
sfConfig extends Compound {
 g1 extends Generator {
 messages ["hello", "world"];
 // link to the instance of the printer
 printer LAZY ATTRIB p;
 }
 g2 extends Generator {
 messages ["hello", "world", "again"];

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 - 121 - last modified on 23 Aug 2006

 frequency 5;
 // link to the instance of the printer
 printer LAZY ATTRIB p;
 }
 p extends Printer {
 name "myPrinter";
 }
}

(In this case, there is a problem with termination that will be explained later.)

A more complex example is one where we define a new component that
consists of a printer and generator pair. This pair will print to each other, and
the application consists of two of these pairs.

#include "org/smartfrog/components.sf"

#include "org/smartfrog/examples/helloworld/printer.sf"
#include "org/smartfrog/examples/helloworld/generator.sf"

 // a compound is a collection of components
Pair extends Compound {

 g extends Generator {
 messages ["hello", "world"];
 // link to the instance of the printer
 printer LAZY ATTRIB p;
 }
 p extends Printer;
}
sfConfig extends Compound {
 pair1 extends Pair;
 pair2 extends Pair;
}

In this case the printer component has not been given a name, so will use the
one derived from the tree – pair1:p and pair2:p respectively. Each
generator will find the associated printer, even though they are using the
same link, because these links are resolved in different contexts.

There is, however, a problem with this example and the previous one. Since
the lifecycle of the whole application is connected, the first of the two
generators to finish will cause the whole application to terminate even though
the other may not have finished yet. This may be solved by the use of the
workflow components, but this is not covered in this reference manual.

Enriching the example a little further, the pair should optionally be
parameterizable with the set of messages and the frequency, but without
requiring the user to know the structure of the components contained within it.

#include "org/smartfrog/components.sf"
#include "org/smartfrog/examples/helloworld/printer.sf"
#include "org/smartfrog/examples/helloworld/generator.sf"

Pair extends Compound {
 // default value for param
 messages ["this is a", "boring”, "set of strings"];

 // ditto
 frequency 10;

 g extends Generator {
 // link to container’s value
 messages PARENT:messages;
 // link to container’s value
 frequency PARENT:frequency;
 // link to the instance of the printer
 printer LAZY p;
 }

 p extends Printer;
}

sfConfig extends Compound {
 pair1 extends Pair {

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 - 122 - last modified on 23 Aug 2006

 messages ["hello", "world”, "again"];
 }
 pair2 extends Pair {
 frequency 5;
 }
}

This example shows the use of the parameterization pattern described in
section 4.

The final example is one where the hosts on which various components are to
be deployed may be modified. Taking the last example, we will enrich the
notion of pair with two hosts – the printer host and the generator host, both
defaulting to the local host.

In the combination, we will put the printer of one pair and the generator of the
other pair on one host, and the reverse on a second host.

#include "org/smartfrog/components.sf"
#include "org/smartfrog/examples/helloworld/printer.sf"
#include "org/smartfrog/examples/helloworld/generator.sf"

Pair extends Compound { // a compound is a collection of components
 printerHost "localhost";
 generatorHost "localhost";

 // default value for parameter messages
 messages ["this is a", "boring”, "set of strings"];

 // ditto
 frequency 10;

 g extends Generator {
 sfProcessHost generatorHost;
 messages PARENT:messages; // link to container’s value
 frequency PARENT:frequency; // ditto
 printer LAZY p; // link to the instance of the printer
 }

 p extends Printer {
sfProcessHost printerHost;
 }
}

sfConfig extends Compound {
 hostA "foo.smartfrog.org";
 hostB "bar.smartfrog.org";

 pair1 extends Pair {
 printerHost hostA;
 generatorHost hostB;
 messages ["hello", "world”, "again"];
 }
 pair2 extends Pair {
 printerHost hostB;
 generatorHost hostA;
 frequency 5;
 }
}

By modifying the hostA and hostB attributes, different deployments may be
obtained.

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 - 123 - last modified on 23 Aug 2006

 Appendix A.

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 - 124 - last modified on 23 Aug 2006

1 Exit Codes for SmartFrog Scripts
0 - Success

1 - General Errors

69 - Bad Arguments input to Script

130 - Script terminated by Control-C

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

