
SmartFrog Dynamic Web Server Example - 1 - last modified on 20-Jul-05 11:55 pm

A  Brief  Description of the Dynamic
Web Server Demonstrator

www.smartfrog.org                  

© Copyright 1998-2005 Hewlett-Packard Development Company, LP



SmartFrog Dynamic Web Server Example - 2 - last modified on 20-Jul-05 11:55 pm

Table Of Contents

1   INTRODUCTION...............................................................................................................................3

1.1   HOW IT WORKS.................................................................................................................................. 4

2   RUNNING THE EXAMPLE............................................................................................................. 5

2.1   CONFIGURATION................................................................................................................................. 5
2.2   COMMAND LINE OPTIONS......................................................................................................................6
2.3   TUNING THE DEMO..............................................................................................................................6

3   DRIVING THE EXAMPLE...............................................................................................................7

4   EXPLORING THE EXAMPLE........................................................................................................ 7

© Copyright 1998-2005 Hewlett-Packard Development Company, LP



SmartFrog Dynamic Web Server Example - 3 - last modified on 20-Jul-05 11:55 pm

1     Introduction      

The Dynamic Web Example is an example of an adaptive application built
using  SmartFrog.  The  concept  is  relatively  simple,  in  that  the  system
implements a web server that adapts to load by deploying or removing web
servers according to the load.

© Copyright 1998-2005 Hewlett-Packard Development Company, LP



SmartFrog Dynamic Web Server Example - 4 - last modified on 20-Jul-05 11:55 pm

The diagram above is an outline of the various parts of the demonstrator. The
three main parts, described as different SmartFrog templates, are the core
service (the service manager and the load balancer), the web server(s), and
the load generators that are provided so as to provide sufficient simulated
load to cause the service to have to adapt.

1.1   How it works
The first  part  that  must  be  created  is  the  service  manager  and  the  load
balancer. When this template is deployed, a number of graphical components
will appear on the screen. 

On the service manager host, a graph will appear which shows the response
time of the active measurements made on the web servers through the load
balancer.  There  are  two  threshold  bars  on  this  graph  –  the  upper  one
indicating the worst case response before a new web server must be created.
The lower one indicates the level of performance at which point it may be OK
to terminate one of the web servers and free up the resource.

On the load balancer hosts, a bar graph will appear which shows the number
of  connections that the load balancer has handled in the last  time period.
There are an upper and lower tide-mark bars which show the maximum and
minimum values reached over the last minute or so.

As  the  service  manager  starts,  it  looks  for  the  minimum  web-servers
configuration attribute, and deploys the requisite number on the set of server
hosts. The service manager does not actually understand the concept of a
web service, it simply deploys a template that it is given as a configuration
attribute. The service could just as easily be a database, or a gaming service,
or some other. The service that is created depends only on the configuration
parameter.

As  the  web server  is  deployed,  a  number  of  steps  are  defined.  Firstly a
workflow is started (as indicated by a progress bar graphic that appears on
the selected server host). The workflow has a number of steps.

• a  tarball  containing  the  apache  distribution  is  downloaded  from  the
configured location

• this is expanded and build and the install scripts run

• a tarball containing some cgi-bin scripts is downloaded and expanded

• a tarball containing some web pages is downloaded and expanded

At  this  point  the  installation  workflow  is  complete  and  the  Apache
management components can be started. As these are deployed, a couple of
graphs appear  that  show the  CPU load in  the  server  and the number  of
Apache threads that are running to handle the load. These are provided as
visual feedback to show how heavily the server is loaded.

A set of load generators, controlled by a slider, can be deployed and this used
to drive the load on the servers. As the load is increased, the servers will start
to get loaded, and this can be observed through the graphs.

If  the  response  graph  moves  above  the  upper  threshold,  this  will  trigger
another web server  if  there is  a free server  node.  If  the response moves
below the lower threshold, this will trigger the release of a web server if this
does not violate the minimum server requirement.

© Copyright 1998-2005 Hewlett-Packard Development Company, LP



SmartFrog Dynamic Web Server Example - 5 - last modified on 20-Jul-05 11:55 pm

2     Running The Example      

2.1   Configuration
This  section  describes  how  to  configure  the  dynamic  web  server
demonstrator. 

Most of the key files to run the demonstrator are in the sf directory, and in
particular the file system.sf contains the top-level definition of the "sfConfig"
description, plus the attributes that can be changed to vary the way in which
the demonstrator deploys and runs.

There is a certain amount of preparation to do before starting.

1) Locate a number of nodes on which the demonstration will run -  ideally this
will  be five:  four  for  the  server  components  and the  one  from  which the
simulated load will be generated and the application descriptions launched.
Each of these should have a display so that the various graphs can be seen.

A  fewer  number  of  nodes  can  be  used,  but  the  displays  will  then  get
confused.  Additional  ones  can  also  be  used,  but  with  no  real  additional
purpose. 

The nodes used for the web servers must be x86, running Linux. The version
of Apache that will be installed is an old one - we leave it as an exercise to
modify this for a more recent version.

1. Each of these nodes should have the SmartFrog release installed,and the
daemon started.

2. The file org/smartfrog/examples/sf/system.sf should be edited to define a
mapping between the physical nodes and the node attributes used in the
descriptions. 

3. As Apache is installed, a number of tar files will be downloaded. These tar
files have been made available on the Internet at the “www.smartfrog.org”
website. 

4. The configuration descriptions have been defined to use these tar files,
however it would generally be better to download these in advance and
place them on a local server so that the communication is more reliable
and  the  performance  improved.  For  example  the  Apache  download  is
approximately 30MB, this will be slow to download across the Internet.

5. Edit  the  “org/smartfrog/examples/dynamicwebserver/sf/system.sf”  file  to
define where the web server holding these three tar files are located. 

© Copyright 1998-2005 Hewlett-Packard Development Company, LP



SmartFrog Dynamic Web Server Example - 6 - last modified on 20-Jul-05 11:55 pm

2.2   Command line options
To run the demonstrator, there are a number of possibilities

•   to launch the whole demo - the web service and the load generators

•   to launch just the service, and not the load generators

•   to launch only the load generators, perhaps to add additional load to an
existing web service

The system.sf file contains an sfConfig definition that contains the two parts:
the service and the load generators. Consequently either the entire sfConfig is
used, or the two constituent components of sfConfig can be use separately.
The command lines for the three alternatives would be as follows:

     smartfrog -a wsAll:DEPLOY:system.sf::localhost: -e

     smartfrog -a ws:DEPLOY:system.sf:service:localhost: -e

     smartfrog -a lg:DEPLOY:system.sf:loadGenerators:localhost: -e

The first could also be done using the simplified sfStart script

     sfStart localhost wsAll system.sf

2.3   Tuning the demo
The demo has a number of controls that allow users to tune the demonstrator
so that the responsiveness of the measurements to loads, and the effect of
the loads, can be adjusted.

The measurements are active tests that "hit" the web server with a request for
a cgi script to be executed. The time for the script to respond is measured
and the result used to draw the response-time graph on the system manager.

Equally, the load generator  uses  a possibly different  cgi-script  to load the
server. The default settings appear to give reasonable results across a wide-
range of server node types. However, if a particularly slow or fast web-server
node is used, it may be impossible to either load the server sufficiently, or
conversely  even  the  measurement  load  may  be  too  high.  Under  these
circumstances, using a different cgi-script may be necessary. A variety are
provided as part of the tarball, and choosing a different one (they all do an
active spin for some 100s of times - a different number for each script). In
general,  using  a  long measurement  script  with  shorter  load scripts  works
better than the other way around.

© Copyright 1998-2005 Hewlett-Packard Development Company, LP



SmartFrog Dynamic Web Server Example - 7 - last modified on 20-Jul-05 11:55 pm

3     Driving the Example      

The principle of the example is that if  you increase the load beyond some
limit, the system will deploy a second (or subsequent) webserver. The way to
increase  the  load is  to  move  the  slider-bar  on  the  load-generator  control
component's display to the right (to a larger number). This will increase the
rate at which the load generators “hit” the load balancer, and hence the web
servers.

As the load increases, a number of things can be noticed.

1. On the load balancer connections display, the number of connections to
be handled increases as shown by the increasing height of the bar.

2. On the  web server,  the  cpu  load  will  increase,  as  will  the  number  of
Apache threads that are launched to handle the increased load.

3. On the  thresholder  graph,  the  results  of  the  active  measurements  will
show  an  increase,  and  if  this  increase  ever  moves  above  the  upper
threshold,  a  new  web  server  is  launched  (note  that  there  is  some
deliberate lag in the decision to do so in order to avoid thrashing in the
case of highly variable loadings).

If  the load is decreased below the lower of the two thresholds, the system
may eliminate  a web server,  and it  will  do so if  the  minimum  number  of
servers will still be maintained.

If insufficient load is possible with a single load generator set (although only
one slider bar is visible, this controls a number of generators), a further set
can be deployed (using a different name on the command line).

4     Exploring the Example      

Once the system is running, there are a number of ways of exploring the run-
time system. The best way to explore the distributed components is to start
the management console (this can be done from the basic display menu bar,
if this is configured) or started by using the sfManagementConsole command
from a shell. Details can be found in the user's manual.

Once  the  management  console  has  been started,  the  application  can be
browsed,  and  the  deployed  components  examined.  As  this  is  done,  the
management console will hop around the various hosts, pulling details of the
distributed components.  The host  that  is  currently being accessed can be
observed by examining the sfHost attribute of the current component.

SmartFrog components can react  to changes in attribute  values,  and this
demonstration  reacts  to  changes  in  the  value  of  minInstances  of  the
webThresholder  component  of  the  service  template.  This  is  the  attribute
which controls the minimum number of web servers that must be present. For
example  if  this  is  changed from the default  value of  1 to  2,  and there is
currently only one web server deployed, a second will be deployed to meet
this requirement. Similarly, if the value is changed back to 1, a web server will
be immediately terminated if it is legitimate to do so (i.e. the response time for
the measurements is below the lower threshold). Otherwise, the web server
will only be released when it does become legitimate to do so.

The web servers deployed all contain some standard pages installed as part
of  the Apache installation workflow. These pages are partial copies of  the
www.smartfrog.org web pages, but pointing a browser at the load balancer
host  (port  80)  should  result  in  the return  of  these  pages and the various
graphs should show signs of the activity (if this is enough to register).

© Copyright 1998-2005 Hewlett-Packard Development Company, LP


