
SmartFrog Reference Manual v3.06 - 1 - last modified on 14 Nov 2005

The SmartFrog Constraint
Extensions

For SmartFrog Version 3.06

Localized for UK English / A4 Paper

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 - 2 - last modified on 14 Nov 2005

Table of Contents
 INTRODUCTION.. 3
 CONSTRAINTS IN SMARTFROG... 4

1 Variables:... 4
2 Constraints:.. 5

 PLUG-INS..7
 THE PROLOG ABSTRACT PLUG-IN.. 8

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 - 3 - last modified on 14 Nov 2005

 Introduction
This document describes some extensions provided to allow experimentation
with constraint resolution technologies in conjunction with the SmartFrog
language. These extensions are not intended to provide the definitive
“SmartFrog Constraint System”, but are designed to allow a wide variety of
different technologies to be used for this purpose. Consequently, the
extensions themselves provide very limited syntactic or semantic support, and
mostly the support is in the form of free textual annotations that are then
interpreted by an appropriate plug-in for the specific constraint solver in use.

The document covers the general model for how constraints are envisaged
being used, how plug-ins may be written and loaded, and it covers the first
such plug-in – the Prolog plug-in – and how this should be used. It should be
noted, however, that the Prolog plug-in is abstract in that it does not actually
contain a Prolog engine, but is capable of easily being specialised to use such
an engine.

The extensions appear as a “new” language – the csf language, files of which
are denoted by the extension .csf – which provides the extensions. If these
extensions are not used, the language is completely equivalent to the core sf
language.

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 - 4 - last modified on 14 Nov 2005

 Constraints in SmartFrog
The purpose of adding constraints to the SmartFrog language is to allow
descriptions given in the SmartFrog language to be partially specified, and for
the constraints to used to complete them. Indeed, the constraints are
ultimately intended to act as both “verifier” and “completer” of descriptions.
Thus attributes can be left unbound, and left to be bound by the constraint
solver. Alternatively, they can be bound to specific values and the constraints
used as predicates to validate the bindings.

The core to the extensions is the introduction of a new experimental
language, the csf language. This is a true extension of the existing sf
language and if the new features are not used, the csf language has the same
semantics as the sf language. Eventually, as the constraint system settles
down, it might be envisioned that it replaces the existing function and
assertion aspects of the language – replacing it with a uniform constraint
model. This is for the future.

The csf language introduces two new concepts: the variable and the
constraint.

1 Variables:
A variable is introduced by a new keyword “VAR” which denotes an unbound
attribute value. This is much as TBD does in the sf language, and indeed one
possibility was to supersede the previous use of TBD, however it was decided
to make the new language a proper extension of the old.

Syntactically a VAR may be used anywhere a basic value (e.g. an Integer)
may be used – for example as the value of an attribute or in a list. Note,
however, that as functions are evaluated before constraints they should be
avoided in such expressions unless the function can cope with a VAR
parameter. Note that the Vector function is one that can cope with a VAR
parameter, so VAR may be used within a list.

The semantics of VAR need some explaining.

1. Every syntactic occurance of the keyword VAR introduces a new
variable – i.e. it may be bound to a different value from other
variables.

2. Copying a Component Description containing a VAR as the value of
an attribute, creates a new variable.

3. An attribute that links to another which is defined as a VAR, shares
that VAR. Consequently, the constraints that apply to both of these
attributes constraint the value that may be bound to that variable.
These attributes both take the same value when the variable is
bound.

Each variable is given an index – a unique integer. Whenever a variable is
printed, it is shown as “VAR/n” where the “n” indicates this index. Using this
mechanism, the sharing that exists between the attributes can be seen.

In fact, the parser will also accept the syntax with the index, but its use is not
recommended – it is simply there for completeness.

Bearing this in mind, consider the following example:

Example extends Prim {
 a VAR;
 b VAR;
}

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 - 5 - last modified on 14 Nov 2005

Example2 extends Example {
 b a;
}

sfConfig extends {
 x extends Example;
 y extends Example { a x:a; };
 z extends Examlpe2;
}

Running this through the sfParser will result in the following (equivalent up to
the actual indices that are generated):

extends {
 x extends {
 a VAR/0;
 b VAR/1;
 }
 y extends {
 a VAR/0;
 b VAR/2;
 }
 z extends {
 a VAR/3;
 b VAR/3;
 }
}

The sharing and copying should be clear from the indices that are printed.

Note that any VARs that are left unbound by the constraint resolution are
considered erroneous and errors are reported.

2 Constraints:
These are the second of the syntactic features added to the csf language.

This version of the constraint system is for experimentation – there is no
specific constraint language. Instead, the constraints are given as textual
annotations which are interpreted by one or more plug-in constraint solvers.
There is no expectation that every plug-in will be able to interpret any textual
annotation, but each will have its own “internal” syntax for these annotations.

For example, the Prolog plug-in treats the annotations as prolog clauses to be
used in a search for variable bindings.

Constraints may be added to component descriptions, using a form of the
SmartFrog long-string syntax – the delimiters of which are

#suchThat#...#

where the “...” indicates the text that will be passed to the plug-in.

Each component description may have a list of these provided, and the
intended interpretation is that of the conjunction of all the constraints in the list
– however, in reality the plug-ins can interpret lists of constraints in any way
that they desire.

An additional feature is that constraints are propagated through extension.
Consequently, descriptions can be created that are “typed” with constraints
relating its attributes and which, when extended can also add additional
constraints.

Consider the example (using some abstract constraint language)

AllDiffernt extends {
 a VAR;
 b VAR;
 c VAR;
} #suchThat#

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 - 6 - last modified on 14 Nov 2005

 a != b and a != c and b != c
 #

Ordered extends AllDifferent #suchThat#
 a <= b and b <= c
#

Ordered has both constraints, and thus will ensure that the three attributes
are strictly ordered.

Beyond this abstract description, all the details of the semantics of a
constraint resolution depends upon the plug-in that is used.

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 - 7 - last modified on 14 Nov 2005

 Plug-ins
The way in which constraints are solved to bind variables is defined by a plug-
in. These plug-ins are given the description, with its variables and constraint
strings, and are then expected to replace the variables within the description
with values that satisfy the constraints, replorting failures to find suitable
solutions or if the solutions leave some variables unbound.

The reason for this architecture is that there are a large range of constraint
systems, each with different semamtics and search strategies for finding
solutions. Furthermore, some of the best solvers are commercial products
and there is no way that the SmartFrog system can be made to depend on
one of these.

As each of these solvers can deal with a different range of constraint types,
so it is not even possible to provide a single fixed constraint syntax without in
some sense limiting this syntax to the least common subset – hence the
decision to make the constraints uninterpreted strings so far as the
SmartFrog system is concerned.

This doecument does not go into the details of implementing plug-ins, but in
essense a plug-in must implement the interface:

 org.smartfrog.sfcore.languages.csf.constraints.solver

During execution of the parser, an additional phase is included in the standard
set of phases (between function and assertion) which invokes the plug-in. The
plug-in is selected by setting the java property

 org.smartfrog.sfcore.languages.csf.constraints.SolverClassName

This should be set to the name of the plug-in class. This can either be done
on the Java command line using the -D option or, perhaps more easily, this
can be set in the default.ini file used by the default SmartFrog command-line
scritps to set system properties (for details of this file, see the SmartFrog user
manual).

If this property is not set, the default solver is used and this has the following
semantics:

1. No constraints are solved, any annotations are ignored

2. The description is checked to see if there are any unbound variables and if
so, reports an error.

Consequently, if the constraint and variable syntax is not used, and if the
default plug-in is used, the net semantcs is that of the basic sf language.

Currently there is a single plug-in implemented, with others on the way. This
plug-in uses a Prolog language engine. This is described abstractly below.

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 - 8 - last modified on 14 Nov 2005

 The Prolog Abstract Plug-in
The Prolog abstract plug-in is a parent class for any prolog plug-in – it carries
out many of the tasks requried to interpet the strings and variables as Prolog
entities and to create an overall Prolog query to be solved. It becomes easy,
therefore, to integrate a range of different Prolog engines such as JLog (a
portable Java GPL prolog), SWIProlog (an fast and extensive LGPL C++
implementation) or perhaps Sicstus Prolog (a commercial product).

Currently only the first of these is implemented as an actual plug-in. Because
the JLog code is GPL, it cannot be distributed as part of the SmartFrog core
(indeed it is not part of the core, merely a plug-in). The plug-in code (also GPL
as it depends on JLog) and a redistribution of Jlog, is available from the
SmartFrog web-site (www.smartfrog.org). Thanks are due to the JLog team
for approving of this integration and redistribution. The web page for this open
source project is http://www.sourceforge.net/projects/jlogic.

1 The Prolog theory
Prolog comes with a number of built-in rules, the specific set will depend on
the implementation used. However, it is possible that for a specific purpose
other rules will need to be provided, for example defining rules about a
specific deployment context. In order to support this, the Prolog plug-in
supports the concept of a theory file – a file that is read (consulted, in Prolog-
speak) before the constraints are solved.

This file is defined by the system property

opt.smartfrog.sfcore.languages.csf.constraints.prologTheoryFile

This can be set on the command-line with the Java -D option, or in the
default.ini file used by the default SmartFrog scripts. If the property is not set,
the default theory file

/org/smartfrog/sfcore/languages/csf/constraints/prologTheory.prolog

is read. This file contains a few trivial examples of the definition of rules. This
file will be extended over time (suggested rule definitions for inclusion are
welcome), and so should be consulted to see what is provided.

2 Writing constraints
Constraints are simply Prolog queries, and are written as such and are only
parsed when given to the Prolog processor – neither SmartFrog nor the plug-
tries to parse this text. However, the plug-in does pre-process the constraints
in the following way:

1. It identifies references to the Component Description to which the
constraint is attached. These references are surrounded by the '@'
character (if the character '@' is required, this should be written '@@').

2. Each reference is dereferenced in the context of the Component
Description and there is one of three possibilities:

• the reference is to a basic value of a type that can be represented in
Prolog – the value is unparsed in the place of the reference using
Prolog syntax;

• the reference is to a value that cannot be represented within Prolog –
this is considered an error;

• the reference is to a VAR, which is unparsed as a Prolog unbound
variable.

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Reference Manual v3.06 - 9 - last modified on 14 Nov 2005

3. The constraints are concatenated using the “,” operator (conjunction) so
that bindings from one constraint flow over to the next, and so that back-
tracking traverses back-and-forth over the constraints.

4. If a solution is found, the variable bindings are extracted from the query
result and the whole descritpion is traversed and the variables replaced
with their value. If any variables remain unbound, this is considered an
error.

The values that are mapped into Prolog are all the numeric types (though
possibly only as Integer and Float, or even less resolution), strings
(represented as Atoms, not character lists), booleans, the SFNull value and
lists (vectors). Component Descriptions are not currently represented as
Prolog values and so may not appear in queries.

Note that as the constraints are concatenated with no additional annotation by
the conjunction operator, overall parsing should be considered (e.g.
bracketting of operators, the occurance of the clause terminator '.', etc).
These may produce some unexpected and hard to understand errors!

3 Constraint ordering
The plug-in makes no effort to intelligiently order the constraint query clauses.
This means that at times the search may be very inefficient, or may not find a
solution where one exists. Later releases of the plug-in may make a better
effort to find a solution by ordering clauses according to some measure –
such as the number of unbound variables, or perhaps by providing an
annotation to hint to the plug-in as to whether the constraint is should be early
or late in the overall search. Again, suggestions are appreciated...

4 Examples
Here are a number of small examples to illustrate the use of the plug-in. They
assume the definition of some list rules in the Prolog theory file.

Ordered extends {
 a VAR;
 b VAR;
 c VAR;
} #suchThat# @a@ < @b@, @b@ < @c@#

sfConfig extends Ordered #suchThat#
 subset([@a@, @b@, @c@], [1,7,3,9,5])
#;

The above example will bind the attributes a, b and c to an ordered set of
integers selected from the list of integers [1,7,3,9,5].

ListElement extends {
 element VAR;
 list VAR;
} #suchThat# member(@element@, @list@) #

System extends {
 theList VAR;
 x extends ListElement {list theList;}
 y extends ListElement {list theList;}
 z extends ListElement {list theList;}
} #suchThat# allDifferent([@x:element@, @y:element@, @z:element@]) #

sfConfig extends System {
 theList ["one", VAR, "three", VAR];
 aList [VAR, "two", "three", "four"];
} #suchThat# @aList@ = @theList@ #

The above example defines the elements of x, y and z to be different
elements of the list which results from the unification of the two lists defined in
sfConfig.

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

