
SmartFrog Tutorial - 1 - last modified on 10 Jul 2006

A SmartFrog Tutorial
Version 1.2 rev.4b

SmartFrog version 3.08.004

Original text by Colin Low
Updated by Julio Guijarro

Hewlett Packard Laboratories
Filton Road,

Bristol BS34 8QZ

julio.guijarro at hp.com

This document provides an introduction to SmartFrog, and provides a step-by-step
guide to system configuration and deployment using the framework. It brings
together material from The SmartFrog Reference Manual, The SmartFrog User
Guide and The SmartFrog API (Javadoc), which should be consulted for details.
Sources and tutorial available from www.smartfrog.org.

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Tutorial - 2 - last modified on 10 Jul 2006

Table Of Contents

1 Introduction.. 3
2 SmartFrog Basics..4
3 Programming Basics...4
4 Creating a SmartFrog Component.. 5
5 Running a SmartFrog Component..7
6 Component Configuration.. 7
7 Deployment...9
8 Lifecycle... 11

8.1 Transitions..11
8.2 Termination Sequence..13
8.3 TerminationRecord...14
8.4 Failure...14

9 Configuration Revisited..15
9.1 Component Descriptions..15

10 Dynamic Deployment... 16
11 References.. 19
12 Discovery & Communication... 20
13 Conclusion..22
14 Acknowledgments.. 22
15 Tutorial References...22
16 Appendix 1 – Defined Attributes..22
17 Appendix 2 – Tracing and Logging..24

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Tutorial - 3 - last modified on 10 Jul 2006

1 Introduction
SmartFrog is a tool. With any tool, it is important to know how it will make your life simpler, when
to use it, and what it does well. What follows is an example that illustrates some of the
advantages of using SmartFrog.

Let us suppose you are developing an application with several autonomous components. These
components could be parts of a distributed application, with components distributed across
multiple hosts. It is necessary to test the individual components, and you realise that to test
component1 you will need to have each of component2 to component7 in place. Whenever
you run a test, you will have to activate seven components with all the correct configuration
parameters. You may have to carry this out dozens of times until testing is complete.

You could use a terminal window to activate seven processes manually each time you run a test.
But what happens when something goes wrong and your component fails to execute correctly?
The six auxiliary processes will need to be killed and restarted.

Many developers will have developed solutions to this kind of problem using shell scripts. This is
acceptable for simple situations, but as tests become more demanding, and you begin to deploy
components over several hosts, the whole business of deployment and lifecycle management
becomes extremely time consuming and error-prone. With interruptions and tiredness, it is easy
to neglect one of the steps and waste time trying to figure out what has gone wrong. Wouldn’t it be
good to have a tool that enables you to deploy complex applications over hundreds of computers?
This is an example of the many things that SmartFrog can do.

I have been involved in the development of several large distributed applications, and what I
realised when using SmartFrog for the first time was that even if I had used it only during the test
and integration phase, it would still have been worth learning because of the huge amount of time
it saved in setting up test configurations. The building block approach meant I could create test
configurations as easily as plugging together Lego. This paid off when the application went live,
because I had been able to spend much more time testing.

It paid off in other ways too. When my co-workers wanted to integrate their components with
mine, I gave them my configurations and they slotted in their components. We were sharing code
through a code repository, so all they needed were my SmartFrog configurations to create test
systems that included separately developed components. As we moved from the test environment
to the live environment, the majority of the basic configurations remained unchanged; what
changed was the enclosing configuration in which the building blocks were composed into the
final application. What we built was an extremely complex distributed system providing a
commercial application deployed dynamically over hundreds of computers. I doubt that it would
have been possible to create it in the time available without SmartFrog.

Although SmartFrog is conceptually simple, it would be wrong to suggest it is simple to learn. This
is not because it is arcane … it is more a case that its flexibility provides many alternative ways to
achieve an end, and the novice is likely to be overwhelmed.

The purpose behind this tutorial is to provide the fragments that explain how to achieve the most
common things you are likely to want to do with SmartFrog. I was motivated to do this because of
my own experiences with learning and using SmartFrog. I am not on the SmartFrog team; on the
other hand, I have direct access to the authors and implementers of SmartFrog, so I hope I have
been able to keep the errors of understanding and implementation to a minimum.

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Tutorial - 4 - last modified on 10 Jul 2006

2 SmartFrog Basics
The capabilities that SmartFrog provides are:

• Configuration: the ability to describe the autonomous components of an
application and to compose these components into a distributed application in a
single description.

• Deployment: the ability to deploy a configuration over a set of computing
resources.

• Lifecycle: the ability to ensure that components progress through their lifecycles
– deploy, start and terminate - in an orchestrated way.

• Discovery and Communication: components can locate other components in
an application and communicate with them, both in static placements, and
dynamically at run time..

3 Programming Basics
SmartFrog is written in Java. It assumes that your components are written in Java. You will
require experience with Java.

The SmartFrog system expects that the environment variable
SFHOME is set to the directory containing the SmartFrog
distribution (see comment). Your PATH variable should
include SFHOME/bin so that you can run SmartFrog scripts.

SmartFrog needs to find all the classes used by your
application components. The best way to achieve this initially is to set the environment variable
SFUSERHOME to point to a directory containing the Java Archive (JAR) files for your classes.

Each host on which you intend to load and run components will require a SmartFrog daemon
process. The daemon process will access the JAR files in SFUSERHOME. If you alter your code
and recompile to produce a new JAR file, the daemon will need to be restarted. Failure to do this
is a common error.

The SmartFrog distribution contains a script in SFHOME/bin called sfDaemon. This script, which
has Windows and UNIX variants, will start the SmartFrog daemon process on a host. If you intend
to run SmartFrog on many hosts, it is useful to create your own script capable of starting and
stopping the daemon on a collection of hosts. There are some predefined SmartFrog templates
that help in doing this[1]. Another way to achieve this would be to use a tool such as Cluster SSH
(at clusterssh.sf.net).

If you intend to modify your application code frequently (e.g. because you are testing) then some
way to propagate the code to each host will be required. A good method is to place your JAR files
on a fileserver, and for each host to mount the remote fileserver directory as the local path pointed
to by SFUSERHOME. Each time you change your code on the server, each host will see your
changes. It is at this point that you will need to restart the SmartFrog daemon process on each
host. It is possible to use an HTTP server to serve classes to SmartFrog and avoid this restart –
this is described in the SmartFrog Reference Manual.

A beginner’s configuration is to have your Java classes on your local host, and to start the
sfDaemon script manually from a command-line shell.

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

Comment: the SmartFrog source
distribution, when built, contains a folder dist.
In this folder are directories bin, lib etc. I am
assuming that SFHOME points to this folder.

SmartFrog Tutorial - 5 - last modified on 10 Jul 2006

4 Creating a SmartFrog Component
The simplest SmartFrog component is a class that extends the SmartFrog class PrimImpl. Your
component should also implement the Prim interface so that the Java RMI compiler (rmic)
functions correctly.

Your component will inherit many behaviours through PrimImpl. In particular, your component will
participate in SmartFrog lifecycle management via calls to sfDeploy(), sfStart() , and
sfTerminateWith(…). If you fail to override these methods then your component will deploy, start
and terminate at the correct times, but none of your code will be called. It is normal to override
these three methods, so that your component initialises itself in sfDeploy(), it commences active
operation in sfStart(), and closes down in sfTerminateWith(…).

A template class MyPrim that overrides these methods is shown below in Example 1.
package org.smartfrog.examples.tutorial;

import org.smartfrog.sfcore.prim.Prim;
import org.smartfrog.sfcore.prim.PrimImpl;
import org.smartfrog.sfcore.prim.TerminationRecord;
import org.smartfrog.sfcore.common.SmartFrogException;
import org.smartfrog.sfcore.common.SmartFrogResolutionException;

import java.rmi.RemoteException;

public class MyPrim extends PrimImpl implements Prim {
 /* any component specific declarations */
 public MyPrim() throws RemoteException {
 }

 public synchronized void sfDeploy() throws
RemoteException,SmartFrogException {

 super.sfDeploy();
 /* any component specific initialization code */

 sfLog().out("SmartFrog "+sfCompleteName()+" deployed");
 }

 public synchronized void sfStart() throws
RemoteException,SmartFrogException {
 super.sfStart();
/* any component specific start-up code */
sfLog().out("SmartFrog "+sfCompleteName()+" started");

 }

 public synchronized void sfTerminateWith(TerminationRecord tr) {
 sfLog().out("SmartFrog "+sfCompleteNameSafe()+" terminating");
/* any component specific termination code */
super.sfTerminateWith(tr);

 }
 /* any component specific methods go here*/
}

Example 1. MyPrim.java

If MyPrim is started concurrently with several other components using the default Compound
behaviour (see below), then all components will progress through their lifecycle in an orderly and
synchronised way. No component will enter sfStart until all components have completed
sfDeploy.

If you have tried to achieve multi-component deployments using ad-hoc methods, you will
appreciate how many problems can be caused by race conditions during initialisation. A widely
experienced problem is that component2 comes ready before component1, and component2
reports errors because component1 does not appear to be present. If component2 reports a
failure and quits, the problem is compounded because component1 is left in isolation, and may

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Tutorial - 6 - last modified on 10 Jul 2006

require manual tidying-up. This kind of initialisation can be implemented using arbitrary wait or
retry loops, which may work on one particular configuration of equipment, and break immediately
the configuration changes.

SmartFrog avoids these problems. If one component experiences an error during initialisation and
terminates, all components will be terminated cleanly. The precise mechanics as to how this
happens is described in section 8, which describes the SmartFrog lifecycle model.

Once you have created MyPrim, you should describe it using a SmartFrog component
description, which you could save as MyPrim.sf.

#include “org/smartfrog/components.sf”

MyPrim extends Prim {
sfClass "org.smartfrog.examples.tutorial.MyPrim";

}

Example 2. MyPrim.sf

The description in Example 2 tells SmartFrog that there is a Prim component, and the code for it
can be found in a class called MyPrim.class.

Note Well: in general, SmartFrog components are
remote objects in the sense understood by Java
Remote Method Invocation (RMI). If you haven’t used
RMI, or aren’t familiar with the idea of calling methods
on remote objects, it would be good to familiarise
yourself with the concepts. In particular, you will need to
know how to compile the MyPrim class using the Java
rmic compiler. If you fail to do this, SmartFrog will fail at runtime when you attempt to start your
component. The failure message is not particularly edifying, so do not neglect this point. In the
specific case where a component has no remote methods, then rmic compilation can be avoided
by adding the attribute “sfExport false;” to the description. This has been included in Example 3,
but commented out.

You can try out your version of MyPrim by creating a new configuration description.
#include “org/smartfrog/components.sf”
#include “org/smartfrog/examples/tutorial/MyPrim.sf”

sfConfig extends Compound {
MyPrimTest extends MyPrim {
// uncomment sfExport if the component has no RMI interface
// sfExport false;
}

}

Example 3. MyPrimTest.sf

The line beginning sfConfig is equivalent to the “main” entry point in Java: it tells SmartFrog
where to begin with its deployments. In this case there is only a single component to deploy, the
component MyPrimTest. This in turn is an extension of MyPrim, which was declared previously,
and SmartFrog can locate the code described in Example 1 via the sfClass attribute.

Why the mystery of the two declarations, first MyPrim,
then MyPrimTest? The reason is that you may wish to
deploy MyPrim in many different configurations. The
MyPrim declaration allows you to specify the defaults
for the configuration of this single component in isolation
from any other components. The MyPrimTest
declaration can override any of these defaults. In this

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

Comment:

sfConfig can extend any component derived from
Prim. If the application contains multiple components
it is common for sfConfig to extend Compound, and
you will see many examples of this. However, it could
have extended MyPrim, as.there is only the single
component in this application.

Comment:

SmartFrog is built using ANT and the build.xml script
in the top-level SmartFrog directory. This is a good, if
somewhat complex, example of how to build
SmartFrog components.

SmartFrog Tutorial - 7 - last modified on 10 Jul 2006

example there is nothing to override, but the concept will become clearer in later sections. You are
not obliged to follow this convention, but you may find that if you have to create many different
configurations using the same component (during testing for example), then having a default
declaration is a useful level of abstraction.

5 Running a SmartFrog Component
You can start your component using the script sfStart, found in SFHOME/bin, as in Example 4:

sfStart localhost TEST1 org/smartfrog/examples/tutorial/MyPrimTest.sf

Example 4

Here the first argument is the hostname of the host
(SmartFrog root process) where you want to initiate
deployment, the second argument is the name you
want to give to the component, and the third argument
is the path to the script. I have assumed the script is in
a JAR file located in the folder pointed to by
SFUSERHOME. You will need to start sfDaemon on
localhost prior to running sfStart, or the sfStart will fail.
So long as the daemon is running[1], you can use
sfStart many times, but you cannot use the component
name TEST1 again if TEST1 is still running.

You can terminate the component as in Example 5:
sfTerminate localhost TEST1

Example 5

Alternatively you can kill the SmartFrog daemon. The orderly way to achieve this is
sfStopDaemon localhost

Example 6

Terminating the shell from which the daemon was started will also do the trick. Control+C will
attempt an orderly termination, and if that fails, a second Control+C will kill the daemon.

6 Component Configuration
Many programs are dependent in some way on their external environment, and configure
themselves at runtime using values that are often read from a file, such as the MyProgram.ini
files that abound in Windows.

This becomes much harder to achieve in a large distributed application containing many
components. Each component may have its own configuration data, but there may also be1

dependencies between values used by different components, and values that are shared by many
components. Even though the components may be distributed, the global configuration data is
shared, and it may be sufficiently complex and structured to require navigation tools. This is what
SmartFrog provides in its structured data syntax.

SmartFrog overloads its syntax in several ways, and this can make its meaning somewhat
opaque to the beginner. The most important way in which SmartFrog overloads its syntax is that it
mixes configuration data with deployment information. In other words some of the declarations are
used to pass data to (and between) components, while other declarations that look superficially

1 To check if a daemon is running in a node you can use: “sfPing hostname”

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

Comment:

You can compile your new component manually
using javac and rmic or you can create a directory
called “tutorial” under dist/src/org/smartfrog/examples
and place there MyPrim.java MyPrim.sf and
MyPrimTest.sf. The ant build file included in dist
automatically compiles and packages inside
sfExamples.jar any new files added under
src/org/smartfrog/examples. To run rmic for
MyPrim.class and create its rmi stubs we need to
edit the file dist/rmitargets and add
“org/smartfrog/examples/tutorial/MyPrimclass”.

Now you only need to go to dist/ and run “ant build”
to get your new component ready to be used.

SmartFrog Tutorial - 8 - last modified on 10 Jul 2006

similar result in component deployments. It is common for declarations to achieve both ends
simultaneously.

Take the previous component declaration MyPrim.sf. This has been extended by the addition of
three new values: debug, retryCount, and databaseRef, as in Example 7.

#include “org/smartfrog/components.sf”

MyPrim extends Prim {
sfClass “org.smartfrog.examples.tutorial.MyPrim”;
debug true;
retryCount 10;
databaseRef TBD;

}

Example 7

The purpose of debug is to switch off and on debugging statements within the component. The
retryCount is the number of times the component should attempt an action before giving up. The
databaseRef is a reference to a database. Its value is given as TBD – “to be defined”; that is, the
value needs to be defined, but isn’t defined at this point. These are common examples of values
you may wish to change, but which are normally stable over long periods of time.

The MyPrim declaration now achieves two ends: it defines a Prim component, including a
specification of the class implementing the component, and it supplies configuration values to the
component. We can extend the MyPrimTest script in Example 3 to supply the missing TBD
database reference.

#include “org/smartfrog/components.sf”
#include “org/smartfrog/examples/tutorial/MyPrim.sf”

sfConfig extends Compound {
MyPrimTest extends MyPrim {

databaseRef “a reference to a DB”;
}

}

Example 8

Note that any of the values defined in MyPrim can be modified within MyPrimTest, but in this
case the only one modified is the undefined value databaseRef.
The values in a component declaration are accessible within the implementation of a component
inheriting from PrimImpl using the sfResolve method call.

void getConfig(){
try {

Boolean debug = (Boolean)sfResolve(“debug”);
Integer retryCount = (Integer)sfResolve (“retryCount”);
String databaseRef = (String)sfResolve(“databaseRef”);
String myComponentName = sfCompleteNameSafe().toString();
sfLog().out(“My name is ”+myComponentName);

} catch(ClassCastException ccex){
String message = "Casting error" + ccex.getMessage();
if (sfLog().isErrorEnabled()) {sfLog().error(message, ccex);}
...

} catch(SmartFrogResolutionException srex){
...

} catch(RemoteException rex){
...

}
}

Example 9

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Tutorial - 9 - last modified on 10 Jul 2006

There are many variants of the sfResolve methods; the PrimImpl class inherits from
RemoteReferenceResolverHelperImpl, and you will find the many variant forms described in the
JavaDoc for this class. The form used above is one of the simplest; it takes a ReferencePart
string, and attempts to resolve it in the configuration context of the component. Put more simply,
the MyPrim class has access to the contents of the MyPrimTest declaration in Example 8, and
sfResolve(…) looks for an attribute string (e.g. “debug”) specified in that declaration.

These values are resolved at runtime, and so certain kinds of error will only be detected at
runtime. There are three kinds of exception you should be aware of.

Firstly, this version of sfResolve returns an Object, and this should be cast to the correct class of
Java object. The SmartFrog parser can deduce the kind of object from the syntax. For example,
SmartFrog parses “debug” as a Boolean because it has the value true, and you should cast it to
a Boolean. Failure to do this correctly will cause a ClassCastException. A best practice is to log
any exception that happens in your code so that it does not get lost, see example 9. Event
exceptions that are considered “normal” should never been trapped and forgotten, in those very
strange cases you can use the log level IGNORE (sfLog().ignore()).

Secondly, SmartFrog may not be able to resolve the reference, and produce a
SmartFrogResolutionException.

Lastly, SmartFrog may need to use remote method calls to resolve certain kinds of reference (e.g.
LAZY references, or a reference to the context of another component), and in turn this could
cause a RemoteException. This could happen if the underlying communication infrastructure is
causing problems.

If a exception has to be wrapped in a SmartFrog exception type and thrown again, the best
practice for this case is to use the forward() method available in all SmartFrog exceptions.

void readConfiguration() throws SmartFrogResolutionException {
 try {
 ... sfResolve()...
 ...
 } catch (Exception e){
 String message = "Casting error" + e.getMessage();
 if (sfLog().isErrorEnabled()) {sfLog().error(message, e);}

throw (SmartFrogResolutionException)
SmartFrogResolutionException.forward(message, e);

 }
}

Example 9b

7 Deployment
The code and Smartfrog configuration snapshots provided so far provided almost everything you
need to create a SmartFrog component, supply it with configuration parameters, deploy it, and
then access the configuration parameters from within the running component. These are the
basics; if you understand them you can do a great deal with SmartFrog. However, most of the
power of SmartFrog comes from deploying multiple components. There is only a small amount of
additional complexity involved in understanding how to do this. In fact, we have already done it,
albeit with a single component, as shown in Example 10.

#include “org/smartfrog/components.sf”
#include “org/smartfrog/examples/tutorial/MyPrim.sf”

sfConfig extends Compound {
MyPrimTest extends MyPrim {

databaseRef “a reference to a DB”;
}

}

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Tutorial - 10 - last modified on 10 Jul 2006

Example 10

The reserved name sfConfig is defined to extend Compound. A Compound is a component
capable of monitoring the state of a collection of children, and the children in turn can be
Compound or Prim components. The simplest structure for SmartFrog components is a tree,
with Compound components as nodes, and Prim components as leaves.

A more complex deployment is shown in Example 11.

This example deploys three components: an enclosing Compound, and two Prim components.
One Prim component is a server, the other component a client of the server. Both components
are deployed onto specific hosts using the sfProcessHost attribute, an attribute that is interpreted
by SmartFrog as a placement directive. The server is placed on host “server.hp.com”, the
application on “localhost”.

It is normal for a client application to need to know the
internet address and port number of a server. The
server also needs to know what port number to use.
This achieved by defining both values at the top level of
the configuration, and using references (see Section
11) in both component definitions that refer to the
PARENT environment. It is now impossible to deploy
the client and server without the client and server
agreeing on location and port.

In this example both client and server share the same lifecycle. If the client terminates, so does
the server. This is because both components are children of an enclosing Compound. A shared
lifecycle is not realistic for a live client-server application (and there are simple ways to change
this behaviour), but it is extremely convenient for testing – when you kill the locally deployed client,
the remotely deployed server is automatically removed. This kind of script enables many cycles of
testing without the nuisance of having to tidy-up remote components manually. When the time
comes to detach the lifecycle of the server from the client, this is easily achieved.

// File ClientApp.sf
#include "org/smartfrog/examples/tutorial/MyPrim.sf"
ClientApp extends MyPrim {
}

// File ServerApp.sf
#include "org/smartfrog/examples/tutorial/MyPrim.sf"
ServerApp extends MyPrim {
}

// File ClientServerTest.sf

#include "org/smartfrog/components.sf"
#include "org/smartfrog/examples/tutorial/ClientApp.sf"
#include "org/smartfrog/examples/tutorial/ServerApp.sf"

sfConfig extends Compound {
 serverHost "server.hp.com";
 serverPort 4242;

 MyClient extends ClientApp {
 sfProcessHost "localhost";
 server PARENT:serverHost;
 port PARENT:serverPort;
 }

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

Comment:

There is a variant of Compound called
DetachingCompound, with some interesting
behaviours. The reader is encouraged to look at the
comments in the DetachingCompound.sf prototype
under the SmartFrog source tree.

In addition, any Prim-derived component can detach
itself from its parent by calling sfDetach().

SmartFrog Tutorial - 11 - last modified on 10 Jul 2006

 MyServer extends ServerApp {
 sfProcessHost PARENT:serverHost;
 port PARENT:serverPort;
 }
}

Example 11. ClientServerTest.sf

Before going into the esoteric details of lifecycle management, it is useful to look at the default
component lifecycle in more detail.

8 Lifecycle
8.1 Transitions
Components in a distributed system often have dependencies. If component1 needs to
communicate with component2, and the initialisation of component2 has been delayed,
then component1 may report an error. Component1 may then fail in turn, causing a
cascade of failures. If this kind of race condition is intermittent, it can be extremely time-
consuming to diagnose, and remedying the problem may require ad-hoc protocols which
are likely to cause further problems (as bolt-on, ad hoc protocols so often do ….)

Figure 1: Component Lifecycle

SmartFrog provides internal protocols for ensuring that a collection of components move
through their lifecycles in a synchronised and consistent way. The normal states and
transitions for a SmartFrog component are (see Figure 1: Component Lifecycle):

• Constructed: the default constructor has been called. This state terminates when
the sfDeployWith(ComponentDescription) method is called.

• Instantiated: the component has been created, but application-specific
initialisation has not taken place. This state terminates when sfDeploy() has been
called. Any component derived from PrimImpl is expected to override sfDeploy()

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

instantiated

failed initialised

running

terminated

sfStart

sfDeploy

sfTerminateWith

sfDeployWith(ComponentDescription)

instantiated

failed initialised

running

terminated

sfStart

sfDeploy

sfTerminateWith

sfDeployWith(ComponentDescription)

SmartFrog Tutorial - 12 - last modified on 10 Jul 2006

to provide application specific initialisation.

• Initialised: the component is initialised, but not yet started. This state terminates
when sfStart() has been called. Any component derived from PrimImpl is
expected to override sfStart() to provide application specific processing.

• Running: sfStart() has been called, and the application code is now running.

• Terminated: there are many ways in which a component can enter the
Terminated state. It can be triggered by an up-call from a child component, a
down-call from a parent component, or an internal call to sfTerminate(…). This is
discussed in more detail in the following section.

The simplest way to create a collection of components with a linked lifecycle is to make
them children of a Compound component. The semantics of Compound are that all
children will be instantiated before any are initialised. All children will be initialised before
any are running. If any child terminates, all will be terminated.

An example of this can be seen in Example 12, in which four components are created.
The first is a parent Compound named sfConfig, and the other three are Prim children
named MyPrimTest1, MyPrimTest2, and MyPrimTest3.

#include “org/smartfrog/components.sf”
#include “org/smartfrog/examples/tutorial/MyPrim.sf”

sfConfig extends Compound {
MyPrimTest1 extends MyPrim {

databaseRef “a reference to a DB”;
}
MyPrimTest2 extends MyPrim {

databaseRef “a reference to a DB”;
}
MyPrimTest3 extends MyPrim {

databaseRef “a reference to a DB”;
}

}

Example 12

What SmartFrog guarantees is that if any of these components have entered sfStart(),
then all of the components will have completed and exited sfDeploy().

It sometimes happens that sfDeploy() fails in one of the components because an external
resource is not available. If there is insufficient internal logging in your application code
then the cause may not be obvious. The obvious external symptom is that no SmartFrog
component has started. It looks as if everything has failed. Indeed, it is probable that if the
failure has resulted in an Exception, every component will have terminated.

It is easy to blame SmartFrog when this happens. From superficial appearances, it looks
as if SmartFrog has failed to deploy the application. The answer is to ensure that there is
sufficient diagnostic output in each component so that any exceptional condition during
sfDeploy() is clearly reported.

It is also important to remember that if any component terminates, all will terminate, and
the internal call to sfTerminateWith(…) will occur concurrently with normal operation. For
example, this might mean closing a database connection in the middle of a database
operation, which will cause more exceptions. One can lose a considerable amount of time
chasing down a problem inside the database code, when the real problem is that some
other SmartFrog component failed, and triggered the termination of the component
carrying out the database action.

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Tutorial - 13 - last modified on 10 Jul 2006

The answer to this is to study the diagnostic output carefully, and not leap to incorrect
conclusions based on a small fragment of diagnostics from one component. The default
behaviour is that if any component in a Compound terminates, all components will
terminate, and you must be aware that termination will be a thread running concurrently
with your main processing thread. Your main processing thread should be written in such
a way that the thread resulting from a call to sfTerminateWith can tell it to shutdown
cleanly – input/output needs to terminate cleanly, and any Exceptions should be handled
cleanly.

8.2 Termination Sequence
The termination sequence is described with reference to a tree of Compound and Prim
components, the Compound components being nodes in the tree, and the Prim
components being leaves. This is shown in Figure 2 below.

Figure 2: Termination Sequence

The bottom-left Prim component terminates, and this is marked by a “bang!” symbol.
There are varies reasons why it might be terminated, but for the purposes of presentation
we can assume that its sfTerminate method has been called. This component could
have encountered an error and called sfTerminate internally, or it could have been called
externally.

The terminating Prim calls its parent with sfTerminatedWith(…), passing a
TerminationRecord containing details of the termination. This process is repeated up the
tree, with each child calling sfTerminatedWith(…) until the root of the tree is reached.
Each parent then communicates down the tree to its children using
sfTerminateQuietlyWith(…). In this way a failure in any part of the tree is communicated
so that all components are terminated.

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

Compound

Prim

Compound

Prim

Prim

sfTerminate

sfTerminatedWith

sfTerminatedWith

sfTerminateQuietlyWith

sfTerminateQuietlyWith

sfTerminateWithsfTerminateWith

sfTerminateWith sfTerminateWith

sfTerminateWith

CompoundCompound

PrimPrim

CompoundCompound

PrimPrim

PrimPrim

sfTerminate

sfTerminatedWith

sfTerminatedWith

sfTerminateQuietlyWith

sfTerminateQuietlyWith

sfTerminateWithsfTerminateWithsfTerminateWithsfTerminateWith

sfTerminateWithsfTerminateWith sfTerminateWithsfTerminateWith

sfTerminateWithsfTerminateWith

SmartFrog Tutorial - 14 - last modified on 10 Jul 2006

Each component, whether Prim or Compound, then executes sfTerminateWith(…). It is
normal to override this method with application-specific termination code – see the
discussion in the previous section..

8.3 TerminationRecord
A call to sfTerminate() requires the construction of a TerminationRecord. It may not be
obvious how to do this, as one of the parameters is a Reference to the failed component.

If a component is calling sfTerminate() on itself, then it is valid to leave this parameter as
null, as the Prim parent class will fill in the Reference if it is possible.

TerminationRecord tr = TerminationRecord.abnormal(“some
kind of failure message”, null);
This.sfTerminate(tr);

Example 13

If you need to fail a component because of a problem in another component, then the
code in Example 14 might be more appropriate:

Reference failedName = null;
Prim failed = ... ; // a failed Prim component

try {

failedName = ((Prim) failed).sfCompleteName();
} catch (Exception ex) {

// ignore, leave null
}

TerminationRecord tr = TerminationRecord.abnormal(“some
kind of failure message”, failedName);
This.sfTerminate(tr);

Example 14

8.4 Failure
A SmartFrog application can fail spontaneously because individual components lose
contact with each other. This could happen because of a communication failure in the
underlying network, or a host failure that takes out a component. There is a default
liveness mechanism based on ping messages between parents and children that will
detect failures and trigger the default termination process described in the previous
section.

A SmartFrog Compound component tests the liveness of its children using the sfPing()
method. sfPing() is also called internally by each Prim component. An external call from
a parent resets a count; a timer-driven internal call decrements the same count. When the
count reaches zero, sfLivenessFailure() is called.

The default behaviour of sfLivenessFailure() in PrimImpl is to call sfTerminate and so
initiate the termination sequence described in the previous section. In this way a host or
communication failure will result in all application components terminating cleanly even
when a component is isolated from other components.

There are two configurable attributes that can be used to influence this behaviour:

• sfLivenessDelay: defines how often to call sfPing() (in seconds). Note that this
controls the rate of sfPings to external components and the rate at which the
component counts down sfLivenessFactor to zero and then declares liveness
failure.

• sfLivenessFactor: how many multiples of sfLivenessDelay to wait before

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Tutorial - 15 - last modified on 10 Jul 2006

declaring a failure.

The failure-detection and termination mechanisms in SmartFrog can be overridden to
create a measure of fault tolerance. A fault-tolerant application may spawn new
components when a failure is detected. The basic functionality for doing this can be found
in CompoundImpl. There are four basic steps:

• Detect that a component has failed

• Identify the failed component

• Identify a suitable host

• Deploy a new instance of the failed component on the new host.

CompoundImpl inherits from Prim, so it possesses all the behaviour of a Prim
component. In addition, it implements the ChildMinder interface. These methods can be
used to add and remove children explicitly. CompoundImpl also implements the interface
Compound, which has methods for deploying new components using a parsed
ComponentDescription – this can be extracted from the Context of the
CompoundImpl itself using the usual sfResolve methods already used in section 6.

The main task is to reimplement the sfLivenessFailure() method. Instead of a child
failure terminating the parent Compound, one can trap the failure, remove the child,
deploy a new component as a replacement, and add the new component as a child.

9 Configuration Revisited
One of the main purposes of a SmartFrog description is to describe a set of components to be
deployed. The default component for managing a collection of components is the Compound. A
Compound can contain a Compound as well as a Prim, which leads to an arbitrarily deeply
nested description which has the structure of a tree. This is shown in Example 15.

sfConfig extends Compound {

desc1 extends Prim{
}

desc2 extends Compound {

desc3 extends Prim {
}

desc4 extends Prim {
}

}

}

Example 15

When this description is parsed, it is parsed into objects implementing the
ComponentDescription interface; in practice these are ComponentDescriptionImpl objects.
This has the structure of a tree. Although you may never need to be aware of this, I found that
understanding it greatly helped me in visualising what SmartFrog was doing under the hood.

9.1 Component Descriptions
A ComponentDescriptionImpl object is the internal, parsed version of a textual
component description such as desc3 above. It contains the set of attribute/value pairs

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Tutorial - 16 - last modified on 10 Jul 2006

described by the component, and linkage to parent and children
ComponentDescriptionImpl objects.

Figure 3: A ComponentDescription Hierarchy

When the description in Example 15 is parsed, it is turned into a tree of
ComponentDescriptionImpl objects as shown in Figure 3. A
ComponentDescriptionImpl is something that can be deployed as a SmartFrog
component by the SmartFrog deployer, if it meets certain well-formedness criteria (e.g the
sfClass attribute is defined).

The attribute/value pairs in each ComponentDescriptionImpl object are actually stored
in an associated ContextImpl object, which can be thought of as a java.util.Hashtable
with ordering properties – in fact, it is derived from java.util.Hashtable. The
ComponentDescriptionImpl child objects underneath a given
ComponentDescriptionImpl object are values in its associated ContextImpl. For
example, the object corresponding to desc2 in Example 15 above will contain “desc3” as
a key in its ContextImpl, and the value will be a ComponentDescriptionImpl object
containing the attributes defined in desc3 (there aren’t any).

When a ComponentDescriptionImpl is deployed, an object derived from PrimImpl is
created, and the ContextImpl that describes the attribute/value pairs is copied and
attached to the PrimImpl. In other words, the tree of component descriptions is
transformed into a tree of deployed components. However, any component descriptions
tagged as LAZY are not transformed into Prim components, and remain in the Context as
ComponentDescriptionImpl objects.

This may seem somewhat arcane. For most purposes it is not necessary to understand
ComponentDescriptionImpl objects in any depth. The primary reason for introducing
them is that they are the parsed, internal descriptions of components that may be
deployed, and an application that deploys new components dynamically in response to
changing conditions will almost certainly make use of these descriptions.

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

ComponentDescription

ComponentDescription ComponentDescription

ComponentDescriptionComponentDescription

sfconfig

desc2 desc1

desc3 desc4

ComponentDescriptionComponentDescription

ComponentDescriptionComponentDescription ComponentDescriptionComponentDescription

ComponentDescriptionComponentDescriptionComponentDescriptionComponentDescription

sfconfig

desc2 desc1

desc3 desc4

SmartFrog Tutorial - 17 - last modified on 10 Jul 2006

10 Dynamic Deployment
The following example demonstrates how to deploy a component at runtime from within another
component. The SmartFrog configuration for this is shown in Example 16 below.

// File ParentChildExample.sf
#include "org/smartfrog/components.sf"

Parent extends Compound {
 // a parent component capable of spawning a child
 sfClass "org.smartfrog.examples.tutorial.recipes.Parent";
 myChild TBD;
}

Child extends Prim {
 // a potential child component
 sfClass "org.smartfrog.examples.tutorial.recipes.Child";
}

sfConfig extends Compound {
 myParent extends Parent {
 myChild extends LAZY Child; // resolve the child
reference here
 }
}

Example 16. ParentChildExample.sf

Two components are defined as part of the Java package “recipes”. The first component is
Parent, and Parent is a Compound that contains a TBD reference to a child component, and an
sfClass attribute that defines the Java class. The Child component is a Prim component that
contains only the sfClass attribute.

The deployed configuration, defined within sfConfig, consists only of the Parent component. The
TBD myChild attribute is now defined as the previously declared Child component, but this is not
deployed because the reference to it is defined as LAZY. This means that it is parsed, and the
prototype reference is resolved, but it is not deployed.

// Parent.java
package org.smartfrog.examples.tutorial.recipes;

import java.rmi.*;
import org.smartfrog.sfcore.common.*;
import org.smartfrog.sfcore.prim.*;
import org.smartfrog.sfcore.compound.*;
import org.smartfrog.sfcore.componentdescription.*;

public class Parent extends CompoundImpl implements Compound {

 ComponentDescriptionImpl child = null;

 public Parent() throws RemoteException {
 }

 public void sfDeploy() throws RemoteException,SmartFrogException{
 super.sfDeploy();
 try {
 sfLog().out("SmartFrog "+sfCompleteName()+"
deploying");
 child = (ComponentDescriptionImpl)sfResolve("myChild");
 sfLog().out("Child configuration reference found");
 sfLog().out("SmartFrog parent process deployed");
 } catch (Throwable t) {
 t.printStackTrace();
 throw SmartFrogException.forward(t);
 }
 }

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Tutorial - 18 - last modified on 10 Jul 2006

 public void sfStart() throws RemoteException,SmartFrogException{
 try {
 super.sfStart();
 sfLog().out("SmartFrog parent process starting");
 sfCreateNewChild("Child", child, null);
 sfLog().out("SmartFrog parent process started");
 } catch (Throwable t) {
 t.printStackTrace();
 throw SmartFrogException.forward(t);
 }
 }

 public void sfTerminateWith(TerminationRecord tr) {
 try {
 // close down everything
 sfLog().out("SmartFrog parent process terminating");
 } catch (Exception e) {}
 super.sfTerminateWith(tr);
 }
}

Example 17. Parent.java

When this configuration is deployed, only the Parent component is started. However, Parent can
access the description of Child from within its local context. The Java class for Parent is given in
Example 17.

The key steps are that Parent finds the description of the Child component by searching for the
value of “myChild”, and then deploys it. The first step is in the sfDeploy method:

child = (ComponentDescriptionImpl)sfResolve("myChild");

Example 18

This call finds the parsed description of the Child and returns it as a ComponentDescription
object as defined in the previous section. The second step is in the sfStart method:

sfCreateNewChild("Child", child, null);

Example 19

This deploys the ComponentDescription as a new child of the calling component. The first
argument is the name of the new component. The second is the ComponentDescription. The
last is a Context containing additional attribute/value pairs to add to those already defined for the
child component. This makes it possible to carry out late binding to values not available at parse
time, including values created within the parent object. In this particular case the Context is null.
The code for the Child component is almost identical to the Parent object – it is a minimal
SmartFrog component and can be found in Example 20.

// Child.java

package org.smartfrog.examples.tutorial.recipes;

import java.rmi.*;
import org.smartfrog.sfcore.common.*;
import org.smartfrog.sfcore.prim.*;

public class Child extends PrimImpl implements Prim {
 public Child() throws RemoteException {
 }

 public void sfDeploy() throws RemoteException,SmartFrogException{
 try {

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Tutorial - 19 - last modified on 10 Jul 2006

 super.sfDeploy();
 sfLog().out("SmartFrog "+sfCompleteName()+" deployed");
 sfLog().out("SmartFrog child process deployed");
 } catch (Throwable t) {
 t.printStackTrace();
 throw SmartFrogException.forward(t);
 }
 }

 public void sfStart() throws RemoteException,SmartFrogException{
 try {
 super.sfStart();
 sfLog().out("SmartFrog child process started");
 } catch (Throwable t) {
 t.printStackTrace();
 throw SmartFrogException.forward(t);
 }
 }

 public void sfTerminateWith(TerminationRecord tr) {
 try {
 // close down everything
 sfLog().out("SmartFrog child process terminating");
 } catch (Exception e) {}
 super.sfTerminateWith(tr);
 }
}

Example 20. Child.java

11 References
The simplest content of a SmartFrog description consists of an attribute list – that is, a collection
of attribute/value pairs. Each attribute consists of an attribute name and a attribute value. The
syntax permits a Reference to stand in place of either a name or a value. There are three kinds of
reference in SmartFrog:

• Placement references: the reference defines a context and an attribute name.

• Link references: the reference defines a context and an attribute value.

• Prototype references: the reference imports a prototype definition into the current
context as the value of an attribute.

A reference consists of a colon-separated list of reference parts. A good way to think of reference
parts is to visualise the tree of component descriptions described in Section 9.1; a reference part
is a directive for navigating the tree of descriptions. The Reference PARENT:count refers to the
attribute count in the context one level higher in the tree. This syntax can be likened to the
familiar ../count pathname syntax in UNIX and the analagous ..\count used in MSDOS.

The complete syntax and semantics for references can be found in the SmartFrog Reference
Manual, and there is no need to cover the same ground here, as they are adequately described. It
is better to concentrate on some of the more common applications for this syntax.

One of the most common is the ATTRIB WORD syntax. It is often the case that a prototype
description is intended to link into a larger context. The description in Example 21

#include "org/smartfrog/components.sf"

ResourceManager extends Prim {
sfClass "org.smartfrog.examples.tutorial.recipes.ResourceManager";
poolSize TBD;

}

Example 21

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Tutorial - 20 - last modified on 10 Jul 2006

contains an attribute poolSize which is not defined. The ResourceManager needs to know how
many resources to make available, but this value either cannot be defined at the level of the
prototype description, or it must be defaulted to a value. The TBD syntax ensures that it has to be
defined – this is better than using a potentially erroneous default value. The following deployment
description contains two prototype references, both of which refer to the ResourceManager
prototype defined above.

#include "org/smartfrog/components.sf"
#include “a file containing prototype descriptions”

sfConfig extends Prim {
size 10;
rm1 extends ResourceManager {

poolSize ATTRIB size;
}
rm2 extends ResourceManager {

poolSize ATTRIB size;
}

}

Example 22

The attribute poolSize has been defined as ATTRIB size. This is resolved by moving up the tree
of nested contexts until the attribute size is found. Both instances of ResourceManager are using
the same value for poolSize; that is, 10. In this example ATTRIB size is semantically equivalent
to PARENT:size. It could, in other cirmustances, be equivalent to PARENT:PARENT:size or
PARENT:PARENT:PARENT:size.

The SmartFrog SDK contains classes Reference and ReferencePart. These can be used with
the sfResolve method defined in PrimImpl to access values in other contexts in real time. This
can be a good thing and a bad thing.

It is most definitely a bad thing when it is used to
extract a value from a remote context that could just
as easily be defined in the local context using
references as described above. If an environmental
dependency can be resolved at the time a
component description is parsed, then it should be. A
prototype describes a component in isolation from its
environment, and a SmartFrog description provides
references as a way to expand and link a prototype to its environment.

Some references may not be resolvable at parse time. These are tagged as LAZY. This is the
most important use for constructing and resolving references at runtime. An example of this is
given in the following section.

12 Discovery & Communication
It is often the case that one component will need to communicate with another component using
Java RMI. This is easy to achieve. The SmartFrog configuration in Example 23 shows how it is
done.

#include "org/smartfrog/components.sf"

Component1 extends Prim {
sfClass "org.smartfrog.examples.tutorial.recipes.MyComponent";

}

Component2 extends Prim {

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

Comment:

The syntax

size PARENT:ATTRIB size;

will also work in Example 23. The potential circularity of
an attribute size referring to an attribute size is avoided
with an explicit initial reference to the parent context.

SmartFrog Tutorial - 21 - last modified on 10 Jul 2006

sfClass "org.smartfrog.examples.tutorial.recipes.YourComponent";
component1 TBD;

}

sfConfig extends Compound {
myComponent1 extends Component1;
myComponent2 extends Component2 {

component1 LAZY ATTRIB myComponent1;
}

}

Example 23

In this example, component2 needs to communicate with component1. In the prototype
definition Component2, there is an attribute component1 which is declared but not defined.

The deployment consists of two components, myComponent1 and myComponent2, based on
the prototypes for Component1 and Component2. The value of the attribute component1 is
now defined by a LAZY reference to myComponent1. What this means is that when the value of
the attribute component1 is requested at runtime, a Java remote interface for myComponent1 is
returned, and Java RMI calls can be made.

Let us suppose that Component1 implements Remote Java interfaces Errors and
Management. Then the code to access these interfaces from within Component2 is shown
below in Example 24.

// find the remote interfaces
Errors errorInterface = (Errors)sfResolve(“component1”);
Management managementInterface = (Management)sfResolve(“component1”);

// call methods on the remote interfaces
errorInterface.aRemoteMethodCall();
managementInterface.anotherRemoteMethodCall();

Example 24

The value of “component1” can be cast to any of the Remote interfaces implemented by
Component1 – in this case, Management or Errors. It is a common mistake to cast the value to
the class Component1, rather than the Remote interfaces it implements. This will cause a
ClassCastException. The interface returned by sfResolve must be cast to a remote interface
implemented by the remote object.

Sometimes the location of a component is not known when a SmartFrog configuration is parsed
and deployed, and the above method for obtaining a Java RMI interface cannot be used. There is
an alternative that works when the IP address of the computer the component is running on is
known, along with the SmartFrog name of the component (sfProcessComponentName). A
Reference can be created using the HOST reference part construct.

String ipAddress = “15.1.2.3”;
String componentName = “FOOBAR”;

Reference aComponentRef = new Reference("HOST \""+ipAddress+"\":"+
componentName, true);

Foobar foobar = (Foobar) sfResolve(aComponentRef);

Example 25

If it is necessary for a SmartFrog component to provide information about itself to another
component, then Example 26 provides useful code fragments.

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Tutorial - 22 - last modified on 10 Jul 2006

// find the fully qualified host name of this host
String hostname;
hostname = ((InetAddress)sfResolve("sfHost")).getCanonicalHostName
();

// find the IP address of this host
String ipaddress;
ipaddress = ((InetAddress) sfResolve("sfHost")).getHostAddress();

// extract a Remote interface for this RMI server
Remote interface;
interface = RemoteObject.toStub(this);

Example 26

13 Conclusion
This tutorial has only touched on the ways that SmartFrog can be used. The SmartFrog
distribution contains many complete examples under src/org/smartfrog/examples. These
examples include the prototype descriptions, the deployment descriptions, and the corresponding
Java components. One of the intentions behind this tutorial was to make it obvious what these
examples are intended to achieve. Studying these examples is strongly recommended. It is also
worth studying the Java for some of the major classes, such as PrimImpl or CompoundImpl. It
should become clear that the default behaviours were designed to be extended.

More detailed information on many aspects of SmartFrog programming can be obtained by
referring to:

The SmartFrog Reference Manual

The SmartFrog User Guide

The SmartFrog API (Javadoc)

The SmartFrog Quick Reference Guide

14 Acknowledgments
Thanks to the SmartFrog team for much assistance and to Patrick Goldsack and Julio Guijarro for
their comments on the draft of this document. Also, thanks to Nigel Edwards for his suggestions
and attention to detail in reviewing the tutorial.

15 Tutorial References
[1] See build.html under smartfrog/docs on how to download, setup, build and test SmartFrog
system.

[2] See “sfInstaller” component and templates for examples on how to install, start and stop
SmartFrog daemons in a cluster of machines.

16 Appendix 1 – Defined Attributes
The SmartFrog language contains a number of reserved words, some of which are used to set
values, others are used to discover values. An extended list can be found in the SmartFrog
Reference Manual.

sfProcessHost: this specifies a host where a component will be deployed. Eg.

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Tutorial - 23 - last modified on 10 Jul 2006

myComponent extends aComponent {
sfProcessHost “server.hp.com”; // where the component will run
}

Example 27

sfProcess: name of the process in which a component is running. Always set.

sfProcessName: name of the process you want to deploy in. This could cause a sub-process to
be created.

sfProcessComponentName: set the name of a component in the root process or a sub-process.
myComponent extends aComponent {
sfProcessComponentName “MYCOMPONENT”;
}

Example 28

sfRootLocatorPort: set the RMI port (default 3800) of the SmartFrog root daemon. Used only in
a ProcessCompound.

sfHost: the InetAddr of host. An example of its use is given below:
// find the fully qualified host name of this host
String hostname;
hostname = ((InetAddress)sfResolve("sfHost")).getCanonicalHostName();

// find the IP address of this host
String ipaddress;
ipaddress = ((InetAddress) sfResolve("sfHost")).getHostAddress();

Example 29

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

SmartFrog Tutorial - 24 - last modified on 10 Jul 2006

17 Appendix 2 – Tracing and Logging
SmartFrog is capable of producing large quantities of useful diagnostic output. The first
configuration file one should be aware of is default.ini, which can be found in SFHOME/bin.
This contains an attribute that regulates the severity of logging information written to the output
window (or logfile) associated with the SmartFrog daemon. The relevant portion of default.ini
can be seen in Example 30. Note that you can also configure logging to a file, and other logging
attributes.

Optional property to define the initial local log level
Default level: 3 - LOG_LEVEL_INFO;
0-IGNORE(ALL);1-TRACE;2-DEBUG;3-INFO;4-WARN;5-ERROR;6-FATAL;7-NONE
 org.smartfrog.sfcore.logging.LogImpl.logLevel=0

Optional boolean property to include stack trace with error message
 org.smartfrog.sfcore.common.Logger.logStackTrace=true

Example 30

A second file, also in the SFHOME/bin directory, is default.sf. This defines a number of
prototypes, and deploys the default output component for the SmartFrog daemon process. There
is an alternative commented-out deployment that provides enhanced lifecycle event monitoring,
and the ability to step through the stages of a deployment. The relevant portion of default.sf
is:

sfConfig extends DefaultCompound;

// Alternative default compound with tracing or/and log to file
enabled.
// Uncomment the next line to use it.
//sfConfig extends DefaultTraceCompound;

Example 31

If security is disabled, default.ini and default.sf may be edited in place. If security is
enabled, then they are accessed from JAR files, and the JAR files will need to be recreated
whenever modifications are made.

A tool that is often useful is the SmartFrog Management Console. This is described in the
SmartFrog User Manual. The console provides a view of a deployed application, and provides the
attribute and value in the context of each deployed component. For numerous reasons there may
be some confusion about what has been deployed – it is easy to duplicate configurations in JAR
files, it is easy to override values by extending prototypes. The console provides a quick way to
check what is deployed, what attributes have been defined, and what their current values are.

© Copyright 1998-2005 Hewlett-Packard Development Company, LP

