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About Us
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Writing the 2nd “Ant1.7” edition; 

Julio Guijarro
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The goal of our HPLabs research

• How to host big applications 
across distributed resources
– Automatically / Repeatably
– Dynamically
– Correctly
– Securely

• How to manage them from 
installation to removal

• How to make grid fabrics useful 
for classic server-side apps



Page 4Taming Deployment with SmartFrog www.smartfrog.org

Deployment: 
why does it always go wrong?

Because

– it gets ignored

– configuration is half the 
problem

– nobody ever automates it

– the tools are inadequate

– it always goes wrong just 
before you go live

Deployment is unreliable, unrepeatable and doesn't scale
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Configuration causes the problems

• It’s the difference between 
configurations that hurt

• All those things that need to 
be consistent
– configuration files
– registry settings
– router bindings
– firewall
– database
– run-time values

• Trying to track down 
mismatches is hard
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Choreography is “tricky”

Domain 
Controller 

&
DNS Server

Network 
filestore

Database 
server

App Server

router

#0

#1

#2#3

#3: app server
#4: webapp
(50% availability OK)
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Deployment through development

development

staging

live system

redistribution

configure for diagnostics & testing
host on developers' boxes or local 
servers

location/user specific configuration
e.g. IP addresses, passwords, ...
Self-diagnosis

“near-live” configuration.
Host on cut-down cluster; 
visible to partners
managed by operations & 
dev teams ; 5x12

remote installation
broadly accessible - secure
High Availability/Fault Tolerant
Scale on demand
operations team on call 7x24
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resources

configuration description

Configuration is deployment

Imagine a file that could declare the 
desired configuration state of a 
distributed system
– Define templates and extend them 

to describe different configurations
– Cross-referencing to eliminate 

duplication errors
– Composition for bigger systems

Create reality to match
– configure the declared items
– start/stop them
– adapt to failure or changing load
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Imagine: SmartFrog

• Distributed Deployment System

• LGPL licensed

• Written in Java

• SourceForge hosted

• http://smartfrog.org/
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SmartFrog 
(Smart Framework for Object Groups)

A framework for describing, deploying and managing 
distributed service components.

•A description language for specifying configuration
•A runtime for realising the descriptions
•A component model for managing service lifecycle
•Components to deploy specific things

sfConfig extends WebService {

WebServer extends LAZY Apache {
port 8080;

}

AppServer extends Jboss; 

}
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SmartFrog Description Language

• A declarative, data description language
– Describes the configuration of a system

• templates for deployment
– Prototypes to fill in with real values
– Extend, override, combine 

• Service descriptions are interpreted by components hosted 
by the runtime
– Semantics are not implemented in the language
– Can accommodate wide range of services and models
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SmartFrog Deployment Engine

SmartFrog 
Node

SmartFrog Components

Description / Code 
Repositories

RMI RMI

Deploy Descriptions

SmartFrog 
Daemon

SmartFrog 
Node

SmartFrog Components

SmartFrog 
Daemon

SmartFrog 
Node

SmartFrog Components

SmartFrog 
Daemon

RMI / (SOAP)

• Distributed, decentralized, secure 
deployment engine

• Loads and instantiates the 
components making up each service

• Supplies the correct configuration 
data to each component
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access
tier

web
tier

application
tier

database
tier

edge routers

routing
switchesauthentication, DNS,

intrusion detect, VPN
1st level firewall

2nd level firewall

load balancing
switches

web 
servers

web page storage
(NAS)

database
SQL servers

storage area
network
(SAN)

application
servers

files
(NAS)

switches

switches

• min/max no. of 
web servers

• min no. of app
servers

• specific EJB’s

• size of data,
• no. of tables

Template parameters

• transaction rate
• response times

• constructed from templates for
• web server
• application server
• …

• example of multiple domains
• (sub-)system templates require

strong notion of validation
• collections of sub-templates are

a common feature

A complex template can cover everything
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Goal: two tier app

MySQL database
Tomcat server
WAR application
Two hosts

Database server
MySQL

App Server
Tomcat +WebApp
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MySQL

MySQLTemplate extends Prim {
sfClass "org.sf.mysql";
port     TBD;

}

sfConfig extends Compound {
port 80;

mySql extends MySQLTemplate {
sfProcessHost "svr1";
port           ATTRIB:port;
db             "myDB";
username       "user";
password LAZY securePassW;

}

}

svr1

$

serviceserviceserviceservice

port=80

mySqlmySqlmySqlmySql

port=80

sfstart mySQL.sf svr1 service
$
$ sfstart mySQL.sf svr1 service

sfterminate svr1 service
$ sfterminate svr1 service
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Demo

MySQL
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TomcatTemplate extends Prim {
sfClass "org.sf.tomcat";
port     TBD;
peer     TBD;

}

sfConfig extends Compound {

port 80;

tomcat extends TomcatTemplate {
sfProcessHost "svr2";
port           ATTRIB:port;
peer           LAZY svr1;

}

}

$

svr2

Tomcat

serviceserviceserviceservice

port=80

tomcat

port=80

sfstart tomcat.sf svr2 service
$ sfstart service.sf svr2 service
$ sfstart tomcat.sf svr2 service

sfterminate svr2 service
$ sfterminate svr2 service
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Demo: Tomcat + Web Application



Page 19Taming Deployment with SmartFrog www.smartfrog.org

Service extends Compound {
sfClass "org.sf.service";
port     TBD;

}

sfConfig extends Service {

port 80;

mySql extends MySQLTemplate {
sfProcessHost "svr1";
port           ATTRIB:port;

}

tomcat extends TomcatTemplate {
sfProcessHost "svr2";
port           ATTRIB:port;
peer           LAZY mySql;

}

}

svr1

$

svr2

Integration: Deploying a Service

serviceserviceserviceservice

port=80

mySqlmySqlmySqlmySql

port=80

tomcat

port=80
peer

sfstart service.sf svr1 service
$ sfstart service.sf svr1 service
$ sfstart service.sf svr1 service

sfterminate svr1 service
$ sfterminate svr1 service
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Demo

Integration: Deploying everything
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Components are like Ant tasks: 
they do the heavy lifting

Report to container/pingHalt the build or ignoreFailure

Lifecycle methodsexecute()Lifespan

sfResolve()IntrospectionHelperBinding

ComponentTaskUnit of work

SystemProjectUnit of execution

SmartFrog DaemonAntRuntime

SmartFrogAnt
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Implementing a component

import com.hp.smartfrog.Prim.*;
import java.rmi.*;

public class Example extends PrimImpl implements Remote {
private String hostname;

public Example() throws RemoteException {
}

public void sfDeploy() throws Exception {
super.sfDeploy();
hostname=sfResolve("hostname","",true);

}

public void sfStart() throws Exception {
super.sfStart();
sfReplaceAttribute("Started",new java.util.Date());

}

public void sfTerminateWith(TerminationRecored tr) {
/* any component specific termination code */
super.sfTerminateWith(tr);

}
}  

lifecycle methods
called by the runtime

extend base class
implement a Remote interface
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How to write a new one? 
Describing components

MyExample extends {
sfClass "Example";
hostname "localhost";

}

something extends MyExample {
sfProcessHost "192.168.2.1";
sfProcessName "subproc-2";
hostname "laptop";
timestamp LAZY:Started;

}

initial template

component location

other configuration data

instantiated

initializedterminated failed

running

sfDeployWith(ComponentDescription)

sfDeploy()

sfStart()

sfTerminateWith(TerminationRecord)

Parse



Page 24Taming Deployment with SmartFrog www.smartfrog.org

Composition

Systems are composed of applications that are composed of components

Applications: are deployed and managed as a group

Built in components that manage other components
• shared lifecycle (Compound): start and end components together

• sequential: when one component stops, the next starts, …

• parallel: start components together, but end separately

• failure handling: start one component if another fails

mySystem extends Compound {      
appServer extends JBoss {}
database extends Oracle {}
apps extends Compound { ... }

}
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What ones do we have?

distributed unit testingJUnit

configure JMX objectsJMX integration

dynamic node discoverySLP, Anubis

HTTPD, jetty, tomcat, web page liveness checkWWW:

telnet, scp, ftp, emailNetworking

remote forwarding/control of logsLogging

sequential, conditional, retry operationsWorkflow

shell scripts, Java, maven2 library downloadExecution

tempfiles, directories, text & XML filesFilesystem
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Where is SmartFrog being used?

SE3D: HP/Alias Film Rendering: 
http://se3d.co.uk/

CERN Openlab
• Install, configure and uninstall a PBS/Torque cluster 

• SmartFrog RPMs (it also installs SF as a service)

• http://openlab-mu-internal.web.cern.ch/

University UFCG, Brasil
• JBOSS 

http://www.lsd.ufcg.edu.br/~gustavo/smartfrog/jboss.tgz

PlanetLab: distributed application research
http://www.planet-lab.org/
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Key points

• Deployment and configuration is a serious 
problem

• Large Scale Deployment is fun research

• With SmartFrog you can

– describe deployments

– instantiate them across a network

– host components that form the application
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Get involved!  

• Download and play with the tool!
• Join the mailing list and send us any questions!
• Check out and build the code from CVS. Start with 

small projects, work up to big clusters...
• Look at http://se3d.co.uk/ to see what you can do 

with 500+ servers

For more information and downloads:

www.smartfrog.org
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Questions?
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LGPL?

• Better that than inventing a new one.

• Apache stance is currently “you can depend on, but 
not redistribute LGPL libraries”

• So use it, don’t be scared. LGPL only means you 
must provide the source of any changes to 
SmartFrog or its bundled components, not any 
components/descriptors you write.
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Security

• SmartFrog needs to protect against deployment or 
other management actions from rogue entities

• Cannot rely purely on SSH/user accounts/etc as 
SmartFrog has active communicating agents

• As SmartFrog downloads configuration descriptions 
and code, we need to protect against introduction 
of rogue code

• Communications over SSL
• Signed JARs to contain everything
• Private CA for each deployment.
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Not XML?

• There is an XML derivative language being 
standardised at the Global Grid Foundation

• Join the CDDLM working group to get involved
– https://forge.gridforum.org/projects/cddlm-wg
– http://xml.coverpages.org/computingResourceManagement.html#cddlm

• We have found that an XML language is harder for 
humans to work with, but it has value in XML/XSL 
pipelines, e.g. Cocoon, inside Ant, XDoclet...

• XSD is particularly troublesome, as are bits of 
XPath

• Maybe RDF would be work better :)
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The component lifecycle is that of a system

instantiated

initializedterminated failed

running

sfDeployWith(ComponentDescription)

sfDeploy()

sfStart()

sfTerminateWith(TerminationRecord)



Page 34Taming Deployment with SmartFrog www.smartfrog.org

• Each configuration domain is associated with a configuration interpreter, 
programmed to reify the configurations associated with that domain

• Each description from a domain is matched with one of these interpreters 
to reify the description

• The full semantics of a description is defined by
interpreter + description

• The description is in effect a parameter to the interpreter defining the 
configuration state of the sub-system involved

• Can freely define new interpreters and new "languages" as required

Components: Interpreters of Descriptions

I


