
Steve Loughran
Julio Guijarro
HP Laboratories, Bristol, UK

Taming Deployment with 
SmartFrog

steve.loughran at hpl.hp.com
julio.guijarro     at hpl.hp.com



Page 2Taming Deployment with SmartFrog www.smartfrog.org

About Us

Steve Loughran
Research scientist at HP Laboratories on

Grid-Scale Deployment
Apache Ant & Axis committer
Co-author of 

Java Development with Ant
Writing the 2nd “Ant1.7” edition; 

Julio Guijarro
Research scientist at HP Laboratories on

Grid-Scale Deployment

Leads the SmartFrog open source effort



Page 3Taming Deployment with SmartFrog www.smartfrog.org

The goal of our HPLabs research

• How to host big applications 
across distributed resources
– Automatically / Repeatably
– Dynamically
– Correctly
– Securely

• How to manage them from 
installation to removal

• How to make grid fabrics useful 
for classic server-side apps



Page 4Taming Deployment with SmartFrog www.smartfrog.org

Deployment: 
why does it always go wrong?

Because

– it gets ignored

– configuration is half the 
problem

– nobody ever automates it

– the tools are inadequate

– it always goes wrong just 
before you go live

Deployment is unreliable, unrepeatable and doesn't scale



Page 5Taming Deployment with SmartFrog www.smartfrog.org

Configuration causes the problems

• It’s the difference between 
configurations that hurt

• All those things that need to 
be consistent
– configuration files
– registry settings
– router bindings
– firewall
– database
– run-time values

• Trying to track down 
mismatches is hard



Page 6Taming Deployment with SmartFrog www.smartfrog.org

Choreography is “tricky”

Domain 
Controller 

&
DNS Server

Network 
filestore

Database 
server

App Server

router

#0

#1

#2#3

#3: app server
#4: webapp
(50% availability OK)



Page 7Taming Deployment with SmartFrog www.smartfrog.org

Deployment through development

development

staging

live system

redistribution

configure for diagnostics & testing
host on developers' boxes or local 
servers

location/user specific configuration
e.g. IP addresses, passwords, ...
Self-diagnosis

“near-live” configuration.
Host on cut-down cluster; 
visible to partners
managed by operations & 
dev teams ; 5x12

remote installation
broadly accessible - secure
High Availability/Fault Tolerant
Scale on demand
operations team on call 7x24



Page 8Taming Deployment with SmartFrog www.smartfrog.org

resources

configuration description

Configuration is deployment

Imagine a file that could declare the 
desired configuration state of a 
distributed system
– Define templates and extend them 

to describe different configurations
– Cross-referencing to eliminate 

duplication errors
– Composition for bigger systems

Create reality to match
– configure the declared items
– start/stop them
– adapt to failure or changing load



Page 9Taming Deployment with SmartFrog www.smartfrog.org

Imagine: SmartFrog

• Distributed Deployment System

• LGPL licensed

• Written in Java

• SourceForge hosted

• http://smartfrog.org/



Page 10Taming Deployment with SmartFrog www.smartfrog.org

SmartFrog 
(Smart Framework for Object Groups)

A framework for describing, deploying and managing 
distributed service components.

•A description language for specifying configuration
•A runtime for realising the descriptions
•A component model for managing service lifecycle
•Components to deploy specific things

sfConfig extends WebService {

WebServer extends LAZY Apache {
port 8080;

}

AppServer extends Jboss; 

}



Page 11Taming Deployment with SmartFrog www.smartfrog.org

SmartFrog Description Language

• A declarative, data description language
– Describes the configuration of a system

• templates for deployment
– Prototypes to fill in with real values
– Extend, override, combine 

• Service descriptions are interpreted by components hosted 
by the runtime
– Semantics are not implemented in the language
– Can accommodate wide range of services and models



Page 12Taming Deployment with SmartFrog www.smartfrog.org

SmartFrog Deployment Engine

SmartFrog 
Node

SmartFrog Components

Description / Code 
Repositories

RMI RMI

Deploy Descriptions

SmartFrog 
Daemon

SmartFrog 
Node

SmartFrog Components

SmartFrog 
Daemon

SmartFrog 
Node

SmartFrog Components

SmartFrog 
Daemon

RMI / (SOAP)

• Distributed, decentralized, secure 
deployment engine

• Loads and instantiates the 
components making up each service

• Supplies the correct configuration 
data to each component



Page 13Taming Deployment with SmartFrog www.smartfrog.org

access
tier

web
tier

application
tier

database
tier

edge routers

routing
switchesauthentication, DNS,

intrusion detect, VPN
1st level firewall

2nd level firewall

load balancing
switches

web 
servers

web page storage
(NAS)

database
SQL servers

storage area
network
(SAN)

application
servers

files
(NAS)

switches

switches

• min/max no. of 
web servers

• min no. of app
servers

• specific EJB’s

• size of data,
• no. of tables

Template parameters

• transaction rate
• response times

• constructed from templates for
• web server
• application server
• …

• example of multiple domains
• (sub-)system templates require

strong notion of validation
• collections of sub-templates are

a common feature

A complex template can cover everything



Page 14Taming Deployment with SmartFrog www.smartfrog.org

Goal: two tier app

MySQL database
Tomcat server
WAR application
Two hosts

Database server
MySQL

App Server
Tomcat +WebApp



Page 15Taming Deployment with SmartFrog www.smartfrog.org

MySQL

MySQLTemplate extends Prim {
sfClass "org.sf.mysql";
port     TBD;

}

sfConfig extends Compound {
port 80;

mySql extends MySQLTemplate {
sfProcessHost "svr1";
port           ATTRIB:port;
db             "myDB";
username       "user";
password LAZY securePassW;

}

}

svr1

$

serviceserviceserviceservice

port=80

mySqlmySqlmySqlmySql

port=80

sfstart mySQL.sf svr1 service
$
$ sfstart mySQL.sf svr1 service

sfterminate svr1 service
$ sfterminate svr1 service



Page 16Taming Deployment with SmartFrog www.smartfrog.org

Demo

MySQL



Page 17Taming Deployment with SmartFrog www.smartfrog.org

TomcatTemplate extends Prim {
sfClass "org.sf.tomcat";
port     TBD;
peer     TBD;

}

sfConfig extends Compound {

port 80;

tomcat extends TomcatTemplate {
sfProcessHost "svr2";
port           ATTRIB:port;
peer           LAZY svr1;

}

}

$

svr2

Tomcat

serviceserviceserviceservice

port=80

tomcat

port=80

sfstart tomcat.sf svr2 service
$ sfstart service.sf svr2 service
$ sfstart tomcat.sf svr2 service

sfterminate svr2 service
$ sfterminate svr2 service



Page 18Taming Deployment with SmartFrog www.smartfrog.org

Demo: Tomcat + Web Application



Page 19Taming Deployment with SmartFrog www.smartfrog.org

Service extends Compound {
sfClass "org.sf.service";
port     TBD;

}

sfConfig extends Service {

port 80;

mySql extends MySQLTemplate {
sfProcessHost "svr1";
port           ATTRIB:port;

}

tomcat extends TomcatTemplate {
sfProcessHost "svr2";
port           ATTRIB:port;
peer           LAZY mySql;

}

}

svr1

$

svr2

Integration: Deploying a Service

serviceserviceserviceservice

port=80

mySqlmySqlmySqlmySql

port=80

tomcat

port=80
peer

sfstart service.sf svr1 service
$ sfstart service.sf svr1 service
$ sfstart service.sf svr1 service

sfterminate svr1 service
$ sfterminate svr1 service



Page 20Taming Deployment with SmartFrog www.smartfrog.org

Demo

Integration: Deploying everything



Page 21Taming Deployment with SmartFrog www.smartfrog.org

Components are like Ant tasks: 
they do the heavy lifting

Report to container/pingHalt the build or ignoreFailure

Lifecycle methodsexecute()Lifespan

sfResolve()IntrospectionHelperBinding

ComponentTaskUnit of work

SystemProjectUnit of execution

SmartFrog DaemonAntRuntime

SmartFrogAnt



Page 22Taming Deployment with SmartFrog www.smartfrog.org

Implementing a component

import com.hp.smartfrog.Prim.*;
import java.rmi.*;

public class Example extends PrimImpl implements Remote {
private String hostname;

public Example() throws RemoteException {
}

public void sfDeploy() throws Exception {
super.sfDeploy();
hostname=sfResolve("hostname","",true);

}

public void sfStart() throws Exception {
super.sfStart();
sfReplaceAttribute("Started",new java.util.Date());

}

public void sfTerminateWith(TerminationRecored tr) {
/* any component specific termination code */
super.sfTerminateWith(tr);

}
}  

lifecycle methods
called by the runtime

extend base class
implement a Remote interface



Page 23Taming Deployment with SmartFrog www.smartfrog.org

How to write a new one? 
Describing components

MyExample extends {
sfClass "Example";
hostname "localhost";

}

something extends MyExample {
sfProcessHost "192.168.2.1";
sfProcessName "subproc-2";
hostname "laptop";
timestamp LAZY:Started;

}

initial template

component location

other configuration data

instantiated

initializedterminated failed

running

sfDeployWith(ComponentDescription)

sfDeploy()

sfStart()

sfTerminateWith(TerminationRecord)

Parse



Page 24Taming Deployment with SmartFrog www.smartfrog.org

Composition

Systems are composed of applications that are composed of components

Applications: are deployed and managed as a group

Built in components that manage other components
• shared lifecycle (Compound): start and end components together

• sequential: when one component stops, the next starts, …

• parallel: start components together, but end separately

• failure handling: start one component if another fails

mySystem extends Compound {      
appServer extends JBoss {}
database extends Oracle {}
apps extends Compound { ... }

}



Page 25Taming Deployment with SmartFrog www.smartfrog.org

What ones do we have?

distributed unit testingJUnit

configure JMX objectsJMX integration

dynamic node discoverySLP, Anubis

HTTPD, jetty, tomcat, web page liveness checkWWW:

telnet, scp, ftp, emailNetworking

remote forwarding/control of logsLogging

sequential, conditional, retry operationsWorkflow

shell scripts, Java, maven2 library downloadExecution

tempfiles, directories, text & XML filesFilesystem



Page 26Taming Deployment with SmartFrog www.smartfrog.org

Where is SmartFrog being used?

SE3D: HP/Alias Film Rendering: 
http://se3d.co.uk/

CERN Openlab
• Install, configure and uninstall a PBS/Torque cluster 

• SmartFrog RPMs (it also installs SF as a service)

• http://openlab-mu-internal.web.cern.ch/

University UFCG, Brasil
• JBOSS 

http://www.lsd.ufcg.edu.br/~gustavo/smartfrog/jboss.tgz

PlanetLab: distributed application research
http://www.planet-lab.org/



Page 27Taming Deployment with SmartFrog www.smartfrog.org

Key points

• Deployment and configuration is a serious 
problem

• Large Scale Deployment is fun research

• With SmartFrog you can

– describe deployments

– instantiate them across a network

– host components that form the application



Page 28Taming Deployment with SmartFrog www.smartfrog.org

Get involved!  

• Download and play with the tool!
• Join the mailing list and send us any questions!
• Check out and build the code from CVS. Start with 

small projects, work up to big clusters...
• Look at http://se3d.co.uk/ to see what you can do 

with 500+ servers

For more information and downloads:

www.smartfrog.org



Page 29Taming Deployment with SmartFrog www.smartfrog.org

Questions?



Page 30Taming Deployment with SmartFrog www.smartfrog.org

LGPL?

• Better that than inventing a new one.

• Apache stance is currently “you can depend on, but 
not redistribute LGPL libraries”

• So use it, don’t be scared. LGPL only means you 
must provide the source of any changes to 
SmartFrog or its bundled components, not any 
components/descriptors you write.



Page 31Taming Deployment with SmartFrog www.smartfrog.org

Security

• SmartFrog needs to protect against deployment or 
other management actions from rogue entities

• Cannot rely purely on SSH/user accounts/etc as 
SmartFrog has active communicating agents

• As SmartFrog downloads configuration descriptions 
and code, we need to protect against introduction 
of rogue code

• Communications over SSL
• Signed JARs to contain everything
• Private CA for each deployment.



Page 32Taming Deployment with SmartFrog www.smartfrog.org

Not XML?

• There is an XML derivative language being 
standardised at the Global Grid Foundation

• Join the CDDLM working group to get involved
– https://forge.gridforum.org/projects/cddlm-wg
– http://xml.coverpages.org/computingResourceManagement.html#cddlm

• We have found that an XML language is harder for 
humans to work with, but it has value in XML/XSL 
pipelines, e.g. Cocoon, inside Ant, XDoclet...

• XSD is particularly troublesome, as are bits of 
XPath

• Maybe RDF would be work better :)



Page 33Taming Deployment with SmartFrog www.smartfrog.org

The component lifecycle is that of a system

instantiated

initializedterminated failed

running

sfDeployWith(ComponentDescription)

sfDeploy()

sfStart()

sfTerminateWith(TerminationRecord)



Page 34Taming Deployment with SmartFrog www.smartfrog.org

• Each configuration domain is associated with a configuration interpreter, 
programmed to reify the configurations associated with that domain

• Each description from a domain is matched with one of these interpreters 
to reify the description

• The full semantics of a description is defined by
interpreter + description

• The description is in effect a parameter to the interpreter defining the 
configuration state of the sub-system involved

• Can freely define new interpreters and new "languages" as required

Components: Interpreters of Descriptions

I


