
Grid Infrastructure Deployment using SmartFrog Technology

Ritu Sabharwal
Hewlett-Packard (STSD), Bangalore, India

ritu@hp.com

Abstract

The Globus Toolkit is properly configured open source
software for setting up grid nodes across multiple
heterogeneous platforms. The process of grid enabling
a machine is a long one involving Globus Toolkit
installation, certificate requests generation, signing
certificate requests by CA (Certificate Authority),
installation of signed certificates, configuring various
grid services and some basic testing to ensure that the
setup is correct. Generally, a grid deployment is done
across a large number of distributed machines. In such
cases, the process of grid enabling becomes tedious
and time-consuming more so in a heterogeneous
environment. This paper proposes a solution for grid
infrastructure deployment across multiple
heterogeneous distributed machines in parallel using
SmartFrog (Smart Framework for Object Groups)
technology. SmartFrog is a framework for configuring
and automatically activating distributed applications.
SmartFrog helps in abstracting the configuration for
grid enabling process and its runtime environment
automatically triggers installations across distributed
machines. The initial results we achieved on
experimental setups are encouraging.

1. Introduction

Grid computing [1], simply stated, is distributed
computing taken to the next evolutionary level. The
goal is to create the illusion of a simple, yet large, and
powerful self-managing virtual computer out of a large
collection of connected heterogeneous systems sharing
various combinations of resources. There are no
dedicated resources as in parallel computing; any
resource (anywhere on the global network) available
can be used for computation.

The Globus Toolkit [2] provides software tools to
build computational grids and grid-based applications.
The Globus Toolkit is both an open architecture and
open source toolkit.

An ad hoc grid deployment can be done manually
by following the Globus Toolkit installation

instructions from Globus homepage [3]. After the
installation of Globus Toolkit, grid environment must
be properly configured and setup. This includes the
generation of the certificate requests for the host,
LDAP and user, configuration and starting various grid
services like gatekeeper, gridFTP, LDAP server and
creation of a map file for mapping user identities. Host
certificate is required to run the gatekeeper and
GridFTP server on the machine. LDAP certificate is
required for running the LDAP server, which provides
authenticated access to MDS (Monitoring and
Discovery Service). Once the configuration and setup
is complete, some basic testing is done to ensure all the
grid services are working properly. For testing grid
configurations on a machine, a user certificate is
required. However, as the grid grows, i.e., the number
of machines increases, the overall procedure of manual
installation and configuration becomes cumbersome.
The whole process of grid enabling a machine has to
be repeated for all the resources, which requires lot of
time and effort. In the same way, upgrading the
software will be equally difficult. The problem also
exists for applications. As adaptive enterprises evolve
and data centers become larger, deploying, configuring
and upgrading applications will become more
challenging.

This paper proposes an efficient programmatic
approach that can be reused with little effort and scales
well for solving the problem of multiple grid
deployments. The solution is based on the SmartFrog
(Smart Framework for object Groups) technology [4].
The next section discusses related work in the area of
grid deployments. Section 3 gives a brief description of
the SmartFrog framework. The following sections
describe the solution overview, system workflow,
experimental results and future steps.

2. Related work

There are various ways of reducing the difficulties of
manual installations. A simple approach is to use an
interactive shell script for installing the Globus Toolkit
source bundles. The script guides the user through the
grid installation but still requires setting up of grid
environment interactively. Going one-step ahead, the

shell script can take care of both installation and grid
environment setup. This approach lacks in the fact that
the user is required to provide grid configuration data
interactively. It also does not scale well because the
script has to be run interactively for each node.

HP Labs’ GridWeaver project [6, 7] with
University of Edinburgh is an application of SmartFrog
Framework that applied LCFG [8] and SmartFrog for
grid installations. This is suitable for UNIX platforms
because LCFG is a configuration tool for UNIX
systems. GridWeaver, is an ongoing research work that
is not available publicly or commercially for use. There
are other sources available like rpm that only do the
installations. Some part of ProLiant Essentials [9] also
deals with deployment of applications and images.
Administrative tools like SD [10] in HP-UX use
Product Specification File (PSF) for describing the
configuration data. SmartFrog description language is
richer with features like data organization as
attribute:value pairs, inheritance, templates,
parameterization, variable linking and component
binding.

3. SmartFrog (Smart Framework for
Object Groups)

SmartFrog (Smart Framework for Object Groups) is a
technology for describing distributed software systems
as collections of cooperating components, and then
activating and managing them [5].

The SmartFrog Framework consists of a
description language for describing component
collections and component configuration parameters, a
deployment infrastructure that activates the application
description, a component model that manages the
components to deliver and maintain running systems
and a set of components that provide various
application services.

SmartFrog has wide applicability across domains
ranging from utility computing to large-scale system
configuration. SmartFrog and its components are
implemented in Java™, though SmartFrog components
can easily be written to encapsulate software
components based on other technologies.

3.1. SmartFrog language

The SmartFrog description language allows one to
create a declarative description of the system needed.
The description includes things like which software
components are part of the system, their configuration
parameters, and how they should connect to other
components in the system, and the workflow associated
with the lifecycle of the components and the system as
a whole.

The SmartFrog language is a prototype-based
language, which supports templates. The prototype
approach makes it very easy for system configurations
to be specialized for a specific context, without losing
the default configuration, or indeed any other changes
in the chain of modifications. The template mechanism
also supports extension mechanism; in addition,
templates allow multiple configuration descriptions to
be composed into one.

3.2. Component model

The component model supported by SmartFrog is a
simple, extensible set of interfaces providing access to
key management actions – such as instance creation,
configuration, termination, and so on. SmartFrog
considers a whole system to be defined as a collection
of applications running over a distributed collection of
compute resources. Each application is, in turn, a
collection of components defined statically via an
application description or generated dynamically at
run-time according to the requirements determined at
that time.

Using the SmartFrog language, a component
description is given to the framework to create and
manage a running component associated with that
description.

An important aspect of the SmartFrog component
model is the lifecycle. The lifecycle is implemented as
a simple state machine. The transitions in the state
machine are associated with actions implemented (if
required) by the components. The transition actions are
implemented by the invocation of methods on the
component, during which the component may take any
appropriate action.

3.3. Deployment infrastructure

The SmartFrog deployment infrastructure is a
distributed network of components that interprets
system descriptions, realizes the systems’
subcomponents in the correct order and binds them
together. The deployment infrastructure continues to
manage the components while the system is running,
and is also responsible for the clean, properly
sequenced shutdown of the system. If any component
fails, the deployment infrastructure can detect this and
can be configured to take restorative action, or to
shutdown the system cleanly.

The SmartFrog framework is designed to form the
basis for a fully distributed configuration and
programming environment. As such, the system must
be able to deal with deploying components into many
Processes (Java Virtual Machines or JVM) on many
different hosts. The deployment infrastructure uses

RMI as communication and advertising mechanism,
though it is designed so that it can be used or replaced
with other mechanisms.

4. Solution overview

This solution does not require any pre-requisite
software to be present on the machines for grid
deployments.

SmartFrog uses RMI for communication
mechanism, which requires a SmartFrog daemon to be
running on each of the machines associated with the
grid deployment. This requires that SmartFrog be
installed prior to running the distributed application of
grid enabling. Hence, the solution is divided into two
parts: first part installs SmartFrog and starts the
SmartFrog daemon; the second part takes care of
Globus Toolkit installation and configurations.
Individual SmartFrog components named SFInstaller,
GTKInit and GTKPost are written that provide the
functionality of SmartFrog installation and daemon
starting, Globus Toolkit installation and configuring
grid environment on a single remote machine
respectively. SmartFrog description language is used
for writing these component descriptions. These
components are described below.

Typically Grid infrastructure deployments are done
for large number of machines. Hence, the approach
used for installation and configurations for a single
machine has to be extended to scale up to hundreds of
machines. By using the inheritance feature of
SmartFrog language, an application is written by
extending the individual components. The detail
implementation of this application is explained in the

next section. This application is deployed on a driver
machine which is responsible for triggering grid
infrastructure deployment.

5. System workflow

This section describes the SmartFrog components and
the certificate signing procedure for authentication of
various machines. We will then describe about the
workflow for extending this solution for multiple
machines.

SmartFrog provides inbuilt components for some
basic services like ftp, telnet etc. that are used by the
components involved. Each component is described
below along with the implementation details.

5.1. SFInstaller component

SmartFrog can be easily installed and the SmartFrog
daemon can be started on a remote machine using the
SFInstaller component. This is the first component to
be deployed on the driver machine.

The SFInstaller component uses inbuilt components
like scp/ftp, SSH/telnet and mailer. The SFInstaller
component first copies the SmartFrog release files
from the driver machine to the remote machine using
the scp/ftp component. It then uses the SSH/telnet
component for logging into the remote machine and
installs SmartFrog by extracting the release files and
starts the daemon. After the daemon is started properly,
it sends an email to the driver giving intimation about
successful SmartFrog installation and starting of the
daemon. Figure 1 shows the sample configuration file
for SFInstaller component using ftp, telnet and mailer
component.

5.2. GTKInit and GTKPost components

The GTKInit and GTKPost components use an install
script for installing Globus Toolkit and configuring the
grid environment on a machine. The install script
provides various options to the user.
• doinit: This option sets up access to Globus

Toolkit source/binary bundles and triggers the
installation process in the user specified location.
It provides the facility to log the build/install
activities. After a successful installation, it issues
certificate requests for user(s), host and LDAP on
the machine. These requests are then automatically
mailed to the Certificate Authority.

• dopost: This option is triggered once the signed
certificates are available on the machine. It first
installs the user(s), host and LDAP certificates.
Then it proceeds to make necessary changes in the
/etc/services and /etc/xinetd.d/ to configure the

#include "org/smartfrog/components.sf"
#include "org/smartfrog/services/sfinstaller/sfinstaller.sf

sfConfig extends SFInstaller {
 host "host1";
 user "user";
 passwordFile "passwd.txt";
 ftpLocalFiles ["C:\\.release.tar.gz"];
 ftpRemoteFiles ["/root/release.tar.gz"];
 telnetLogfile "SFinstaller.log";
 telnetCommands ["tar -xvzf release.tar.gz",
 "export SFHOME/root/smartfrog/dist",
 "export PATH=$SFHOME/bin:$PATH",
 "nohup sfDaemon &"
];
 emailAttachments ["SFinstaller.log"];

emailMessage ("SmartFrog installation status
on node:" ++ ATTRIB host ++ “:
Successful.\n Please see attached telnet log
file for details.");

}

Figure 1. SFInstaller component

gatekeeper and gridFTP components. It also starts
the LDAP server and configures the MDS
component. After this configuration, it updates or
creates the local grid-mapfile (/etc/grid-
services/grid-mapfile) with the user(s) who have
valid certificates. It optionally updates the local
grid-mapfile with entries from the global or grid
specific mapfile. This enables other grid users to
access the local machine’s resources. After
updating the map file, it tests the functionality of
personal gatekeeper, global gatekeeper, gridFTP,
anonymous and authenticated LDAP queries.
Finally, it produces a test report along with any
error information.

The GTKInit and GTKPost components also use
the inbuilt SmartFrog components like scp/ftp and
RunShell. RunShell component provides the
functionality of executing the shell scripts on Linux
based systems and batch files on Windows systems.
The GTKInit component copies the install script to the
remote machine using scp/ftp component and executes
it with doinit option using RunShell component after
giving it execute permissions. The GTKPost
component executes the install script with dopost
option using RunShell component after giving it
execute permissions. Figure 2 shows the sample
configuration file for these components.

5.3. Certificate signing

The process of certificate signing by CA (Certificate
Authority) cannot be automated through a

Figure 3. Parallel deployment application

#include "org/smartfrog/components.sf"
#include "org/smartfrog/services/sfinstaller/sfinstaller.sf
#include “org/smartfrog/sfcore/workflow/components.sf"

sfConfig extends Parallel {
 Setup1 extends SFInstaller {
 host “host1”; user “user1”;
 passwordFile “passwordfile1.txt”;
 ftpLocalFiles ["C:\\.release.tar.gz"];
 ftpRemoteFiles ["/root/release.tar.gz"];
 telnetLogfile "host1.log";
 telnetCommands ["tar -xvzf release.tar.gz",
 "export SFHOME/root/smartfrog/dist",
 "export PATH=$SFHOME/bin:$PATH",
 "nohup sfDaemon &"];
 emailMessage ("SmartFrog installation on
 node:" ++ ATTRIB host ++ “: Successful.\n");
 }
 Setup2 extends SFInstaller {
 host “host2”; user “user2”;

 ……….. // other sfinstaller attributes for host2
 }
 ……………..// similar components for other hosts
}

#include "org/smartfrog/components.sf"
#include "org/smartfrog/services/gtk/gtkinit.sf
#include "org/smartfrog/sfcore/workflow/components.sf"

sfConfig extends Parallel {
 Setup1 extends GTKInit {
 host "host1"; user "user";
 passwordFile "passwd.txt";
 ftpLocalFiles ["C:\\gridsetup"];
 ftpRemoteFiles "/tmp/gridInstaller"];

gtkInstallerScript "/tmp/gridInstaller";
 gtkRepositoryHost “test.abc.com”;
 defaultEmail “abc@xyz.com;
 }
 Setup2 extends GTKInit {

host “host2”; user “user2”;
 ……….. // other sfinstaller attributes for host2

 }
 ………………..// similar components for other hosts
}

#include "org/smartfrog/components.sf"
#include "org/smartfrog/services/gtk/gtkpost.sf
#include "org/smartfrog/sfcore/workflow/componentsl.sf"

sfConfig extends Parallel {
 Setup1 extends GTKPost {
 sfProcessHost “host1”;
 gtkInstallerScript "/tmp/gridInstaller";
 gtkRepositoryHost “test.abc.com”;
 defaultEmail “abc@xyz.com;
 }
 Setup2 extends GTKPost {

sfProcessHost “host2”;
 ……….. // other sfinstaller attributes for host2
 }
 ………………..// similar components for other hosts
}

#include "org/smartfrog/components.sf"
#include "org/smartfrog/services/gtk/gtkinit.sf

sfConfig extends GTKInit {
 host "host1";
 user "user";
 passwordFile "passwd.txt";
 ftpLocalFiles ["C:\\gridsetup"];
 ftpRemoteFiles "/tmp/gridInstaller"];

 gtkInstallerScript "/tmp/gridInstaller";
 gtkRepositoryHost “test.abc.com”;

 defaultEmail “abc@xyz.com;
 }

#include "org/smartfrog/components.sf"
#include "org/smartfrog/services/gtk/gtkpsot.sf

sfConfig extends GTKPost {
 sfProcessHost “host1”;
 gtkInstallerScript "/tmp/gridInstaller";

 gtkRepositoryHost “test.abc.com”;
 defaultEmail “abc@xyz.com;
 }

Figure 2. GTKInit & GTKPost components

programmatic approach. Each machine can be
configured to send the certificate requests to different
CA for signing. Also, different CA has different
signing policies for certificate signing which cannot be
made universal. So, the GTKPost component is
deployed after the certificates are signed by the CA and
placed in some location in the machine.

SFInstaller Component
Installs SmartFrog

Is
SmartFrog
Daemon
running?

Stop SmartFrog Daemon

Start SmartFrog Daemon

GTKInit Component
1. Installs Globus Toolkit
2. Issues certificate requests for
user(s), host and LDAP
3. Mails certificate requests to
Certificate Authority

Signing certificate requests by
Certificate Authority

GTKPost Component
1. Installs signed certificates
2. Configures gatekeeper and
GridFTP components
3. Starts LDAP server and
configures MDS component
3. Tests the gatekeeper,
GridFTP and LDAP services
4. Generate test report

Stop

Start

Figure 4. Flow Diagram for multi-machine
grid deployments

5.4. Multi-machine deployment

The application uses a complex workflow, in this
case Parallel, for enabling the deployment and
configuration across multiple machines. The
components within Parallel workflow are deployed
independently on each machine without affecting the
deployment on some other machine. Hence, separate
applications are written using Parallel workflow for
deploying SFInstaller, GTKInit and GTKPost
components on multiple machines. The various
attributes in these components can be configured for

individual machines. Figure 3 shows the sample code
for these applications.

A driver machine (possibly a desktop) is needed for
initiating the whole process. This machine is
responsible for triggering grid infrastructure
deployment. SmartFrog is installed and the daemon is
started on this machine and the SmartFrog applications
for SFInstaller, GTKInit and GTKPost are deployed
from this machine. The source/binary Globus bundles
are kept in a separate repository. Figure 4 shows the
flow diagram for this solution.

Advantageously, the SmartFrog components used
in this solution are reusable with minimal configuration
changes. Upgrading of grid infrastructure does not
require re-installation of SmartFrog. Hence, the
solution is much simpler even though it is two-stepped
procedure.

6. Experimental results

The solution has been tested for grid infrastructure
deployment with 5 Linux/x86 and Windows machines.
We have used Globus Toolkit 2.4.3 for our experiment.
The experimental setup is shown in Figure 5.

The manual installation of Globus Toolkit 2.4.3 and
configuration of grid environment on each machine
took 2 hours, which equals to 10 hours for the whole
grid deployment. Using this solution, the setup was
completed in 2 hours which is a speedup of 5 times.
This solution is simpler, faster and an automated
process that does not require human intervention and is
less prone to errors. The resulting description can also
be customized to different situations keeping all the
knowledge and history of changes. The Quality of
sService (QoS) issues are yet not addressed. SmartFrog
can be used for other distributed installations like virus

Linux

Windows

Node-
3

Driver
Node

Node-
1

Node-
2

Repository

Figure 5. Experimental setup

updates, patches etc. This solution is going to be used
at Indian Institute of Science (IISc), a research institute
in Bangalore, India, for grid deployments across its
various departments.

7. Conclusion

In this paper we have presented an automated and
faster solution for grid infrastructure deployment
across multiple heterogeneous distributed machines to
form a computational grid. SmartFrog technology is
exploited for this purpose. This solution is scalable and
can be used for setting up real world grids.

In future, we will be working to add the following
features: distributed logging facility, generating a setup
report, better error handling for the install script,
improved resource management, proper cleanup of
resources in case of failure, management and
monitoring of the deployed components using
SmartFrog etc. by enhancing the configurations of the
existing components. Testing on multiple platforms
like HP-UX, Solaris and Windows will also be done.

8. References

[1] Grid Computing.
 http://www-1.ibm.com/grid
[2] The Globus Toolkit.
http://www-unix.globus.org/toolkit/

[3] Globus Toolkit 2.4 Installation Instructions.
http://www.globus.org/toolkit/downloads/2.4.3/
[4] SmartFrog. http://www.smartfrog.org ,
 http://sourceforge.net/projects/smartfrog
[5] P. Goldsack, Julio Guijarro, Antonio Lain,
Guillaume Mecheneau, Paul Murray and Peter Toft,
“SmartFrog: Configuration and Automatic Ignition of
Distributed Applications”, HP Labs, Bristol, UK, May
29 2003.
http://www.hpl.hp.com/research/smartfrog/papers/SmartFrog
_Overview_HPOVA03.May.pdf
[6] G. Beckett (EPCC), K. Kavoussanakis (EPCC), G.
Mecheneau (HP Labs), Peter Toft (HP Labs), P. Goldsack
(HP Labs), P. Anderson (School of Informatics, The
University of Edinburgh), J. Paterson (School of Informatics,
The University of Edinburgh), C. Edwards (School of
Informatics, The University of Edinburgh), “GridWeaver:
automatic, adaptive, large-scale fabric configuration for Grid
Computing”.
www.nesc.ac.uk/events/ahm2003/AHMCD/pdf/130.pdf
 [7] Peter Toft, “Large-Scale, Adaptive Fabric Configuration
for Grid Computing”, HP Labs, Bristol.
http://www.epcc.ed.ac.uk/gridweaver/docs/GridWeaver-
GGF8-PGM-RG-Workshop.pdf
[8] LCFG. http://www.lcfg.org
[9] ProLiant Essentials.
http://h18004.www1.hp.com/products/servers/proliantessenti
als/index.html
[10] SD.
http://www.software.hp.com/products/SD_AT_HP/faqs/gene
ral.html

