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ABSTRACT
We empirically study buyer behavior in an online outsourc-
ing website where sealed bid auctions are held with bids ar-
riving over time. We focus on when buyers terminate their
requests and how they behave when choosing the winning
bid. We find that buyers are more likely to choose the last
bid; and all other positions (i.e., the first bid, the second bid,
until the penultimate bid) are chosen with approximately
the same frequency. We provide a simple probabilistic mod-
el that captures this behavior. The key characteristic of this
model is that buyers are more likely to stop when the most
recent bid is the best so far. This feature is related to the
sunk cost fallacy: once a buyer has waited for some time,
she has an escalating tendency to continue waiting until a
bid that is better than all prior bids arrives. A buyer is
unwilling to recall early bids, because that would make her
perceive the time since the arrival of early bids as “wasted”,
even though the time cost has already been incurred at the
time of the decision.

Keywords
Electronic Commerce, Reverse Auctions, Online Auctions,
Outsourcing, Sunk Cost Fallacy

Categories and Subject Descriptors
J.4 [Computer Applications]: Social and Behavioral Sci-
ences

1. INTRODUCTION
In the last decade, the Internet has not only become a vast

shopping mall for consumers and companies, but has also
helped various forms of auctions reach unprecedent scales.
Examples include the English auction, which has been popu-
larized by eBay, the generalized second-price auctions in on-
line advertising, “penny” auctions, and reverse/outsourcing
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auctions. In order to design these systems optimally, it is
important to understand how buyers and sellers behave.

This paper studies buyer behavior in vWorker1, an online
outsourcing auction platform that focuses on computer pro-
gramming. In vWorker, a company or an individual (the
buyer) outsources an IT project through a reverse auction
mechanism: any individual (the bidder or seller) can sub-
mit sealed bids to any of the requests posted by buyers. For
each request, bids arrive over time and the buyer can decide
at any time to terminate the auction and select a bid. Our
goal is to study the behavior of the buyer with respect to
the timing of her decisions.

The fact that a buyer generally prefers to find a good deal
without having to wait or search too long creates the fol-
lowing tradeoff: terminating the auction early gives speed –
avoiding for instance, to delay a larger project; while waiting
might increase the quality and/or decrease the price of the
best bid. Since humans typically experience “entrapment”
in waiting situations [11], one can ask whether buyers in
online reverse auctions are also prone to a form of psycho-
logical bias with respect to the decision of terminating the
auction.

Our study begins by observing statistical patterns in the
number of bids received by requests at the time they were
closed by the buyers (hereinafter the number of bids), and by
assessing the relation between a bid’s position (i.e., if it was
the first bid of the request, the second, or on the contrary,
the last one before the buyer closed the request) and its
empirical probability to be chosen. Two key observations
arise from the data. First, the number of bids follows a
geometric distribution. Second, for any given number of bids
n, the last bid (whose position is n) is chosen more frequently
while all other positions are chosen with approximately the
same frequency.

We show that this behavior cannot arise from simple mod-
els of rationality. We then provide a simple probabilistic
model that captures this behavior. In this model, after the
arrival of each bid the buyer stops with some probability,
depending on whether the most recent bid is the best so far:
the buyer stops with a larger probability if the most recent
bid is the best so far. Specifically, this model is character-
ized by two probabilities: the probability of stopping when
the most recent bid is the best so far, denoted by p, and
the probability of stopping when the most recent is not the
best so far, denoted by q. We refer to this model as the pq
stopping rule.

The key characteristic of the pq stopping rule is that p > q,

1http://www.vworker.com, previously known as Rent A
Coder (http://www.rentacoder.com)
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that is, the buyer is more likely to stop when the most re-
cent bid is the best so far. This behavior is related to the
sunk cost fallacy. Sunk costs are costs that have already
been incurred and cannot be recovered, and thus should not
influence an agent’s decisions. The sunk cost fallacy arises
when sunk costs affect actors’ decisions; evidence from be-
havioral economics suggests that it is often the case [1]. The
sunk cost fallacy has been observed in a variety of settings,
where the cost can be in terms of money, effort or time. The
latter occurs in the context of vWorker.
A buyer that has already spent time waiting for a better

bid has incurred some cost. A rational buyer would realize
that this cost is sunk and would not let it affect her decision.
On the other hand, an irrational buyer feels that this time
would be wasted if she terminates the request when the most
recent bid is not the best so far. Thus, that a buyer may be
more likely to close a request when the most recent bid is
the best so far is a form of sunk cost fallacy.
The paper is organized as follows. After reviewing related

work in Section 2, we describe vWorker and our data set in
Section 3. Section 4 presents our main observations from
the data. Section 5 describes the pq stopping rule, which
is consistent with the observations from the data. Section 6
discusses several aspects of the pq stopping rule with respect
to the sunk cost fallacy.

2. RELATED WORK
Since the emergence of e-commerce, specific questions re-

lated to the structure of online markets and the behavior
of their users have drawn a lot of interest from researchers.
Various models are attempting to describe the economics of
crowdsourcing (e.g., [5, 8]) while a few empirical studies have
considered crowdsourcing markets like Taskcn [15] and the
Amazon Mechanical Turk [10]. Outsourcing platforms have
been considered with respect to management issues. For in-
stance, Gefen and Carmel have studied vWorker (then called
Rent A Coder) to investigate the flat-world effect in offshore
outsourcing [7]. They pointed out that despite the higher
prices, buyers tend to prefer domestic service providers, es-
pecially those they previously worked with.
In Taskcn, one of the largest online outsourcing websites

in China, workers submit sample solutions to the task to
compete for winning it. Yang et al. [15] showed that experi-
enced workers in Taskcn learn to submit later in order to get
a better chance of winning, because the time a worker takes
before submission could be a signal of the effort spent on
it. However, this effect does not arise in vWorker, because
coders do not submit sample solutions in order to enter the
auction. We suggest that buyer behavior on vWorker is re-
lated to the sunk cost fallacy.
Evidence of the sunk cost fallacy has been provided by var-

ious disciplines across the social sciences. Through a series of
experiments, Arkes and Blumer [1] showed that people have
a “great tendency to continue an endeavor once an invest-
ment in money, effort, or time has been made”, and called
this behavior the “sunk cost effect”. Before that, similar be-
havior had been identified: people tend to stick to the pre-
vious investment decisions that bring negative consequences
[12]. This escalation of commitment to a failing course of
action is further studied by Whyte [14] and Brockner [4]
from the organizational and social psychology perspective.
More generally, the sunk cost fallacy can be related to loss
aversion and prospect theory [9, 13]. The sunk cost fallacy
often emerges when decision makers are facing a sequence
of similar situations. In this paper, we study how this effect

influences a buyer’s stopping decision in a reverse auction
with sequential bids. Recently, Augenblick [2] showed that
bidding behavior in Swoopo can be explained by the sunk
cost fallacy. However, Swoopo uses penny auctions (a rela-
tively new auction format), whereas in this paper we study
reverse auctions (an auction format that is widely used in
procurement both online and offline).

3. VWORKER
3.1 The Auction Process

vWorker is an outsourcing auction website which connect-
s buyers – companies or individuals – with workers, some
working as freelancers, others acting on behalf of their firms.
Since our data is from Rent A Coder, which was specializing
in IT projects (such as websites, web browser add-ons, or s-
mall pieces of software), in what follows we refer to workers
as coders.

A buyer starts an auction by posting a request, describ-
ing the project. Coders can browse through all the open
requests by category and bid. A bid consists of a price and
generally includes a text where the coder provides informa-
tion on her experience and/or explains how she intends to
execute the project. Coders cannot observe the bids that
a request has already received, i.e., this is an auction with
sequential sealed bids. Moreover, the buyer does not know
the number of bidders in advance.

At any point in time, a buyer can terminate the auction,
either by choosing a bid (if any bid was received), or by can-
celing her request. In both cases, the request is then closed
to new bids. When a bid is selected, an escrow is secured
from the buyer and the coder can start working. Once the
work is done, the coder is paid by the buyer according to
the price specified in the bid. Requests not closed by the
buyers expire after 3 months.

3.2 Dataset
Our data set consists of all requests and bids posted on the

website between the website’s inception (November 2000)
and October 2009. For our present purposes, we discarded
the requests which were cancelled or had expired, as well as
those with only one bid. Indeed, those requests are either
not relevant for studying the termination and selection be-
havior, or in the case of single-bid requests, might introduce
noise in the data. For instance, it could be the case that a
buyer has already decided to contract an acquaintance and
uses vWorker only to secure the transaction. The result-
ing data set contains 207,000 requests and 2.4 million bids.
We also have information on the 380,000 users (buyers and
coders) who were active during that period.

The data set was stored in a MySQL database. Analysis
and simulation were conducted with the software R.

4. OBSERVATIONS
Since our objective is to understand when buyers termi-

nate the requests and how they choose the winners, there
are two characteristics of each request we should pay partic-
ular attention to: how many bids it received and which bid
was chosen by the buyer. For each request we index the bids
in the chronological order of arrival. We use the following
notation:

• R(n) is the number of requests with n bids,

• r(n, k) is the number of requests with n bids for which
the kth bid is chosen,
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• π(n, k) = r(n, k)/R(n) is the proportion of requests
with n bids for which the kth bid is chosen.

We also call π(n, k) the (empirical) “probability” that a buy-
er chooses the kth bid in a request with n bids. We make
two observations on R(n) and π(n, k).

Observation 1. R(n) follows a geometric distribution in
n.
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Figure 1: R(n), the number of requests that have
n bids decreases in n. The trend is approximate-
ly exponential, as shown by the linear regression
log(R(n)) ∼ n for 2 ≤ n ≤ 100 (solid line).

Observation 1 says that the number of requests with n bids
is geometrically decreasing in n. Figure 1 shows log(R(n))
as a function of n. We see that the curve of dots is close
to a straight line in the range 2 ≤ n ≤ 100. The curve gets
flat and noisy after n > 100, possibly because of the large
variance of the tail distribution. Restricting our attention
to 2 ≤ n ≤ 100, we get the following regression formula for
log(R(n)):

log(R(n)) = 9.4916− 0.0757 · n, 2 ≤ n ≤ 100 (1)

The R2 of the regression is 0.99, hence the geometric distri-
bution fits the data very well.

Observation 2. For any n > 1:

(a) π(n, n) is significantly larger than π(n, k) for all k < n.

(b) π(n, k) is approximately the same for all k < n.

In other words, buyers are much more likely to accept the
last bid, whereas all positions before the last are selected
with approximately the same frequency.
Figure 2 (top) is a histogram of requests with n = 25 bids,

showing π(25, k) as a function of k. We see that the last bar
is significantly higher than previous bars. Moreover, all bars
with k ≤ 24 have approximately the same heights. We also
note that there is a weak increasing trend of π(n, k) in k for
large k.
Observation 2 is more generally shown on Figure 2 (bot-

tom). The grey line is 1/n, i.e., the probability that a given
position would be chosen if all positions were chosen with
equal probabilities. Circles represent π(n, n), the propor-
tion of requests where the last bid was chosen. Triangles ▽
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Figure 2: The empirical probability π(n, k), as
illustrated by the histogram in the case where
n = 25 (top); and as visualized more generally by
π(n, n),maxk<n π(n, k) and mink<n π(n, k) for all 2 ≤ n ≤
25 (bottom).

and △ are respectively maxk<n π(n, k) and mink<n π(n, k).
Figure 2 provides support for Observation 2(a) since circles
are always significantly above the triangles, and also for Ob-
servation 2(b) in that the differences between (each pair of)
mink<n π(n, k) and maxk<n π(n, k) are relatively small.

To verify Observation 2(b) statistically, for each n we con-
duct the Pearson test on the null hypothesis that {π(n, k), k <
n} are equal. Given the weak increasing trend when k is
close to n, we test the following series of hypotheses

Hn,m
0 : {π(n, k), k = 1, · · · , n−m} are equal.

where m = 1, 2, 3 and 4.
Results of the tests show that for most values of n, we

cannot reject the null hypotheses Hn,3
0 and Hn,4

0 . Yet Hn,1
0

is rejected at the 0.05 significance level for all n and Hn,2
0 is

rejected for some n. These results support Observation 2 for
k < n− 2, and are also consistent with the weak increasing
trend we observe in Figure 2 (top). We are going to discuss
the trend later in in Section 6.

5. MODELS
In this section, we search for a model that is consistent

with the observations in Section 4. Before considering spe-
cific models, we introduce a general framework that applies
throughout this section.

We associate each bid with the utility that the buyer
would derive by selecting it. We assume that this utility
depends on the bid’s attributes (e.g., price, bidder’s rep-
utation). We note that a bid’s utility is subjective, since
different buyers may value price and reputation differently.
However, since a bid is only addressed to one buyer (that
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is, the buyer that posted the request), in what follows we
sometimes say the utility of the bid to refer to the utility
that the buyer would derive by selecting it.
We will refer to the bid that the buyer selected as the

“best bid.” In other words, the fact that a bid is selected by
a buyer implies that it maximizes the buyer’s utility among
all available bids.
The following assumptions will be used throughout this

section.

Assumption 1. For any request, the utilities of bids are
independent of the order that the bids arrive.

Assumption 2. Buyers can observe a new bid immedi-
ately after it arrives.

Assumption 1 says that later bids are neither better nor
worse than early bids on average. In an open bid auction
where bidders can observe previous bids, like in eBay, there
is dependence between a bid’s price (or more generally u-
tility) and the arrival order. In particular, a bidder would
probably not bid if she knows that her bid is worse than
any previous bid. As a result, later bids are better. On the
other hand, this dependence is largely reduced in vWorker,
because bids are sealed. In fact, the data show that there
is no (decreasing) trend in the prices of bids for a partic-
ular request as they arrive over time.2 This suggests that
Assumption 1 is reasonable. Note that the independence in
Assumption 1 is unconditional, therefore it does not conflic-
t with Observation 2, which says that the last bid is more
likely to be the best bid, because the word “last bid” itself
exhibits conditionality.
Assumption 2 is motivated by the fact that buyers in v-

Worker have the option to receive instantaneous notifica-
tions on new bid arrivals for their requests. With such as-
sistance, a buyer can observe a new bid for her request soon
after the bid arrives without checking the vWorker website
every minute. We are going to revisit Assumption 2 in Sec-
tion 6.

5.1 Deterministic Models
First we consider a deterministic model in which the buyer

has prior knowledge about the market and decides when to
terminate the request by comparing (each time a bid arrives)
the benefit and cost of waiting. In order to quantitatively
analyze the problem, we assume that for a given request the
utilities of the bids are independently and identically drawn
from some distribution known by the buyer. We assume
that the buyer’s objective is to maximize her utility from
the best bid minus the disutility of waiting.
As shown in Appendix A, if (1) the utilities of bids are

drawn from a uniform distribution, (2) the arrival process
of bids is Poisson and (3) buyers have linear waiting costs,
then the optimal strategy of the buyer is a simple threshold
strategy: there exists a threshold such that when the utility
of a new bid exceeds this threshold, the buyer stops the
request and chooses this new bid. In this case, no matter
when the request is terminated, the best bid (which is chosen
by the buyer) is always the last bid.
Though the threshold strategy is concise and natural, it

does not explain the data. We find that there are very few

2This is based on one and two-sided t-tests. The null hy-
pothesis is that the sequence of price differences between the
bids of a particular request has zero mean.

buyers in our dataset that always choose the last bid, there-
fore threshold strategies are probably not widely used among
buyers in vWorker.

Besides this particular case which leads to a threshold s-
trategy, we have also assessed our deterministic model though
numerical simulations by using different combinations of u-
tility distributions, bid arrival processes and waiting cost
functions. We have not been able to find a simple determin-
istic model that gives rise to Observations 1 and 2. Details
can be found in Appendix A.

Another potential model for the buyer’s behavior is that
when a bid that is better than all previous bids arrives (say
bid A), the buyer waits a bit longer before making a decision
in order to see if an even better bid will arrive soon. If either
no new bids arrive within some time interval or only worse
bids arrive, then the buyer accepts A. This model implies
that the buyer waits for a longer time before closing the
request when the last bid is not the best so far. However,
the data shows that this is not the case, suggesting this is not
a prevailing behavior in the buyer population of vWorker.

Since a well fitted deterministic model would require a
high level of model complexity, in the following sections, we
consider two simple probabilistic models that attempt to
explain the data.

5.2 Probabilistic Model: q Stopping rule
The following stopping rule, with only one parameter, is

probably the simplest model we could consider:

q stopping Rule: A buyer terminates her request with
probability q each time a new bid arrives.

Under this stopping rule, we have that a request has n bids
with probability (1 − q)n−2q (we only study requests that
have at least two bids). Thus, the number of requests with
n bids follows the geometric distribution in n, consistent
with Observation 1. Further, since the buyer terminates the
request only based on number of bids in the request, then
according to Assumption 1, each existing bid has the same
probability to be the best one and therefore all π(n, k)’s are
equal for all k = 1, · · · , n, which is consistent with Observa-
tion 2(b). However, Observation 2(a) is not satisfied, that
is, the probability of accepting the last bid is not higher that
the probability of accepting an earlier bid.3

We conclude that the q stopping rule can explain some of
our observation from the data, but not why buyers are more
likely to choose the last bid.

5.3 Probabilistic Model: pq Stopping Rule
Though the previous models have some difficulties ex-

plaining all three features in our observations, they provide
some insights for finding a better model.

• In Section 5.1, we considered a threshold utility with
which buyers always stop at a bid better than all pre-
vious bids and always accept the last bid. Conversely,
the observation that buyers are more likely to accept
the last bid (Observation 2(a)) actually suggests that
buyers are more likely to terminate the request when
the most recent bid is better than all previous bids.

• The geometric distribution in Observation 1 is obtained
if buyers stop at each step with a constant probabil-
ity q: the probability that a request has n bids is

3The q stopping rule cannot explain Observation 2(a), even
if we allow q to vary over time.
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q(1− q)(n−2), which follows exactly the geometric dis-
tribution with parameter q. In this case, buyers are
equally likely to accept each bid, including the last
one.

Based on these insights, we propose the following model.

pq Stopping Rule: When a buyer observes a new bid, she
stops the request
• with probability p if the new bid is the best bid so far,
• with probability q if the new bid is not the best so far.

If she does not stop the request, she continues to wait.

Under the pq stopping rule, we can compute the probabil-
ity that a request has n bids as a function of p and q.4 We
can also compute the probability that the kth bid is cho-
sen in requests with n bids. We use these formulas together
with the empirical probabilities from Observations 1 and 2
to estimate p and q. In fact, we find that p is not a constant
and is increasing in n, the number of bids currently in the
request. Let pn be the probability that the buyer terminates
the request when the most recent bid (the nth bid) is better
than all previous bid. Then we have the following estimates:

q̂ = 0.0696, p̂n = 0.1236 + 0.0085n (2)

Details of the estimation process can be found in Appendix
B.
We observe that p̂n > q̂ , that is, the buyer is more likely

to stop the request when the most recent bid is the best so
far. In other words, buyers tend to wait for new bids until
the new one is better than all previous bids. This is close-
ly related to the sunk cost fallacy, which is described as a
“great tendency to continue an endeavor once an investmen-
t in money, effort, or time has been made.” Although the
time already spent on waiting is sunk, it seems that buyers
still take into account the waiting costs when they decide
whether to stop.
Moreover, p̂n (or p̂n/q̂) is increasing in n, which means

that the effect of the sunk cost fallacy becomes more sig-
nificant as the number of bids in the request increases. To
understand this monotonicity, we note that the data shows
the average and median timespan of requests with n bids is
increasing in n. Therefore the more bids in the request, the
longer the buyer has been waiting, which implies the cost to
stop and choose an early bid is larger under the sunk cost
fallacy.

5.4 Verification for the pq Model
The pq stopping rule directly captures both Observation

1 and 2. In most cases, especially when the number of bids
currently received by a request is large, a new bid is not likely
to be better than all previous bids. Then, buyers close their
requests with probability q and the number of requests with
n bids is roughly geometric in n. Moreover, all positions
before the last have approximately the same probability to
be chosen. However, in the special case when the new bid
indeed surpasses all previous ones, the buyer is more likely
to stop and accept the last bid. Thus, overall the last bids
are more likely to be chosen.
We compute the expected values of π(n, k) for the case

that the total number of requests is 464, 668 (which is the
number of requests in the data set). Let p1 = 0.4853 be the
empirical probability that a request is terminated at the first
bid in the data set. Then, let pn = p̂n for n ≥ 2 and q = q̂.

4We note that throughout this paper (except for Section
5.2), q refers to the probability that a buyer stops the request
when the most recent bid is not the best so far.

Denote by r̂(n, k) the expected number of requests that have
n bids for which the kth bid is chosen. We compute r̂(n, k)
using the formulas in Appendix B. Then, we can compute

R̂(n) =
∑n

k=1 r̂(n, k) and π̂(n, k) = r̂(n, k)/R̂(n). Figures
3 and 4 compare the estimated values with the values from
the data.
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Figure 3: The expected number of requests decreas-
es exponentially as a function of the number of bids

n, both for the expected value log(R̂(n)) (dashed) un-
der pq stopping rule and the original data log(R(n))
(solid).
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Figure 4: This figure shows the features of the ex-
pected value π̂(n, k) (solid), along with the corre-
sponding values of π(n, k) (hollow). The pq model
captures the features of π(n, k) very well.

In Figure 3, we can see that log(R̂(n)) is almost a straight
line in n and is very close to log(R(n)). In Figure 4, for any
n, π̂(n, n) is significantly larger than maxk<n π̂(n, k) and the
difference between maxk<n π̂(n, k) and mink<n π̂(n, k) is s-
mall. All these values are approximately the same as the
observed values in original data. The only apparent differ-
ence is that maxk<n π̂(n, k) is smaller than maxk<n π(n, k)
when n is large. This is because we do not model the in-
creasing trend of π(n, k) for large n and k close to n when we
estimate p̂n and q̂. Except for this, the pq model captures
all the observations of Section 4.
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6. DISCUSSION
In the previous section, we have seen that the pq stopping

rule, a simple probabilistic model, captures the behavior of
buyers on vWorker. The key characteristic of the pq stop-
ping rule is that the buyer is more likely to stop when the
most recent bid is the best so far.
This characteristic is reminiscent of the sunk cost fallacy.

Consider that a buyer who has already spent time waiting
for bids has indeed incurred some cost. A rational buyer
considers this cost as sunk, ignoring it in her decision to
continue or stop. An irrational buyer will however prefer
not to close the request at a moment when the most recent
bid is not the best so far, for she considers that the time
elapsed since the best bid arrived would then be “wasted”.
Conversely, when the most recent bid is the best, she per-
ceives that “it was worth waiting” because the sunk costs of
waiting have been balanced off. Thus, buyers following the
pq stopping are subject to the sunk cost fallacy, by having
a higher probability to close a request when a new bid is
the best so far. In the remainder of this section, we first
discuss the weak increasing trend of π(n, k) — which is not
explained by the pq stopping rule — and then relate our
results to the secretary problem.

6.1 The Weak Increasing Trend of π(n, k)

We have seen that even though the value of π(n, k) is ap-
proximately the same for all k < n, it exhibits an increasing
trend as k approaches n. In this section, we discuss two
potential explanations for this trend.
First, this can be explained by the sunk cost fallacy. We

mentioned before that buyers are less likely to stop if the
most recent bid is not the best one because otherwise their
waiting is “wasted”. Similarly, the buyer may feel less of a
sunk cost by accepting the penultimate bid than by accept-
ing the first bid. This suggests that the buyer is more likely
to select later bids than early bids. Interestingly, the weak
increasing trend arises only for the last few bids (see Figure
2(top) and tests in Section 4), which suggests that the per-
ceived sunk cost associated with a bid that arrived m bids
ago is approximately constant for m ≥ 4. We note that we
could consider a generalization of the pq model, where the
buyer stops with probability pm when the best bid arrived
m bids ago.
Another possible explanation for the weakly increasing

trend in π(n, k) is that Assumption 2 is violated. A buy-
er may be experiencing delay in observing new bids and, as
a result, observe multiple new bids at the same time. In par-
ticular, even if a buyer is using the instantaneous notification
feature of vWorker, she may be offline when some bids arrive
(e.g., during the night or off-business hours). Then, the last
time she checks the request (before she stops it), she may
actually see several new bids at the same time. Essentially,
any of these new bids is like the “last bid” for the buyer, a
possibility that is not considered in the pq model. Hence,
the violation of Assumption 2 increases the probability that
the last few bids are chosen. The weak increasing trend of
π(n, k) in k can be explained by the fact that later bids are
more likely to be observed at the same time with the last
bid.
To verify this explanation, we study the interarrival times

between bids. As an example, we now restrict attention to
all requests with n = 25 bids (as in Figure 2(top)), while
following results also hold for general n. We define ∆k to be
the time (in hours) between the arrival of the kth bid and
the last bid. A small ∆k suggests that the buyer may have

observed the last n−k bids at the same time. Table 1 shows
the number of requests for which the kth (k = 22, 23, 24) bid
is chosen under various constraints on ∆k. The first column
(∆k > 0) shows all the requests for which the kth bid was
chosen, and thus exhibits an increasing trend. However, as
the constraint becomes more restrictive (i.e., as we move
towards the columns to the right in Table 1), this trend
gradually disappears. Moreover, we note that when 1 ≤ k ≤
21, the average number of requests with n = 25 bids and the
kth bid chosen is 50, numbers in the last column of Table 1
have come back to this average level. These results suggests
that the increasing trend of π(n, k) in k arises because buyers
see multiple new bids at the same time.

∆k > 0 ∆k > 1 ∆k > 2 ∆k > 4 ∆k > 6
k=22 70 60 57 50 48
k=23 85 72 65 62 48
k=24 111 80 69 55 46

Table 1: Number of requests with n = 25 bids for
which the kth (k = 22, 23, 24) bid is chosen with dif-
ferent constraints on ∆k.

6.2 Optimal Stopping Problems
Optimal stopping has been investigated in various stochas-

tic decision contexts, and the secretary problem [6] might be
the most famous example. In the classical secretary prob-
lem, a manager interviews sequentially n applicants for a
single secretary position and would like to make the best
choice. Applicants can be ranked from best to worst, yet
this ranking is unknown to the interviewer, and the arrival
order of the applicants is independent of their rankings. Af-
ter each interview, the applicant is accepted or rejected. If
this applicant is accepted, the whole process is terminated
and this applicant get the position. If the applicant is re-
jected, she cannot be recalled. The goal of the process is
to find the best secretary: the utility of the company is 1 if
the chosen secretary is the best one, and 0 otherwise. The
optimal stopping rule is to interview and reject first n/e ap-
plicants and then accept the next applicant who is better
than all previous applicants.

We observe that the pq stopping rule resembles the opti-
mal stopping rule in the secretary problem in two aspects.
First, cost is incurred as the buyer explores the distribution
of the bids. In the secretary problem, the interviewer passes
the first n/e applicants at the cost that she may miss the
best applicant, while in vWorker, buyers need to balance
between higher waiting cost and better bids that may come
later. Second, and more importantly, the buyer in vWorker
(resp., the interviewer in the secretary problem) is more like-
ly to (resp., only) stop the process when the new bid (resp.,
applicant) is better than all previous ones. This happens in
the secretary problem since recall is not allowed. In vWork-
er where recall is allowed, it is the “sunk” waiting costs that
reduce the probability that buyers choose early bids.

In experimental studies of the secretary problem, the opti-
mal policy is rarely adopted. Decision makers tend to over-
estimate the absolute quality of the early applicants and stop
the screening too early [3], giving insufficient consideration
to late applicants. When recall is allowed, Zwick et al. [16]
showed that decision makers also search too little in com-
parison to the optimal model, but they search too much if
search costs also apply. Our results suggest that — because
of the sunk cost fallacy — buyers in vWorker may search
too much when good bids arrive early on.
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APPENDIX
A. THRESHOLD STRATEGY
Our deterministic model is based on the following assump-

tions.

Assumption 3. The utility of each bid is drawn from a
distribution F .

Assumption 4. For each request, at t units of time after
the request is posted, bid arrival process follows a Poisson
process with parameter λ(t).

Assumption 5. Each buyer incurs a waiting cost c(t) if
t time units elapse until she selects the best bid.

First we show that the threshold strategy is the optimal
strategy under the assumptions that F is the uniform dis-
tribution on [a, b], λ(t) = λ, and c(t) = ct.

Consider an experienced buyer who knows or has a very
good estimate of the bid utility distribution F . Suppose
after n bids, the current minimal utility of the bids is α and
maximal utility is β. Since the waiting cost is constant c, and
the Poisson process is memoryless with mean interarrival
time λ, the expected waiting cost until the next bid arrives
is always equal to cλ.

The expected maximum utility at the time the next bid
comes is

β · β − a

b− a
+

∫ b

β

x

b− a
dx =

1

b− a

(
1

2
b2 +

1

2
β2 − aβ

)
(3.1)

and the expected benefit of waiting is

1

b− a

(
1

2
b2 +

1

2
β2 − aβ

)
− β =

(b− β)2

2(b− a)
(3.2)

Therefore, the buyer’s myopic decision, based on the com-

parison between
(b− β)2

2(b− a)
and cλ is to terminate the request

if and only if she observes a (new) bid with utility β > β∗

where the threshold β∗ = b−
√

2cλ(b− a). Since this thresh-
old is independent of t, it is the optimal myopic strategy at

any time. Moreover,
(b− β)2

2(b− a)
− cλ is decreasing in β, hence

this rule is not only myopic optimal but also a global op-
timal termination rule. This stoping rule has the following
properties:

(1). This is a threshold stopping rule based on the current
maximum bid quality β.

(2). The buyer always accepts the last bid.

(3). Since the bid comes independently, a buyer stops at the
arrival of each bid with constant probability ρ = β∗/b,
which is actually dependent on a, b, c and λ.

This outcome of the threshold strategy resembles Obser-
vation 2(a) in that buyers only accept the last bid. Also,
buyers close the request with a constant probability ρ at the
arrival of each new bid, which implies that the number of
requests with n bids follows the geometric distribution in n.
However, the threshold strategy cannot explain our obser-
vation that buyers choose any bid prior to the last one with
approximately the same probability. And more importantly,
are there buyers who always chooses the last bid?

Clearly, not all buyers always choose the last bid, since
not all requests end up with last bid chosen. Our assump-
tion that buyers are balancing bid utility and waiting cost
suggests that buyers are well informed of the parameters
of the auction, like the distribution of bid utilities, arrival
rates, and so on. These parameters are usually not directly
accessible but may be learned through a number of request-
s. Therefore, experienced buyers are most likely to use the
threshold strategy. We study buyers with at least 200 re-
quests, and considering that any experienced buyers may be
inexperienced at the beginning, for each of them we focus
on those requests after this buyer’s first 100 requests. We
compute the frequencies that these buyers choose the last
bid in their post-100th requests, and the results are shown
in the following figure.

The above figure summarizes the discussion by showing
the histogram of the frequencies of choosing the last bid a-
mong experienced buyers. The histogram has a peak around
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Figure 5: The histogram of the frequencies of choos-
ing the last bid for buyers with at least 200 requests.
There is no experienced buyer that chooses the last
bid with frequency higher than 0.8.

0.3 to 0.4. Besides, among 347 buyers that have at least 200
requests, none of them choose the last bid with probability
higher than 80%. Thus even the most experienced buyers
do not use the threshold strategy.
Other cases of the deterministic models can be explored by

assuming different distributions F for bids, time-dependent
rates for the Poisson arrival process, and waiting costs which
are not constant. In general, it is not possible to determine
analytically an optimal strategy. Thus, we use numerical
simulations to study the outcomes of each combination of
parameters. We found that the deterministic models can
often capture one or two out of the three features described
in Observation 1 and 2 but fail in the other(s). The perfor-
mance of the deterministic model is not satisfactory unless
we introduce more parameters, which makes the model less
general and thus less convincing. Even though there may ex-
ist models of rationality that explain the observations, the
explanatory power of such models will be weak (per unit of
complexity).

B. ESTIMATION OF p AND q FOR THE pq

STOPPING RULE
Consider an arbitrary request, let random variable N be

the number of the bids it receives and random variable B
be the index of the bid that is chosen. B = 1 means the
first bid is chosen and B = N means the last one is chosen.
Recall the pq stopping rule: if the most recent bid is the
best bid, stop the request with probability p, otherwise stop
with probability q. The probability that the kth bid is the
best one among first k bids is 1/k, therefore the probability
that the request is not terminated at the kth bid given it is
not terminated before the kth bid is

fk , P (N > k|N ≥ k) =
1− p

k
+
k − 1

k
(1−q) = (1−q)−p− q

k
(3)

We assume that if p − q is small, then fk ≈ 1 − q and
lim fk = 1 − q as k goes to infinity. We will come back to
this assumption later.
Consider the event {N = n,B = b}, i.e., the buyer termi-

nates the request at the nth bid and chooses the bth (b ≤ n)
bid. In that case, the bth bid is the best one in the first n
bids, and

P (N = n,B = b) ={
n−1 · f1 · · · fb−1 · (1− p)(1− q)n−b−1q , if b < n
n−1 · f1 · · · fn−1 · p , if b = n

(4)

Therefore we have

P (N = n,B = b)

P (N = n,B = b− 1)
=

{
fb−1/(1− q) , if b < n
fn−1p/(1− p)q , if b = n

(5)

With the assumption of fk, the above ratio is approximately
1 when b < n and (1− q)p/(1− p)q when b = n.

We note that this result is similar to Observation 2: given
the request is terminated at the nth bid, the probabilities
that the bth bid is chosen are approximately the same for
all b < n and are significantly lower than the probability
that the last bid is chosen. Further more, we note that (3)
implies a request is terminated with more than k bids with
probability P (N > k) =

∏k
i=1 fi. Since fk ≈ 1 − q as for

all k, P (N > k) is approximately exponential in k and N
follows a geometric distribution.

Given (5), we can estimate parameters p and q by
P (N = n,B = n)

P (N = n,B = n− 1)
≈ (1− q)p

(1− p)q
, n ≥ 2

P (N ≥ k) ≈ (1− q)k−2, k ≥ 2

(6)

Specifically, to estimate q, we use #(N ≥ k)/#(N ≥ 2)
as an estimate for P (N ≥ k), where #(A) is the count of
event A in our data set. (6) implies log(P (N ≥ k)) is linear
in k with zero intercept and slope log(1 − q). The linear
regression gives

log
#(N ≥ k)

#(N ≥ 2)
= −0.06588− 0.08138 · n, 2 ≤ n ≤ 100 (7)

Therefore we get log(1 − q̃) = −0.08138 and the estimated
q̃ = 0.0782.

The estimated p̃ can also be obtained by (6). To reduce
the variance of our estimation, we use #(N = n,B < n)
instead of #(N = n,B = n−1) because it has more samples.
Since

P (N = n) = f1 · · · fn−1(1− fn)

P (N = n,B = n) = n−1f1 · · · fn−1p

P (N = n,B = n− 1) = n−1f1 · · · fn−2(1− p)q

then
P (N = n,B = n− 1)

P (N = n,B < n)
=

1− p

(n− 1)fn−1

and

# {N = n,B = n}
# {N = n,B < n} =

P (N = n,B = n)(1− p)

P (N = n,B = n− 1)(n− 1)fn−1

=
p

(n− 1)q

Therefore, given the estimated q̃, we have

p̃ = (n− 1)q̃ · rn (8)

where rn = # {N = n,B = n}/# {N = n,B < n}
However, the data shows that rn’s are different for dif-

ferent n, which implies p is not a constant but a function
of n. Define pn as the probability that a buyer terminates
the request when the request has n bids and the nth bid
is better than all previous ones. Then we can approximate
pn from (8). It turns out that the estimated probability p̃n
is approximately linearly increasing in n, with the following
relation

p̃n = 0.13876 + 0.00956n, 2 ≤ n ≤ 30.

This linear relation obviously does not hold for large n since
p̃n is upper bounded by 1, yet it approximates the observed
p̃n well when n is not too large, and the R2 of the above
regression is 0.95.

Finally, we go back to the assumption that fk ≈ 1 − q.
Since the estimated p̃ = p̃n = 0.13876+ 0.00956n is roughly
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linear in n, (p − q̃)/n is approximately a nonzero constant.
Therefore we need to adjust our estimates p̃ and q̃. It follows
from (3) and (6) that the adjusted estimate q̂ is still a con-
stant. Then we can assume the adjusted estimate q̂ = λq̃,
then the adjusted p̂n satisfies

p̂n
(n− 1)q̂

= rn =
p̃n

(n− 1)q̃

and therefore p̂n = λp̃n = 0.13876λ+ 0.00956λn. Plug this
into 3, we got

1− q̃ ≈ fn = (1− q̂)− 1

n
(p̂n − q̂) ≈ 1− λq̃ − 0.00956λ

Thus λ = 0.89 and therefore

q̂ = λq̃ = 0.0696, p̂n = λp̃n = 0.1236 + 0.0085n
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