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Abstract

In a world of imperfect information, reputations often guide the sequential de-
cisions to trust and to reward trust. We consider two-player situations, where
one player — the truster — decides whether to trust, and the other player —
the temptee — has a temptation to betray when trusted. The strength of the
temptation to betray varies from encounter to encounter. We refer to a recorded
betrayal as a black mark and focus on mechanisms that only reveal the number
of black marks of a temptee. We show that the greater the number of black
marks, the less likely the temptee is to betray. We then study the different
equilibria that emerge, depending on which side of the market has the ability
to specify the equilibrium. In closing, we generalize to cases where the number
of encounters is also recorded.

Keywords: Game Theory, Trust, Reputation

1. Introduction

In a typical business transaction, one or both parties have the potential to
betray. A supplier can produce low-quality goods; a debtor can default; an em-
ployee can steal; or a contractor can break the deal. Betrayals are often avoided
because temptations are modest or nonexistent. But even when temptations are
significant, reputations can keep untrustworthy behavior in line. Thus, betrayal
is deterred, lest we lose future business with others, find ourselves without future
credit or facing higher interest rates from any lender, or have great difficulty

IWe are grateful to Vincent Crawford, John H. Lindsey II, Ramesh Johari, Paul Resnick,
Ashin D. Shah and Peter Zhang for helpful comments. This work was partially supported by
a grant from the Alfred P. Sloan Foundation, and the NSF under award IIS-0812042.
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finding a job. Many economic models focus on repeat play, but often the con-
cern with reputation comes from the broader world. Personal interactions, as
between friends, present the same situation, with temptations, betrayals, and
reputations all playing important roles.

Reputations are hardly sufficient statistics. They rarely tell us everything
or almost everything about an individual’s prior credit dealings or employment
history. A typical employee reference in these litigious days is likely to be: “Joe
worked here for 12 years, and there are no recorded blemishes on his record.”
Information on credit scores is equivalently crude. Repaying a loan counts the
same whether the terms were easy or harsh. If a minimum grade point average
is necessary to keep one’s scholarship, it is irrelevant if one’s courses are easy
or hard. The Better Business Bureau1 only has information on the number
of complaints for a business, but does not provide details on each complaint.
On the well-known and highly successful eBay reputation system, the summary
score tells us how many positive, neutral, and negative feedbacks a seller has
received, but not the highly relevant information of the prices of all the items
that received negative feedback.2

In this paper, we study the black mark reputation mechanism, a mechanism
where an individual’s reputation is simply a tally of the number of bad ratings or
complaints that she has received. In a broad range of settings, the reputation
mechanism only keeps track of the number of infractions. For example, the
Better Business Bureau has information on the number of complaints for a
particular business, but not the number of transactions or volume of business
that might have led to complaints. On the other hand, in some instances, an
infraction carries weight in and of itself, and people do not think (or recognize)
that the number of trials matters. This is in the spirit of criminal justice systems,
where the judge learns the number of convictions in a defendant’s past before
sentencing, or some systems of sexual morality which look at the number of
partners someone has had.

Black mark reputations approximate settings where buyers focus on the num-
ber of negatives — even if more reputation information is provided. A strongly
negative rating is a black mark. The Internet is now bristling with websites
where users rate firms. They include Tripadvisor (for hotels and restaurants),
Angie’s List (for service providers), and Yelp (for restaurants, attractions, etc.).
Participants give individual feedback scores after an encounter. Most rated en-
tities, even those with good average reputations, have some very low scores,
usually from some disastrous encounters. Some potential buyers focus on the

1www.bbb.org
2The concern, of course, is that the seller would be generally trustworthy, but dishonest

on rare occasions when describing a very high-priced item. Information regarding sold items
remains available for 90 days on eBay. It is thus possible to scroll through to see the sale
prices of recently sold items. This just complicates the strategy of the dishonest seller, who
must take a break after doing an untrustworthy transaction at a high price. In any case,
information that is prominently shown to buyers on eBay has a larger effect than information
that is available but harder to find (Cabral and Hortacsu, 2010).
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extreme negatives: “The restaurant lost our reservation and could not seat us;”
“The plumber showed up 6 hours late, and left the place a mess.” Businesses
presumably know that further highly negative encounters could be extremely
damaging, and will strive to improve their reservation system or their prompt-
ness.

We focus on two-player situations, where one player — the truster — decides
whether to trust, and the other player — the temptee — has the temptation to
betray when trusted. Behaviors differ in our model — as in real life — because
the strength of the temptation to betray varies from encounter to encounter.
The tempted players could be suppliers who might breach a contract that turns
out to be too costly, contractors who might do a shoddy job if it saves a lot
of effort, employees who might miss work often when other responsibilities are
pressing, or spouses who might stray from marital vows given highly attractive
opportunities. The strength of the temptation to betray is then assumed to
vary according to some probability distribution.

Given our focus on trust, we employ the term reputation, in essence what
players know about another when they decide whether to trust. However, our
analysis extends to a range of punishment situations, where the more general
term record would be more appropriate. When a professor turns in a plagiarizer
or a policeman writes up a ticket for a speeder, neither knows the number of
infractions the individual has to date. But since this information is recorded,
and punishment depends on the number of infractions (e.g., two plagiarism
convictions and you are expelled), recipients of black marks will behave in the
manner described here. A second generalization should be mentioned at the
outset. In section 8, we consider reputations that keep track of the number of
trials.

This paper addresses two major questions.

(1) Are people with worse reputations more likely to betray?

(2) Do different equilibria for the treatment of reputations emerge depending
on which side of the market has the ability to specify the equilibrium?

The answer to even the first question is hardly clear. Suppose we have a
“two strikes and you’re out” system. Will a player with one strike be more
likely to betray than a player with no strikes? We show that in any pure equi-
librium of a game where a temptee’s reputation depends solely on the number
of black marks, the greater the number of black marks, the less likely the temptee
is to betray. Moreover, under certain probability distributions of the tempta-
tion’s strength, the likelihood of betraying decreases faster when the temptee’s
reputation consists of a larger number of black marks.

It may seem counterintuitive that those with worse reputations would behave
better. We can get some intuition by observing that since the truster’s decision
to trust only depends on the number of black marks of the temptee, there must
be a cutoff after which he stops trusting her. The temptee’s best response to
such a cutoff strategy is to be more careful when she gets closer to the cutoff,
or in other words, to betray less when her reputation becomes worse.
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The qualitative equivalent of the situation we address is seen in the Gold-
man Sachs (GS) situation after its revenue was tarnished by allegedly proffering
portfolios designed by famed short seller John Paulson, who wished to sell them
short. GS allegedly did not reveal this highly relevant information and is cur-
rently subject to both regulatory impositions and significant lawsuits. Quite
apart from any legal action, its reputation has suffered gravely. Holding GS’s
type fixed, it now seems much less likely that it would allow itself to engage in
another ploy of this sort. Another round of such allegations could sound the
death knell for GS as a leading investment house.

We address the second question by considering which pure equilibria are best
for each of the two players, that is, the truster and the temptee. We demonstrate
that the preferences of the two players may in general be dramatically different.
However, there are cases where both the truster and the temptee prefer the
same pure equilibrium, making a socially optimum available.

In order to simplify the exposition, for most of the paper we set aside any
information about types and consider a pure moral hazard setting, where all
players on one side of the market are identical in terms of the distribution of
the temptation’s strength and the payoff structure. In the pure moral hazard
setting, the role of the reputation system is to deter temptees from bad behavior.
However, our results still hold in settings with both moral hazard and adverse
selection. Then, in addition to deterring bad behavior, the black mark reputa-
tion system may also help to sort out those who tend to get strong temptations
to betray.

In closing, we consider mechanisms that track both the number of black
marks and the number of encounters of a temptee, and show that the equilibrium
behavior in the long run is identical to equilibrium behavior under a black mark
reputation mechanism.

The remainder of the paper is organized as follows. Section 2 discusses
related literature. The problem formulation is given in section 3, and a general
characterization of pure equilibria is presented in section 4. Section 5 shows
that in any pure equilibrium the temptee is less likely to betray when she has
more black marks. Section 6 studies how the equilibrium is determined by the
one who specifies it. Section 7 considers adverse selection. Section 8 considers a
setting where the truster knows both the number of black marks and the number
of transactions of the temptee. Section 9 concludes. All proofs are provided in
Appendix A. For completeness, we discuss mixed equilibria in Appendix B.

2. Related Literature

Reputation is often studied in settings with both adverse selection and moral
hazard. Reputational concerns usually incentivize the agent to act in ways
that benefit her counterparties.3 The agent is assumed to have a type that her
counterparts try to infer from her past behavior (for a survey of such models see

3In certain situations reputational concerns may have the opposite effect (Ely et al., 2008).
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Mailath and Samuelson, 2006). In this setting, an agent’s reputation represents
the belief that other players have about her type, and the analyses focus on
sorting among types. An agent with a worse reputation is thought less likely to
be of a good type and is considered more likely to betray. For instance, Sobel
(1985) considers an adverse selection model, where one player (the sender) is
either a friend or an enemy and the other player (the receiver) has a prior belief
on the sender’s type; it turns out that an enemy is less likely to lie when she
has a better reputation.

By contrast, in pure moral hazard models, the agent does not have a hidden
type and reputation is only used to incentivize good behavior. This approach
has been taken by Dellarocas (2005) in the context of an electronic marketplace,
where the seller might betray the buyer; his paper studies mixed equilibria in
which the seller cheats (betrays) the buyers with some probability that decreases
with her reputation. Thus, a seller with a better reputation is less likely to
betray. In this paper, we do most of the analysis for a pure moral hazard
model, but our results also apply to settings where both moral hazard and
adverse selection come into play. Moreover, we show that agents are more likely
to betray when they have better reputations in that setting.

The literature on optimal penal codes (Abreu, 1988; Lambson, 1987; Abreu
et al., 1990; Athey and Bagwell, 2001) is also related to our work. An application
that is often considered in this literature is maximal collusion in a repeated
oligopolistic game; to support the collusive outcome, a firm that deviates is
punished. A key insight of this literature is that there exists a simple punishment
(that is independent of the history of the game in some sense) that is optimal.
In this paper, we do not study the issue of optimal punishment. Instead, we
consider settings where the truster only knows the number of black marks of the
temptee and identify which equilibria are optimal for each side of the market.

Although we do not consider incentives for trusters to leave honest feedback
in this paper, another extensive line of research considers how truthful feedback
can be elicited. In online markets, players might undertake fake transactions
in order to enhance their reputations. This stratagem is unattractive, however,
if a specific relation between the reputation premium and the transaction cost
holds (Bhattacharjee and Goel, 2005). On the other hand, even if fake trans-
actions cannot be undertaken, buyers might not leave honest feedback after a
transaction. Nevertheless, it is still possible to devise a scoring system that in-
duces honest reporting of feedback (Miller et al., 2005). In this paper, we posit
that trusters leave honest feedback, since they have no reason not to do so. We
focus on the temptee’s decision and its influence on the decision to trust. We
do, however, allow for imperfect monitoring in our model, as various studies
have shown that monitoring is often imperfect in practice (Bolton et al., 2009;
Dellarocas and Wood, 2008; Chwelos and Dhar, 2008).

3. Problem formulation

Players in the temptation game are divided into two roles, Cs and Ds,
trusters and temptees. For expository ease, those who must decide whether
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to trust — trusters — are males, and those who are subject to temptation —
temptees — are females in our analysis.

Our framework and results apply to the following settings:

• Short-term interactions between trusters and temptees. In each period,
there are equal numbers of temptees and trusters, and each truster is
randomly matched up with a temptee. In this case, one contracts with
another party for just one period, and then moves on.

• Long-term interactions between one truster and a large number of temptees.
In this setting, the truster interacts with multiple temptees at the same
time (in each period).4 For instance, the truster can be a big employer
interacting with multiple employees, a university interacting with many
students, or a state interacting with a large number of citizens.

Throughout the paper we consider both situations simultaneously. We thus
occasionally say “the truster(s)” to refer to the set of trusters in the setting of
short-term interactions and to the truster in the setting of long-term interactions
between one truster and a large number of temptees.

In every period, C decides whether to choose “trust” or “safe.” If C plays
trust, then D can play “reward” or “betray.” If D rewards, then D and C both
get a unit payoff. If D chooses to betray, then D will get a (1+x) of payoff, where
x is the strength of the temptation to betray. Its magnitude is the realization of
a random variable X. In each round, prior to choosing whether she will reward
or betray, D learns her x for that round, namely her level of temptation. The
value of x is and remains unknown to C. Thus, no information on the strength
of the incentive to betray is ever part of a D’s reputation. If D chooses to betray,
then C will get a payoff of −1. Figure 1 shows the extensive form representation
of a one-period interaction between C and D, where C’s choices are circles and
D’s are squares, and C’s payoff is listed first. The analysis remains qualitatively
the same if C gets a payoff of −y when D betrays, rather than −1, though of
course the parameter values at equilibria will shift. We note that the scaling
of these payoffs is arbitrary. There is no implied interpersonal comparison. For
example, in dollar value C may gain far more than D when each goes from 0 to
1.

We refer to a recorded betrayal of D as a black mark. The number of black
marks a D has received is known to a C when he encounters her. We allow
for imperfect recording; that is, recording rewards as betrayals and betrayals as
rewards. In particular, if D betrays, the number of black marks increases by 1
with probability 1 − r and remains the same with probability r. If D rewards,
then the number of black marks remains the same with probability 1 − q and
increases by 1 with probability q. Perfect monitoring is a special case with
r = q = 0. We refer to the number of recorded betrayals (or black marks), b, as

4Our results can be extended (but do not directly apply) for settings where each truster
has a long-term relationship with one temptee.
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Figure 1: Extensive form representation of one-period interaction between C and D. (C’s
payoff listed first.)

the reputation of D. When monitoring is perfect, b equals the actual number of
betrayals. In general, however, it may differ.

At each round, each D has a certain probability of surviving to the next
period, s. We leave aside discounting, except as it arises through D’s survival
concerns. Absent discounting, the survival rate for Cs turns out to be nonma-
terial. After each round, if a D dies, she will be replaced by another D who
enters with a blank reputation record. If the reputation of a temptee ensures
she will no longer be trusted (in our language she gets expelled), then she is not
trusted until she dies (and is replaced by a new temptee with blank reputation
only after she dies). We further assume that all players are risk-neutral. The
goal of a D is to maximize her expected payoff until she dies or is expelled. The
goal of a C is to maximize his expected payoff each period, because we take a
steady-state approach.

Key notation introduced in this and subsequent sections is summarized in
Table 1. As we discuss in Section 4, we make some general assumptions to rule
out settings with uninteresting equilibria. In particular, we are assuming that
the random variable X has a finite mean and a strictly positive median, that the
imperfect monitoring probabilities are not too large (in particular, r + q < 1),
and that the survival probability of the temptee is strictly between 0 and 1.

4. Characterization of Pure Equilibria

In this section we characterize pure equilibrium. In the following sections we
use this characterization to show properties of these equilibria. Mixed equilibria
are analyzed in Appendix B.

For the game to be in equilibrium, at each round, both C and D must
have no incentive to deviate from the strategies defining the equilibrium. C’s
strategy consists of whether he trusts D as a function of D’s reputation. D’s
strategy determines whether she rewards as a function of her reputation b and
her realization of X in that period.
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Notation Definition

X strength of temptation to betray

r, q imperfect monitoring probabilities

s survival probability of the temptee (player D)

b number of (imperfectly) recorded betrayals, or black marks

b∗ number of black marks at which C stops trusting D

v(b) D’s maximum expected infinite horizon payoff at b black marks

x∗(b) threshold on X below which D rewards, and above which she betrays

w(b) probability that D betrays when she has b black marks

Table 1: Notation used in the paper.

For a fixed strategy of C, let b∗ be the minimum number of betrayals at
which C does not trust D. That is, C trusts when b < b∗ and does not trust
when b = b∗. Since C does not trust D at b∗, D will never have more than b∗

black marks. We thus refer to b∗ as the cutoff at which C stops trusting D.
We first consider the best response of player D when C uses a cutoff b∗. Let

v(b) be the maximum expected infinite horizon payoff to D when her reputation
consists of b black marks. We note that if monitoring is imperfect (i.e., r+q > 0),
then b may be different than the actual number of D’s betrayals. Since the cutoff
is b∗, C will never trust D once her reputation becomes b∗, and thus

v(b∗) = 0. (1)

For b ∈ {1, ..., b∗ − 1}, v(b) is equal to

E[max{1 +X + s((1− r) · v(b+ 1) + r · v(b)), 1 + s((1− q) · v(b) + q · v(b+ 1))}].

In particular, given that the realization of the random variable X is x, D chooses
the action that maximizes her expected payoff. Should she choose to betray, her
expected payoff is 1+x+s((1−r) ·v(b+1)+r ·v(b)), since she receives 1+x now
and her reputation deteriorates to b+ 1 black marks with probability 1− r and
remains the same (i.e., equal to b black marks) with probability r. On the other
hand, if D chooses to reward, her expected payoff is 1+s((1−q)·v(b)+q·v(b+1)),
since she receives 1 now and her reputation remains the same (equal to b) with
probability 1− q and deteriorates to b+ 1 black marks with probability q. The
temptee selects to reward or betray depending on which action gives her the
largest expected payoff.

Straightforward calculations show that v(b) is described by the following
dynamic program:

v(b) = 1+s(1−q)·v(b)+sq ·v(b+1)+E[(X−s(1−r−q)·(v(b)−v(b+1)))+], (2)
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where y+ ≡ max(y, 0) is the positive part of y. Let

x∗(b) = s(1− r − q) · (v(b)− v(b+ 1)). (3)

Equation (2) implies that it is optimal for D to reward if X < x∗(b) and betray if
X > x∗(b). D is indifferent between rewarding and betraying when X = x∗(b).
Thus, both rewarding when X < x∗(b) and rewarding when X ≤ x∗(b) are
optimal for D. For simplicity, we will assume that D chooses to reward if and
only if X < x∗(b) in this case.5 This simplifies the presentation because now
the set {x∗(b), b = 0, 1, ..., b∗} characterizes the best response of D. However,
this assumption is not essential for our results.

Substituting (3) into (2) we conclude that

(1− s(1− q))v(b) = sq · v(b+ 1) + 1 + E[(X − x∗(b))+]. (4)

(We assume that X has a finite mean, so that E[(X − x∗(b))+] is well defined.)
Since D gets strictly positive immediate payment whenever she is trusted,

the value v(b) is strictly decreasing for b ≤ b∗. This is shown formally in the
following lemma.

Lemma 1. For a given cutoff b∗ <∞, suppose that v(b) and x∗(b) satisfy (1), (3),
and (4). Then v(b) is strictly decreasing in {0, 1, ..., b∗}.

If the level of imperfect monitoring is sufficiently high, namely if r + q ≥
1, then it is impossible to incentivize D to reward when the strength of the
temptation to betray is positive (since then Lemma 1 and Equation (3) imply
that x∗(b) ≤ 0). We are not interested in studying such cases and assume that
r + q < 1 throughout the paper. Lemma 1 then implies that x∗(b) is strictly
positive for b ∈ {0, 1, ..., b∗ − 1}.

We next consider player C. Given x∗(b), the expected payoff of C is

P[X < x∗(b)]− P[X ≥ x∗(b)] = 2 · P[X < x∗(b)]− 1

if he trusts D; and 0 otherwise. We conclude that C trusts D if P[X < x∗(b)] >
1/2; C does not trust D if P[X < x∗(b)] < 1/2; and C is indifferent between
trusting and not trusting if P[X < x∗(b)] = 1/2.6

Let m be the median of X, i.e., m is such that P[X ≤ m] ≥ 1/2 and
P[X ≥ m] ≥ 1/2. If m ≤ 0, then C always trusts D at the equilibrium. We are
interested in settings where this is not the case and thus assume that m > 0.
We first observe that, if m > 0, then there cannot exist an equilibrium where C
always trusts D. In particular, if C always trusts D, then D’s best response is to

5In most cases, P[X = x∗(b)] = 0 and thus it is not essential to specify what D does when
X = x∗(b). In particular, for a continuous distribution, X = x∗(b) with probability zero. On
the other hand, when the distribution is discrete, then x∗(b) is usually at a point of zero mass.

6The number 1/2 arises because we are assuming that C’s payoff is equal to -1 when
D betrays. More generally, if C got a payoff of −y (instead of −1) when D betrayed, our
subsequent analysis would go through by replacing 1/2 by y/(y + 1).
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always betray whenever there is a positive temptation to betray, i.e., x∗(b) = 0
for all b; however, C’s best response to x∗(b) = 0 for all b is to never trust, since
m > 0. We conclude that b∗ <∞.

At an equilibrium, both C and D play a best response to the other player’s
strategy. In particular, a cutoff b∗ ≥ 0 and the set {x∗(b), b = 0, 1, ..., b∗}
constitute a pure equilibrium of the temptation game if the following conditions
are satisfied:

1. x∗(b) is a best response of D to C’s strategy, i.e., there exists a function
v(b) such that x∗(b) and v(b) satisfy (1), (3), and (4)

2. b∗ is a best response of C to D’s strategy, i.e.,

• P[X < x∗(b)] ≥ 1/2 for b < b∗

• P[X < x∗(b∗)] ≤ 1/2

A pure equilibrium can be computed by recursively solving Equations (3)
and (4) to obtain x∗(b∗−i) and v(b∗−i) starting from the initial condition given
by (1). Then, the cutoff b∗ and the computed set {x∗(b), b = 0, 1, ..., b∗ − 1}
constitute an equilibrium if P[X < x∗(b)] ≥ 1/2 for b < b∗. On the other
hand, if P[X < x∗(b)] < 1/2 for some b < b∗, then there does not exist a pure
equilibrium with cutoff greater or equal to b∗.

We observe that there always exists a degenerate equilibrium where C never
trusts D and D never rewards, that is, b∗ = 0. The temptation game has a
non-degenerate equilibrium (i.e., with b∗ ≥ 1) if the solution y of the following
equation

1− s(1− q)
s(1− r − q)

y = 1 + E[(X − y)+]

is greater than m. This follows by considering Equations (1), (3), and (4) for
b = b∗ − 1.

Even though b∗ <∞ and, therefore, C does not trust D after a finite number
of black marks, there may exist equilibria at which cooperative behavior is
sustained for the duration of D’s lifetime. Alternatively, if we interpret D’s
survival probability as a discount factor and the monitoring is perfect, then
cooperation can be sustained forever, along the lines of a folk theorem (Myerson,
1997). In particular, suppose that b∗ = 1 and D always rewards when she has
no black marks (i.e., P[X < x∗(b∗ − 1)] = 1). Straightforward calculations
show that this is the case if the maximum possible value of X is less than
s(1− r − q)/(1− s(1− q)). On the other hand, there may also exist equilibria
with b∗ > 1, where D may betray when she has strictly less than b∗ − 1 black
marks, but always rewards when she has b∗ − 1 black marks. For instance, if
b∗ = 2 represents an equilibrium and the maximum possible value of X is less
than s(1 − r − q)/(1 − s(1 − q)), then D will betray with positive probability
when she has no black marks, but will never betray when she has one black
mark. Thus, in some sense, cooperation is sustained, with one betrayal. The
outcome is similar for other equilibria where the permissible number of black
marks is greater.
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In general, if there exists an equilibrium with cutoff b∗ = k, there also exists
a pure equilibrium with cutoff b∗ = k′, where k′ < k (assuming that both k
and k′ are positive integers). Let B∗ be the maximum cutoff b∗ for which there
exists a (pure) equilibrium. The value of B∗ depends on the random variable
X, the survival probability s, and the imperfect monitoring probabilities r and
q.

5. Betrayal as a Function of Reputation

In this section we consider how reputations work. We find that temptees
are less likely to betray when they have bad reputations, and that (for a plau-
sible class of distribution functions) the likelihood of betraying decreases faster
when the temptee’s reputation consists of a larger number of black marks. The
following proposition states this result formally.

Proposition 1. For every pure equilibrium (b∗, {x∗(b), b = 1, 2, ..., b∗}) of the
temptation game, x∗(b) is strictly increasing and convex in b for b ∈ {0, ..., b∗ −
1}.

Proposition 1 shows that the threshold x∗(b) is increasing and convex in the
number of black marks. What are the implications of this result on how likely
player D is to betray? Let

w(b) ≡ P[X ≥ x∗(b)].

That is, w(b) is the probability that D betrays when she has b betrayals. More-
over, let F be the cumulative distribution function of the random variable X.

The following corollary of Proposition 1 characterizes w(b).

Corollary 1. For every pure equilibrium (b∗, {x∗(b), b = 1, 2, ..., b∗}) of the temp-
tation game:

(i) w(b) is decreasing in b for b ∈ {0, ..., b∗ − 1}

(ii) if F is linear or convex, then w(b) is concave in b for b ∈ {0, ..., b∗ − 1}

In words, in any game where a temptee’s reputation depends solely on the
number of black marks, the more black marks to date, the less likely the temptee
is to betray. This follows from the fact that x∗(b) is increasing in b. It may
seem counterintuitive that those with worse reputations would behave better.
However, since the truster is using a cutoff strategy, the temptee’s best response
is to be more “careful” when she gets closer to the cutoff, or in other words,
to betray with a smaller probability (that is, only for very large temptations)
when her reputation becomes worse.

In addition to showing that there is a decrease in the likelihood of betraying
as the number of black marks increases, Corollary 1 shows that if the random
variable X is drawn from a distribution with a convex or linear distribution
function (such as the uniform distribution), then the more black marks to date,
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the larger the marginal decrease in the likelihood of betraying. This follows
from the convexity of x∗(b). That is, under a convex distribution function, the
likelihood of betraying decreases faster when the temptee’s reputation consists
of a larger number of betrayals. In other words, in this case the likelihood of
rewarding increases faster when the temptee has a bad reputation.

The structure of the temptation game resembles settings where players have
a choice between playing safe at some cost, or taking a risk of adding a “black
mark.” We briefly discuss the California criminal justice, driver’s license sus-
pension, tennis, baseball, and basketball below.

California criminal justice. California has a three-strikes-and-you-are-out
rule7 for criminals: one who gets convicted of three felonies gets jailed for life.
In each period, a person can decide whether to commit a crime or not. If she
commits a crime, there is the chance of being caught. Following our model,
as she comes closer to getting put away for life (three convictions, hence three
strikes), she is less likely to commit a crime. Consistent with our model, she
could have a payoff from the crime if she does not get caught, her temptation,
which might be the expected amount of money she would steal. In theory, re-
cidivism rates in California should reveal a lesser propensity to criminal activity
after two felony convictions. Unfortunately, two significant complications make
this evidence almost impossible to assess. First, criminals are heterogeneous as
to type. Those with two felony convictions presumably commit more crimes
and are more likely to be caught, on average, than those with only one. Second,
there is evidence that some two-strike criminals have migrated to other states.

Driver’s license suspension. In some states, there are penalties for getting
certain numbers of traffic infractions, or a certain number of accidents. If a
driver gets a certain number of traffic violations in a period, then her license
is suspended. Note that the motor vehicle bureau does not know how far a
driver has traveled during that period, nor the level of temptation. (It may be
more tempting to speed when one is late for an important meeting.) However,
this is only part of the damage, since traffic infractions also cause a boost in
insurance rates. This suggests that if we could fine people for a black mark in the
temptation game, the additional instrument might afford a superior outcome.

Tennis. A tennis-player gets two serves. This is equivalent to being allowed
two black marks before she is expelled (loses the point). On the first serve, it
is optimal to be more aggressive. Indeed, the first serve is typically aggressive.
It is struck with power and placement to have a high chance of winning the
point outright or soon thereafter, assuming that it goes in. The second serve is
usually much more conservative — slower speed, less risky placement — to make
it exceedingly likely to go in and thereby avoid a double fault. This strategy
has important, albeit not exact, parallels to being less willing to betray when
one’s reputation consists of more black marks in the temptation game. One key
difference, of course, is that tennis is a game of strictly opposed interests, in

7The deterrent effect of strike laws has been studied in the legal literature (Shepherd, 2002;
Helland and Tabarrok, 2007).
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contrast to the temptation game. A second key difference is that a betrayal is
a certain move, whereas whether a serve goes in is a probabilistic phenomenon.

Baseball. A related situation occurs in baseball. Holding the number of
balls constant, batters can afford to be more picky on pitches when they have
no strikes than with one strike, and with one strike than with two strikes.8

Basketball. In the NBA, if a player commits six personal fouls over the course
of a game, he fouls out and is disqualified from participation for the remainder
of the game. This is a setting, like our model, with imperfect monitoring. A
player may get called for a foul that he did not commit, so it is dangerous to get
up to five fouls. One of the features of basketball, but not the temptation game,
is that an infraction is also punished by giving out foul shots. This situation is
similar to the cumulative violations system in driving that was discussed above.
Basketball players play less aggressively when they have more fouls, not wanting
to take the chance of fouling out.

6. Optimal Cutoffs

This section identifies the pure equilibria (as characterized by Lemma 2)
that are most favorable for the truster(s), most favorable for the temptees, and
that optimize social welfare. We first discuss how those three might be chosen
among all possible equilibria in practice.

We might think of these three situations as ones where the two different
parties, or some uninvolved but benevolent coordinator, can select among the
various possible equilibria. They may have this capability because they can es-
tablish customs or laws that apply in a particular community, or simply because
they have the ability to communicate. Such communication can establish what
Schelling (1980) labels a focal point. Myerson (2009)9 comments on Schelling’s
insight: “anything in a game’s environment or history that focuses the players’
attention on one equilibrium may lead them to expect it, and so rationally to
play it. This focal-point effect opens the door for cultural and environmental
factors to influence rational economic behavior.” Myerson goes on to observe
that: “Schelling’s focal-point effect should be counted as one of the most impor-
tant ideas in social theory. Recognizing the fundamental problem of selecting
among multiple equilibria can help us to better understand the economic im-
pact of culture on basic social phenomena such as social relationships, property
and justice, political authority and legitimacy, foundations of social institutions,
reputations and commitment.” Rosenthal and Landau (1979) study possible
decision rules or “customs” which players might use to determine their moves
in a game as a function of reputation. Our attention here is on ways of choosing
among multiple equilibria in the temptation game.

8An opposite situation applies to the pitcher, of course. He must make more of an effort
to get the ball over the plate when there are more balls thus far, holding strikes constant, lest
he walk the batter.

9pages 1111-1112
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In the temptation game, if only the truster(s) can communicate, they can
say to the temptees: “We will allow you one betrayal, but once you get to
two, no one will trust you.” If that message is transmitted, we would expect the
temptees to behave as if b∗ = 1. Cheap talk in such circumstances can determine
which equilibrium is chosen: an equilibrium becomes focal because it is “agreed
on” through cheap talk, and it is then followed (Farrell, 1987). See Crawford
and Sobel (1982) and Farrell and Rabin (1996) for detailed discussions on cheap
talk for coordination games and games of incomplete information. On the other
hand, humans often use information on the opponent’s past actions as coordi-
nating devices, see Dalea et al. (2002) for an experimental study; in the context
of the temptation game, if the truster(s) have not been trusting temptees with
one black mark in the past, this may lead the temptees to expect that this
behavior may continue in the future.

Often the players on one side actually have the power to establish customs
or laws that can establish which equilibrium will prevail. For example, in most
traditional societies men make the rules relating to marital behavior, such as
the punishment for infidelity or the bases for divorce. Similarly, banks have
historically made the rules for lending practices. But we could imagine a feminist
movement changing the mores relating to marital behavior in a society10 or, in
the wake of the recent financial meltdown, we could easily envision Congress
remaking the rules on lending to be more favorable to the consumer so as to
maximize social welfare.

In the temptation game, players belong to identifiable groups, which may
give them additional incentive to adhere to the rules set out in pre-game com-
munications. If the players are to deviate from the announced group behavior,
they will possibly suffer another type of reputation loss, with their peers.

6.1. An Inequality Between Optimal Cutoffs

In the temptation game, posit that Cs, and only Cs have the ability to
communicate verbally. They will tell the Ds that they are employing the cutoff
in number of black marks that maximizes the expected welfare of Cs assuming
that Ds respond optimally to that cutoff. On the other hand, if the Ds have
the power to choose the equilibrium — whether through communication or by
setting the rules or laws in some group — they will commit to their x*(b) for
b ∈ {0, 1, ..., b∗}, thus letting C pick his b∗ in response; this produces the first
best condition for D. Because C responds to D’s strategy in a predictable way,
D is effectively choosing C’s cutoff b∗ for him. The socially optimal equilibrium
emerges when a third party, perhaps a government agency or an e-commerce site,
proposes a set of strategies and associated equilibrium to optimize a weighted
sum of the payoffs going to C and D.11

10For instance, in Lysistrata by Aristophanes, the women of Greece try to change the rules
regarding who makes decisions about war. In particular, they withhold sexual privileges from
their husbands as a means of forcing the men to negotiate peace.

11We note that the third party could also propose an equilibrium that achieves some other
goal, e.g., if Amazon could specify the equilibrium that buyers and sellers play in the Amazon
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We define b∗(C) and b∗(D) to be the optimal cutoffs for C and D respec-
tively, that is, the cutoffs of the pure equilibria that maximize the corresponding
payoffs. We let b∗α(S) denote the cutoff that maximizes the sum of C’s payoff
and α times D’s payoff, where α ≥ 0. If α is equal to 1, then b∗α(S) maximizes
the total payoff going to C and D. The following proposition shows that the
optimal numbers of betrayals will be greatest for the temptee, moderate for the
social optimum, and least for the truster.

Proposition 2. For any α ≥ 0,

b∗(C) ≤ b∗α(S) ≤ b∗(D) = B∗.

Recall that B∗ is the maximum cutoff that can arise at a pure equilibrium
(for given X, s, r and q). Proposition 2 tells us that the first best equilibrium
for D has the maximum possible cutoff. Intuitively, D prefers to be trusted
longer. Moreover, if the first best equilibrium for C has the maximum possible
cutoff, then the equilibrium with b∗ = B∗ is a social optimum. The first best
equilibrium for C is the focus of the next two sections.

6.2. The Truster’s Expected Payoff

Consider a pure equilibrium (b∗, {x∗(b), b = 0, ..., b∗}). Recall that w(b) ≡
P[X > x∗(b)] is the probability that player D betrays when she has b black
marks. When C interacts with a D who has b black marks, his expected payoff
is 1 − 2 · w(b) if b < b∗, and 0 if b = b∗. In light of Proposition 1, this payoff
increases in b when b ∈ {0, ..., b∗−1}. A truster’s payoff thus depends heavily on
the number of black marks of the temptee (in the case that the truster interacts
with one temptee per period) or the temptees (in the case that the truster
interacts with a large number of temptees per period) that he interacts with in
that period.

As far as C is concerned, the number of black marks of any D evolves accord-
ing to a Markov chain. The state is the number of black marks, which either
increases by 1 (if C trusts D and a betrayal is recorded), or remains the same (if
either C trusts D and a reward is recorded or C does not trust D), or becomes 0
(if D dies and thus is replaced with a new player with a blank reputation).12 Let
π be the steady state distribution of this Markov chain. The following lemma
gives C’s expected payoff and provides a way to compute π.

Lemma 2. Let (b∗, {x∗(b), b = 1, 2, ..., b∗}) be an equilibrium. The expected pay-
off of C from every D that he interacts with in a given period is equal to

b∗−1∑
b=0

π(b)(1− 2w(b)), (5)

Marketplace, it would perhaps choose the equilibrium that maximizes Amazon’s revenue. We
do not consider this situation in this paper.

12If D dies, she is replaced with a different D, but that does not affect C’s payoff.
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where π(b) satisfies

π(0) =
1− s

1− s((1− q)(1− w(0)) + rw(0))
; (6)

and

π(b) = s
q(1− w(b− 1)) + (1− r)w(b− 1)

1− s((1− q)(1− w(b)) + rw(b))
π(b− 1), (7)

for b ∈ {1, ..., b∗ − 1}.

In the next section, we demonstrate that b∗(C) can involve the minimum
(non-trivial) equilibrium cutoff, the maximum equilibrium cutoff, or an interior
solution. C does not care how long a specific D lives, since he is guaranteed
to meet a new D each period (in the setting of short-term interactions) or is
interacting with a fixed large number of temptees in every period (in the setting
of long-term interactions). However, he is interested in influencing the behavior
of D, and the subtleties of that influence can yield these distinctive outcomes.

6.3. Numerical Examples

Proposition 2 shows that b∗(C) ≤ b∗(D). In this section we give some
numerical examples to demonstrate that both b∗(C) < b∗(D) and b∗(C) = b∗(D)
are possible. For simplicity, we consider perfect monitoring (i.e., r = q = 0) and
assume that the random variable X has a uniform distribution.

Suppose X is uniform on [γ, δ] for some γ < δ. Then

E[(X − x∗)+] =
1

δ − γ

∫ δ

x∗
(x− x∗)dx =

(δ − x∗)2

2(δ − γ)
.

Under perfect monitoring, (3) simplifies to

v(b) = v(b+ 1) + x∗(b)/s,

and (3) with (4) give

1− s
s

x∗(b) + (1− s)v(b+ 1) = 1 +
(δ − x∗(b))2

2(δ − γ)
.

The probability that player D betrays when she has b black marks is

w(b) =
δ − x∗(b)
δ − γ

,

and the steady-state reputation distribution of the D population can be com-
puted from the following equations (which follow from (6) and (7)).

π(0) =
1− s

1− s+ sw(0)
;

π(b) = s
w(b− 1)

1− s− w(b)
π(b− 1), b ∈ {1, ..., b∗ − 1}.

We use these equations to compute the expected payoffs of C and D at the
equilibria in the following examples.
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Example 1. Assume that X is uniform on [0, 20] and s = 0.95. Then B∗ = 4.
C’s payoff is maximized at b∗(C) = 1. That is, the one-betrayal-and-you-are-
out strategy is best for C. This is the strategy that many societies have employed
to deal with marital infidelities, particularly those of women. D’s payoff on the
other hand is maximized at b∗(D) = 4. Thus, in this case, 1 = b∗(C) < b∗(D) =
4.

Example 2. Assume that X is uniform on [0, 30] and s = 0.95. Then, b∗(C) =
3 and b∗(D) = B∗ = 4.

Example 3. Assume that X is uniform on [0, 1000] and s = 0.95. Then, for
any α ≥ 0, b∗(C) = b∗α(S) = b∗(D) = B∗ = 3, that is, both the truster and the
temptee prefer the same cutoff.

7. Adverse Selection

This paper has focused thus far on a pure moral hazard setting, where all
temptees are the same in terms of payoff structure and self-control. Attention
has thus been strictly on inducing good behavior despite temptation. This
section allows for multiple types. Hence adverse selection rears its ugly head
alongside moral hazard. Moreover, a truster will appropriately update his belief
that a temptee is a particular type depending on the number of black marks she
has received.

There are k types of temptees. Each type if defined by its distribution of
temptations. Let Xi be the random variable that denotes the strength of the
temptation to betray for type i. For a given cutoff b∗, we can compute the best
response for type i (as in Section 4), which consists of a threshold x∗i (b) for each
b < b∗. Each x∗i (b) is increasing and convex in b for b ∈ {0, ..., b∗ − 1} (this can
be shown with the arguments used in the proof of Proposition 1). Moreover, the
probability that a player of type i betrays is decreasing in b for b ∈ {0, ..., b∗−1}.
In words, the more black marks to date, the less likely a temptee of a particular
type is to betray.

Which cutoffs b∗ can arise in equilibrium in a world that allows for multiple
types, hence adverse selection as well as moral hazard? A cutoff b∗ can be an
equilibrium if the truster’s expected payoff from trusting is nonnegative for all
b ∈ {0, 1, ..., b∗ − 1}. Utilizing the framework of Section 4, we first compute
the maximum cutoff that can arise at a (pure) equilibrium when the population
is comprised solely of temptees of type i. Denote this maximum cutoff as B∗i .
Then, for any b∗ ≤ miniB

∗
i , we have an equilibrium.13

The insights of Sections 5 and 6 still hold in a world with multiple types.
Temptees still prefer the equilibrium with the maximum cutoff, whereas the

13Since b∗ ≤ mini B
∗
i , we have that at each b < b∗ each type rewards with probability

greater or equal to 0.5. This implies that a randomly chosen temptee with b black marks
rewards with probability greater or equal to 0.5 when b < b∗. This in turn implies that the
truster is better off trusting a temptee with b < b∗ black marks.
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truster(s) may prefer a smaller cutoff. However, the truster’s expected payoff is
now given by a more complex formula than the one of Lemma 2, a formula that
attends to the proportions of different types in the system.

In a world of multiple types, some will benefit from the presence of others,
while others will lose. If the proportion of temptees of type j with B∗j = miniB

∗
i

is relatively small, there can be equilibria with b∗ > B∗j . Conversely, temptees
of type h, where B∗h = maxiB

∗
i , if they are not numerous, may find some of

their forgiving (high b∗) equilibria disappear.
To gain additional insights, we specialize to a two-type world. Those types

have temptations X1 and X2. Assume that X2 stochastically dominates X1,
implying that the temptations to betray of type 2 are stronger than those of
type 1. Accordingly, we refer to type 1 as the good type and type 2 as the bad
type. The following lemma shows that at the maximum number of black marks
at which the truster trusts the temptee, the bad type has a higher threshold x∗i
below which she rewards.14

Lemma 3. If X2 stochastically dominates X1, then x∗1(b∗ − 1) ≤ x∗2(b∗ − 1).

However, Lemma 3 says nothing about the probability that each type betrays
with a particular black mark reputation, since the probability depends on the
distribution. Interestingly, it is possible that the bad type’s distribution of
temptation stochastically dominates the good type’s distribution of temptation,
yet the bad type is less likely to betray at b black marks than is the good type.
That is because she would be giving up more in terms of opportunity cost in the
future. This will be the case if the threshold of the bad type x∗2(b) is sufficiently
larger than the threshold of the good type x∗1(b) so that F1(x∗1(b)) < F2(x∗2(b)).
We next provide an example where the good type is more likely to betray.

Example 4. Suppose that

X1 =

{
1 with probability 0.5
2 with probability 0.5

X2 =

{
2 with probability 0.9
10 with probability 0.1

We observe that X2 stochastically dominates X1.15 To avoid additional com-
plication, assume that both types have the same survival probability s = 0.6 and
that monitoring is perfect.16

Suppose that b∗ = 1. Then, at b = 0:

14We note that this may not hold for a smaller number of black marks. In particular, if
b < b∗ − 1, the threshold of the bad type may be lower than the threshold of the good type.

15In many examples, of course, neither type’s distribution will stochastically dominate the
other’s.

16If survival probabilities differed, other factors equal, a type with better survival probabili-
ties would be less likely to betray, since its members could better afford to wait for encounters
where their temptations were high.
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• Type 1 rewards if x = 1 and betrays if x = 2. That is, a temptee of type 1
betrays with probability 0.5.

• Type 2 rewards if x = 2 and betrays if x = 10. That is, a temptee of type
2 betrays with probability 0.1.

We conclude that in this case the good type is more likely to betray.

Multiple types introduce great richness to a world with black mark repu-
tations. In particular, the distribution of types may shift over time with the
number of black marks, a classic outcome with adverse selection. The shifting
happens as the distribution of black marks converges to the steady state for
every type of temptees. If initially all temptees have zero black marks and the
number of temptees of each type is equal, initially a randomly selected temptee
with zero black marks will belong to each type with probability 0.5. But as time
goes by, a randomly selected temptee with zero black marks is more likely to be
of the type that betrays with a smaller probability. For instance, in Example 4,
in the steady state a temptee of type 1 has zero black marks with probability
0.57, whereas a temptee of type 2 has zero black marks with probability 0.87
(these numbers follow from (6)). Though 50% of those entering the system are
of each type, individuals with 0 black marks will be 40% type 1s, whereas 77%
of those with 1 black mark will be of type 1 once the system has converged to
the steady state.

In the following variation of Example 4, type 1 is more likely (than type 2)
to betray with no black marks, but less likely once a black mark is earned.

Example 5. Suppose that

X1 =

{
1 with probability 0.4
2 with probability 0.6

X2 =

{
2 with probability 0.9
10 with probability 0.1

Assume that both types have the same survival probability s = 0.66 and that
monitoring is perfect.

Suppose that b∗ = 2. At b = 1, type 1 is more likely to betray than type 2:
type 1 will betray whenever she has X1 = 1 (i.e., with probability 0.4), whereas
type 2 will betray only if she has X2 = 10 (i.e., with probability 0.1). On the
other hand, at b = 0, type 1 is less likely to betray than type 2: type 1 betrays
with probability 0.4, whereas type 2 betrays with probability 1.

In real world play, there are sure to be multiple types with temptations that
vary over time. Temptees will exhibit both adverse selection and moral hazard.
Trusters will seek to deter their bad behavior with an ultimate refusal to play
once black marks reach a certain level.
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8. Mechanisms that also Track the Number of Transactions

Thus far, we have only considered mechanisms that track the number of
recorded betrayals. This section extends the reputation mechanism to also in-
clude information on the number of transactions, that is, the number of times
that the temptee has been trusted. To keep matters simple, we deal with only a
single type of temptee. We show that if the number of transactions is recorded,
the maximum number of black marks that C allows D at a pure equilibrium
does not increase compared to the case where the number of transactions is not
recorded. In particular, at a pure equilibrium, C will never trust D once she has
B∗ black marks — regardless of whether C knows the number of transactions
of D.

We assume that D’s reputation consists of the number of black marks b and
the number of transactions (which we denote by n) that she has completed. We
thus denote D’s reputation by (b, n). We refer to this as the two-dimensional
case, in contrast to the one-dimensional case where the temptee’s reputation
consists only of the number of black marks. A strategy of player C in this more
general model consists of a cutoff for each number of transactions. With a slight
abuse of notation, let b∗(n) be the cutoff for n transactions, that is, C does not
trust D at (b, n) if b ≥ b∗(n). On the other hand, D’s strategy will consist of
a threshold x∗(b, n) for every possible reputation (b, n). That is, when D has b
black marks in n transactions, then she betrays if the strength of her temptation
to betray (i.e., the realization of X) exceeds the threshold x∗(b, n).

The sets {b∗(n), n = 0, 1, ...} and {x∗(b, n), b = 0, 1, ..., b∗(n), n = 0, 1, ...}
constitute a pure equilibrium of the temptation game if the following conditions
are satisfied:

1. x∗(b, n) is a best response of D to C’s strategy, i.e., there exists a function
v(b, n) such that for b < b∗(n):

v(b, n) = 1+s·(1−q)·v(b, n+1)+s·q·v(b+1, n+1)+E[(X−x∗(b, n))+]; (8)

x∗(b, n) = s · (1− r − q) · (v(b, n+ 1)− v(b+ 1, n+ 1)); (9)

and
v(b∗(n), n) = 0 for all n. (10)

2. b∗(n) is a best response of C to D’s strategy, i.e.,

• P[X < x∗(b, n)] ≥ 1/2 for b < b∗(n)

• P[X < x∗(b∗, n)] ≤ 1/2

The derivation of these equilibrium conditions is similar to the derivation
for the one-dimensional case in Section 4. Moreover, this set of conditions is
a generalization of conditions of Section 4. In particular, if we set b∗(n) = b∗

where b∗ ≤ B∗, then we get an equilibrium of the two-dimensional reputation
mechanism, which corresponds to an equilibrium of the one-dimensional mech-
anism; in this case, b∗(n) is a constant that does not vary with the number of
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transactions n. However, in the two-dimensional case, there also exist equilibria
where b∗(n) varies with n.

We next show two fundamental properties of b∗(n). First, b∗(n) is non-
decreasing in n. This is an intuitive property: the larger the number of transac-
tions of D, the larger the number of black marks that C will tolerate. Second,
b∗(n) is bounded above by B∗, i.e., the maximum cutoff for which there exists
a pure equilibrium when reputation only consists of the number of black marks.
Even though the number of transactions is recorded in the two-dimensional
reputation case, C does not allow D to commit more betrayals than in the
one-dimensional case.

Proposition 3. If reputation consists of both the number of black marks b and
the number of transactions n, then at any pure equilibrium of the temptation
game

(i) b∗(n) is non-decreasing

(ii) b∗(n) ≤ B∗ for all n

The fact that b∗(n) is upper-bounded by B∗ may at first seem counterintu-
itive. One could expect that C would allow D more black marks when he knows
that she has completed a very large number of transactions than when he has
no information on the number of transactions. However, if C tolerated a large
number of transactions, then D would betray with high probability, since one
more betrayal would make a small difference in her future expected payments.
This would be similar to a reputation mechanism that aggregates ratings over
the lifetime of the temptee; an approach that has been shown to be ineffective
in a number of settings (e.g., Fan et al., 2005; Aperjis and Johari, 2010; Cripps
et al., 2004).

We get some additional intuition for why b∗(n) is upper-bounded by B∗ by
considering the steps of the proof. We first observe that b∗(n) cannot be very
large; if it were, D would not be properly incentivized at (0, n). In particular,
even though betraying at (0, n) would bring her closer to expulsion, expulsion
would be so far in the future that D would not reward with a sufficiently large
probability (i.e., she would use a small x∗(b, n)), and C on his side would not
trust her. Now, given that b∗(n) is upper bounded and increasing, we conclude
that b∗(n) is constant for all large n, which means that the number of transac-
tions does not play any role after some point. Then, after a sufficiently large
number of transactions, this two-dimensional problem is equivalent to the set-
ting where only the number of black marks is included in D’s reputation. As a
result, the number of black marks that C tolerates does not exceed B∗.

As mentioned above, after a certain number of transactions b∗(n) becomes
constant. Then, the thresholds x∗(b, n) correspond to thresholds of a one-
dimensional equilibrium. Thus, after that point D is less likely to betray when
she has more black marks (x∗(b, n) is increasing in b). However, x∗(b, n) may
not be increasing in b for small values of n when there is a high probability of
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misrecording a betrayal.17

9. Conclusion

This paper studies how reputations work when the truster’s decision to trust
is based only on the number of recorded betrayals of the temptee (black mark
reputation mechanism). We find that at a pure equilibrium, the greater the
number of black marks, the less likely the temptee is to betray. This insight
applies to a broad range of situations where black marks are recorded, such as
agencies for consumer protection and online review sites.

Black mark reputations approximate settings where buyers focus on the num-
ber of negatives — even if more reputation information is provided. The Avail-
ability Heuristic (Tversky and Kahnenman, 1973) leads individuals to judge the
frequency of an event by how easily they can bring an instance to mind. This
heuristic leads individuals to give significant weight to extreme bad outcomes.
Recognizing this, we have been told that in the venture capital industry, execu-
tives work extremely hard to prevent portfolio companies from going bankrupt,
even though that same time devoted to profitable ventures would yield greater
benefits to both the executives and the investors. The VC executives recognize
that their world is an approximation of the black marks world, where embarrass-
ing strikeouts are remembered, and batting averages are sometimes forgotten.

We recognize that to accurately describe some interactions between trusters
and temptees, the model of this paper would have to be elaborated. We show
in Section 8 that the same qualitative results apply in the long run when the
number of transactions is also recorded as part of a temptee’s reputation. Two
further extensions suggest themselves immediately. First, some relationships
have a natural termination or sunset date quite apart from black marks. Thus,
for a college and a student, rules infractions — plagiarism or disorderly behav-
ior — would be the equivalent of betrayals. But once graduation occurs, the
relationship is ended no matter what; past black marks become irrelevant. Sec-
ond, many long-term relationships — and some one-time-only relationships —
have both parties trusting and both parties tempted. Thus, the business and
its supplier or the husband and the wife may both rely on each other; each has
a reputation and each can betray.

Across a wide swath of societal concerns, we live with the notion that a
single betrayal does not end a relationship. Thus, there are second chances
(and possibly more). Religions routinely allow for forgiveness. “The God I
believe in is a God of second chances,” Bill Clinton once said, referring to his
own shortcomings. And George W. Bush, not known for being soft on crime,
observed: “America is the land of the second chance — and when the gates
of the prison open, the path ahead should lead to a better life.” That is the
way two successive Presidents outlined the theme that motivated this analysis:

17We thank John H. Lindsey II for constructing an example where x∗(b, n) > x∗(b + 1, n)
and b + 1 < b∗(n) at an equilibrium.
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The game of life accommodates betrayals, but not without putting betrayers on
warning.

From the time of the snake in the Garden of Eden, temptation has always
been with us. Benjamin Franklin, a prolific provider of adages in a much earlier
era, once wrote: “What makes resisting temptation difficult for many people, is
that they don’t want to discourage it completely.” Betrayals must be expected
from all of us, and reputations are required to keep them within bounds. And
should betrayals exceed some critical value, expulsion will be our fate. Such is
the life of the temptee.
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Appendix A: Proofs

Proof of Lemma 1: Consider some β ∈ {1, ..., b∗ − 1}. The optimal strategy of
D when starting at β is {x∗(b), b = β, ..., b∗ − 1}. We now consider β − 1, and
assume that D uses the following strategy: at β − 1 she rewards if X < x∗(β),
at β she rewards if X < x∗(β + 1),..., at b∗ − 1 she rewards if X < x∗(b∗ − 2),
and at b∗ − 1 she rewards for any X. That is, she uses the optimal strategy
for β starting at β − 1 and then always rewards if her reputation consists of
b∗−1 betrayals. Up to (and including) state b∗−2, this yields payoff v(β) since
everything is the same as when starting at β. Then, D reaches state b∗ − 1
with positive probability and gets a strictly positive payment once she is there.
Therefore, when starting at β− 1 the described strategy yields a strictly higher
payoff than v(β); thus v(β − 1) > v(β).

Proof of Proposition 1: We first show that x∗(b) is strictly increasing in b for
b ∈ {0, ..., b∗ − 1}. (3) can be rewritten as

v(b) =
x∗(b)

s(1− r − q)
+ v(b+ 1)

Substituting in (4) we have

1− s(1− q)
s(1− r − q)

x∗(b) + (1− s)v(b+ 1) = 1 + E[(X − x∗(b))+]. (11)

Let b1 < b2, and let x1 = x∗(b1) and x2 = x∗(b2) be the corresponding solutions
of (11). Then,

1− s(1− q)
s(1− r − q)

x1 + (1− s)v(b1 + 1) = 1 + E[(X − x1)+]. (12)

1− s(1− q)
s(1− r − q)

x2 + (1− s)v(b2 + 1) = 1 + E[(X − x2)+]. (13)

Suppose that x1 ≥ x2. Then,

1− s(1− q)
s(1− r − q)

x2 + (1− s)v(b2 + 1) <

1− s(1− q)
s(1− r − q)

x1 + (1− s)v(b1 + 1) =

1 + E[(X − x1)+] ≤
1 + E[(X − x2)+],

which contradicts (13). We note that the first inequality follows because v is
decreasing in b (by Lemma 1) and s < 1; the equality follows from (12), and the
second inequality holds because x1 ≥ x2. We conclude that x1 < x2, and thus
x∗(b) is strictly increasing in b for b ∈ {0, 1, ..., b∗ − 1}.
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We next show that x∗(b) is convex in b for b ∈ {0, ..., b∗ − 1}. Let

g(y) ≡ 1 + E[(X − y)+] = 1 +

∫ ∞
y

(x− y)dF (x).

We observe that g′(y) = −(1 − F (y)). This implies that g′(y) is negative and
increasing in y, and thus g is decreasing and convex. From (11) we find that

1− s(1− q)
s(1− r − q)

(x∗(b)−x∗(b−1))+(g(x∗(b−1))−g(x∗(b))) = (1−s)(v(b)−v(b+1))

Moreover, by (3) we have that v(b)− v(b+ 1) = x∗(b)/(s(1− r − q)). Thus,

1− s(1− q)
s(1− r − q)

(x∗(b)− x∗(b− 1)) + (g(x∗(b− 1))− g(x∗(b))) =
1− s

s(1− r − q)
x∗(b).

Let b1 < b2. Since x∗(b) is increasing in b (by the first part of this proof), we
have that

1− s(1− q)
s(1− r − q)

(x∗(b1)− x∗(b1 − 1)) + (g(x∗(b1 − 1))− g(x∗(b1))) <

1− s(1− q)
s(1− r − q)

(x∗(b2)− x∗(b2 − 1)) + (g(x∗(b2 − 1))− g(x∗(b2))) (14)

Suppose that x∗(b1)− x∗(b1 − 1) > x∗(b2)− x∗(b2 − 1). Then, by the convexity
of g we have that

g(x∗(b1 − 1))− g(x∗(b1)) ≥
g(x∗(b2 − 1))− g(x∗(b2 − 1) + (x∗(b1)− x∗(b1 − 1))) ≥
g(x∗(b2 − 1))− g(x∗(b2 − 1) + (x∗(b2)− x∗(b2 − 1))) ≥
g(x∗(b2 − 1))− g(x∗(b2))

which contradicts (14). We note that the first inequality holds because g is
convex, the second inequality is a consequence of x∗(b1)−x∗(b1− 1) > x∗(b2)−
x∗(b2−1), and the third inequality holds because g is decreasing. Thus, x∗(b)−
x∗(b− 1) is nondecreasing in b and x∗(b) is convex for b ∈ {0, 1, ..., b∗ − 1}.

Proof of Proposition 2: We first show that b∗(D) = B∗. Let u(b, b∗) be equal
to v(b) when the cutoff b∗ is used. We observe that u(b, b∗) only depends on the
difference b∗ − b (given the same s, r and q), and is increasing in b∗ − b. Thus,
u(0, b∗) is maximized when b∗ is maximized.

Now that we have shown that b∗(C) ≤ b∗(D), how about the socially optimal
equilibrium b∗α(S) which optimizes the weighted return of C and D? Because the
return for D decreases when b∗ decreases, it is not possible that b∗α(S) < b∗(C),
because both players would be better off with b∗α(S) = b∗(C). It is also not
possible that b∗α(S) > b∗(D), because b∗(D) is the highest b∗ possible in the
equilibrium set. Then we have b∗(C) ≤ b∗α(S) ≤ b∗(D) for all α ≥ 0.
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Proof of Lemma 2: Let π(i) be the probability that a randomly chosen D player
has i betrayals. For i = 0 the balance equation is:

π(0) = s((1− q)(1− w(0)) + rw(0))π(0) + (1− s).

In particular, when D has no betrayals, she rewards with probability 1 − w(0)
and betrays with probability w(0). If she rewards, her reputation remains at
b = 0 with probability 1−q; if she betrays, her reputation remains at b = 0 with
probability r. Finally, from any state, there is a transition to 0 with probability
1− s.

Similarly, for b ∈ {1, ..., b∗ − 1} we have

π(b) = s(q(1−w(b−1))+(1−r)w(b−1))π(b−1)+s((1−q)(1−w(b))+r·w(b))π(b)

Solving for π(0) and π(b) we get (6) and (7) respectively.

Proof of Lemma 3: For b = b∗ − 1, (3) can be rewritten as

vi(b
∗ − 1) =

x∗i (b
∗ − 1)

s(1− r − q)

for each type i, because vi(b
∗) = 0. Substituting in (4) we have

1− s(1− q)
s(1− r − q)

x∗1(b∗ − 1) = 1 + E[(X1 − x∗1(b∗ − 1))+];

1− s(1− q)
s(1− r − q)

x∗2(b∗ − 1) = 1 + E[(X2 − x∗2(b∗ − 1))+].

Suppose for the sake of contradiction that x∗1(b∗ − 1) > x∗2(b∗ − 1). Then, it
must be that

E[(X1 − x∗1(b∗ − 1))+] > E[(X2 − x∗2(b∗ − 1))+].

However, this cannot hold if X2 stochastically dominates X1 and x∗1(b∗ − 1) >
x∗2(b∗−1) (because then X2−x∗2(b∗−1) stochastically dominates X1−x∗1(b∗−1)).
We conclude that x∗1(b∗ − 1) ≤ x∗2(b∗ − 1).

Proof of Proposition 3: Suppose that b∗(n) > b∗(n + 1). Suppose that D has
b∗(n + 1) betrayals and n transactions. C will trust D in this state, because
b∗(n) > b∗(n+ 1). However, D knows that whatever she does in this period, C
will not trust her in the next period. So then, it is optimal for her to betray.
But if D betrays, C has no reason to trust. So it must be that b∗(n) ≤ b∗(n+1),
which shows (i).

To show (ii), we first show that at a pure equilibrium,

b∗(n) ≤ log((1 + EX)/m) + log(1/(1− s))
log(1/s)

≡ K.
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Consider an equilibrium where C’s strategy is given by {b∗(n)} and D’s strategy
is {x∗(b, n)} and suppose that there exists some n with b∗(n) > K. A necessary
condition for this to be an equilibrium is that x∗(0, n) ≥ m. We show that
D is better off using some strategy {x(b, n)} with x(0, n) < m. In particular,
consider a strategy with x(b, n′) = x∗(b, n′) for n′ > n. Suppose that D’s current
reputation is (0, n) and let x be the current realization of X. If D betrays now,
her current payment will increase by x. We next upper bound the amount that
D will lose by betraying now. First observe that the earlier time that D may be
expelled is K periods later. This is a very conservative estimate, because D will
probably not always betray and b∗(n) may be increasing. We next observe that
D misses at most 1 + EX in expectation for each period after she is expelled.
Considering that D only survives with probability s in every period, in total she
misses at most (1 + EX)/(1− s). But this payment is at least K periods away,
so she discounts it by at most sK . Thus, if D betrays now, her future payment
will decrease by at most

sK

1− s
(1 + EX).

We conclude that D will be better off betraying if

x >
sK

1− s
(1 + EX).

Because of the way we defined K, note that

sK

1− s
(1 + EX) < m.

So D is better off using x(0, n) < m.
Thus, for any given problem there exists some constant upper bound on

b∗(n). We already know that b∗(n) is non-decreasing, so there must exist a
n̄ and a b̄ such that b∗(n) = b̄ for n ≥ n̄. Then, after n̄ the exact number
of transactions does not affect the cutoff (which is constant). Without loss of
generality, we can restrict the state-space to

{(b, n) : b ≤ b∗(n), n < n̄} ∪ {(b, n̄) : b ≤ b̄},

which is finite.
For n < n̄, equations (8), (9), and (10) need to be satisfied. For n = n̄, we

have

v(b, n̄) = 1 + s · (1− q) · v(b, n̄) + s · q · v(b+ 1, n̄) +E[(X − x∗(b, n̄))+] for b < b̄;

x∗(b, n̄) = s(1− r − q) · (v(b, n̄)− v(b+ 1, n̄)) for b < b̄;

v(b̄, n̄) = 0.

Observe that n̄ is just a dummy variable in the previous equations. More impor-
tantly, if we ignore n̄ these are exactly equations (1), (3), and (4), that is, the
equations we had in the one-dimensional case, where D’s reputation consisted
only of the number of betrayals. This observation implies that b̄ ≤ B∗, and also
b∗(n) ≤ B∗, which concludes the proof for (ii).
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Appendix B: Mixed-Strategy Equilibria

Our analysis in this paper considers pure-strategy equilibria. For complete-
ness, we now discuss mixed strategy equilibria in the same framework. In this
appendix, we consider mixed strategies for player C, where C trusts D with
some probability that depends on her reputation. We consider the same model
as in section 3 and allow for imperfect monitoring, assuming that D’s reputation
does not change in periods that she did not interact with a C because she was
not trusted by the C she was matched to.

We consider settings where C may use a mixed strategy: C’s mixed strategy
consists of the probability he trusts D as a function of her reputation. This is
a generalization of the pure strategy where C trusts D with either probability
1 or probability 0. We do not consider mixed strategies for player D here, and
assume that X is continuous for simplicity.18 Thus, D’s strategy shows (as in
the pure equilibrium case) whether she rewards as a function of her reputation.

We start by characterizing mixed-strategy equilibria. We then consider a
special class of mixed equilibria, at which C trusts D strictly more than at any
pure equilibrium. We show that the temptee strictly prefers such an equilibrium
to a pure equilibrium. On the other hand, we conjecture that the truster is better
off at a pure equilibrium.

Characterization of Mixed-Strategy Equilibria

C’s mixed strategy represents the probability he trusts D as a function of
her reputation. Thus, C’s strategy is summarized by {p∗(b), b = 0, 1, ...}, where
p∗(b) is the probability that C trusts D when her reputation consists of b black
marks. On the other hand, we do not consider mixed strategies for player D; thus
the set {x∗(b), b = 0, 1, ...} represents D’s strategy (as in the pure equilibrium
case).

As before, let v(b) be the maximum expected infinite horizon payoff to D
when she has b betrayals. Then,

v(b) = (1− p∗(b))sv(b) + p∗(b) (1 + E[max{X + s((1− r)v(b+ 1) + r · v(b)),

s((1− q)v(b) + q · v(b+ 1))}])

In particular, with probability p∗(b), C trusts D and then D chooses whether
to reward or betray. On the other hand, with probability 1− p∗(b), C does not
trust D. In that case, D receives zero payment in this period and her reputation

18The results can be easily extended to consider mixed strategies for player D; such strategies
would only be relevant if X follows a discrete distribution. In particular, D would only
randomize if X = x∗(b). If X is drawn from a continuous distribution (as we are assuming in
this appendix), X will be equal to x∗(b) with zero probability, and thus what D does at x∗(b)
does not affect the players’ payoffs. If X is drawn from a discrete distribution, she could mix
optimally at most at one point (i.e., x∗(b)).
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remains the same. Straightforward calculations show that

v(b) =p∗(b)
(
1 + s(1− q)v(b) + s · q · v(b+ 1) + E[(X − x∗(b))+]

)
+ (1− p∗(b))s · v(b),

where
x∗(b) ≡ s · (1− r − q) · (v(b)− v(b+ 1))

On the other hand, C trusts D if P[X > x∗(b)] > 1/2; C does not trust D
if P[X > x∗(b)] < 1/2; and C is indifferent between trusting and not trusting if
P[X > x∗(b)] = 1/2. Thus, if x∗(b) > m, then C plays p∗(b) = 1; if x∗(b) = m,
any p∗(b) ∈ [0, 1] is a best response for C; and if x∗(b) < m, then C plays
p∗(b) = 0 (where m is the median of X).

We conclude that the sets {x∗(b), b = 0, 1, ...}, {p∗(b), b = 0, 1, ...} constitute
an equilibrium if the following conditions are satisfied:

1. {x∗(b), b = 0, 1, ...} is a best response of D to C’s strategy, i.e., there exists
a function v(b) such that

x∗(b) = s · (1− r − q) · (v(b)− v(b+ 1)); (15)

(1− s(1− q · p∗(b)))v(b) = p∗(b)
(
1 + s · q · v(b+ 1) + E[(X − x∗(b))+]

)
.

(16)

2. p∗(b) is a best response of C to D’s strategy, i.e.,

• if P[X < x∗(b)] > 1/2 then p∗(b) = 1

• if P[X < x∗(b)] = 1/2 then p∗(b) ∈ [0, 1]

• if P[X < x∗(b)] < 1/2 then p∗(b) = 0.

Pure equilibria are a special case of the mixed equilibria discussed here. In
particular, if p∗(b) = 1, then Equation (16) yields (4). We note that Equa-
tion (15) is the same as (3), rewritten here for convenience.

Given an equilibrium {(x∗(b), p∗(b)), b = 0, 1, ...}, we define

b∗ ≡ min{b : p∗(b) = 0}.

In words, b∗ is the cutoff (in terms of the number of black marks) at which C
does not trust D. If D is never trusted when her reputation consists of b∗ black
marks, then she never has the chance to reach more than b∗ black marks.

We already know that a finite cutoff (after which C stops trusting D) is
associated with every pure equilibrium. The following lemma shows that this is
also the case for mixed equilibria.

Lemma 4. For every equilibrium {(x∗(b), p∗(b)), b = 0, 1, ...} there exists a finite
cutoff b∗ such that p∗(b) > 0 for b < b∗ and p∗(b∗) = 0.

Proof. Suppose that p∗(b) > 0 for all b. Then, (15) implies that

v(0) =
1

s(1− r − q)

∞∑
b=0

x∗(b) ≥ 1

s(1− r − q)

∞∑
b=0

m =∞,
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because m > 0.
On the other hand, by substituting (15) in (16), we have that

(1− s)v(0) = p∗(0)

(
1 + E[(X − x∗(b))+]− q

1− r − q
x∗(b)

)
,

which cannot hold if v(0) = ∞, since EX < ∞ and p∗(0) ≤ 1. We conclude
that there always exists a finite cutoff.

Since in this section we are assuming that X is continuous, the condition
P[X < x∗(b)] = 1/2 is equivalent to x∗(b) = m.

Proposition 1 shows that for pure equilibria, x∗(b) is strictly increasing and
convex for b in {0, 1, ..., b∗ − 1}. This is not the case for mixed equilibria in
general, since at a mixed equilibrium we may have x∗(b∗−1) = m and x∗(b) > m
for b < b∗ − 1. However, the insights of Proposition 1 still hold if we do not
consider the b’s for which x∗(b) = m; this is discussed in Example 6.

We next show how C’s expected payoff is computed in a mixed equilibrium,
by providing a generalization of Lemma 2.

Lemma 5. Let (b∗, {p∗(b), b = 1, 2, ..., b∗}, {x∗(b), b = 1, 2, ..., b∗}) be an equilib-
rium. The expected payoff of C is equal to∑

b:p∗(b)=1

π(b)(1− 2w(b)),

where π(b) satisfies

π(0) =
1− s

1− s((1− q)(1− w(0)) + rw(0))p∗(0)− (1− p∗(0))
;

and

π(b) = s
q · (1− w(b− 1)) + (1− r)w(b− 1)

1− s((1− q)(1− w(b)) + rw(b))p∗(b)− (1− p∗(b))
p∗(b− 1)π(b− 1)

for b ∈ {1, ..., b∗ − 1}.

Proof. Let π(b) be the probability that a randomly chosen D player has b be-
trayals. For b = 0 the balance equation is:

π(0) = s(((1− q)(1− w(0)) + rw(0))p∗(0) + (1− p∗(0)))π(0) + (1− s).

In particular, when D has no betrayals, C trusts her with probability p∗(0). If
D is trusted, then she rewards with probability 1−w(0) and betrays with prob-
ability w(0). If she rewards, her reputation remains at b = 0 with probability
1−q; if she betrays, her reputation remains at b = 0 with probability r. Finally,
from any state, there is a transition to 0 with probability 1− s.

Similarly, for b ∈ {1, ..., b∗ − 1} we have

π(b) =s(q(1− w(b− 1)) + (1− r)w(b− 1))p∗(b− 1)π(b− 1)

+ s(((1− q)(1− w(b)) + rw(b))p∗(b) + (1− p∗(b)))π(b)
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Solving for π(0) and π(b), we get the equations of the lemma.
C’s expected payoff is then equal to

b∗−1∑
b=0

p∗(b)π(b)(1− 2w(b))

If p∗(b) is strictly between 0 and 1, then x∗(b) = m and w(b) = 1/2, and thus
C’s expected payoff in that period is equal to 0. This observation implies that
C’s expected payoff can be equivalently written as∑

b:p∗(b)=1

π(b)(1− 2w(b)).

Dominant Extend Equilibria

In this section we study a particular category of mixed equilibria that (when
they exist) prolong trust compared to pure equilibria. Recall that B∗ is the
maximum cutoff that arises in a pure equilibrium. Then, at the best possible
pure equilibrium for D, C trusts her until she has B∗ black marks (by Propo-
sition 2). Often, there exist mixed equilibria at which C always trusts D until
she has B∗ black marks and then at B∗ black marks he trusts her with some
probability that is strictly between 0 and 1. We call such equilibria dominant
extend equilibria. A precise definition is given below.

Definition 1. A dominant extend equilibrium satisfies

• p∗(b) = 1 for b = 0, 1, ..., B∗ − 1

• p∗(B∗) ∈ (0, 1)

• p∗(B∗ + 1) = 0

A dominant extend equilibrium gives D a longer expected lifetime, and, as
the following proposition shows, D always prefers a dominant extend equilibrium
to any pure equilibrium.

Proposition 4. D strictly prefers a dominant extend equilibrium to a pure
equilibrium.

Proof. We show that D’s payoff is strictly greater at a dominant extend equi-
librium. Consider the pure equilibrium with b∗ = B∗, and suppose that D’s
strategy is {x∗(b), b = 0, 1, ..., b∗ − 1}. Let vPE(0) be D’s expected payoff at
this pure equilibrium. Now suppose there exists a dominant extend equilibrium
with cutoff b∗ = B∗ + 1. D’s expected payoff in the dominant extend equilib-
rium will be at least as much as the payoff she would get by using x∗(b) for
b = 0, 1, ..., B∗ − 1 and always rewarding at B∗. This strategy yields payoff
vPE(0) up to state B∗ − 1. Then, D reaches a reputation of B∗ betrayals with
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positive probability; and once she has B∗ betrayals, C trusts her with positive
probability. Thus, in expectation she gets a strictly positive payoff once she
has B∗ betrayals. Therefore, D’s payoff at the dominant extend equilibrium is
strictly greater than her payoff at a pure equilibrium.

Dominant extend equilibria are always attractive to D, because D’s expected
payoff is maximized the longer she can expect to live. Thus, rather than being
expelled for sure at b = B∗, she would prefer to have a probabilistic chance
there, with expulsion at b = B∗ + 1.

On the other hand, we conjecture that player C always prefers a pure equilib-
rium to a dominant extend equilibrium. Our intuition for this is as follows. Con-
sider the pure equilibrium with the maximum cutoff and the dominant extend
equilibrium. We use the subscripts PE and DEE to denote the two equilibria.
By Lemma 5 it suffices to show that

B∗−1∑
b=0

πPE(b)(1− wPE(b)) ≥
B∗−1∑
b=0

πDEE(b)(1− wDEE(b)). (17)

Lemma 6 (below) shows that wPE(b) ≤ wDEE(b). On the other hand, the num-
ber of states is larger at the dominant extend equilibrium, suggesting that (17)
is plausible. We conducted extensive simulations that support this claim.

Lemma 6. For b ∈ {0, 1, ..., B∗ − 1}, wPE(b) ≤ wDEE(b).

Proof. It suffices to show that x∗PE(i) ≥ x∗DEE(i), since w is decreasing in x∗.
We rewrite (11) from the proof of Proposition 1.

1− s(1− q)
s(1− r − q)

x∗(b) + (1− s)v(b+ 1) = 1 + E[(X − x∗(b))+].

Since the left-hand side is increasing in x∗(b) and the right-hand side is decreas-
ing in x∗(b), the solution x∗(b) decreases as v(b+1) increases. (The formal proof
of this is similar to the first part of the proof of Proposition 1.) We use this
fact to show that x∗PE(i) > x∗DEE(i) for b ∈ {0, 1, ..., B∗− 1} by induction. The
induction hypothesis is that x∗PE(i) ≥ x∗DEE(i) and vPE(i+ 1) < vDEE(i+ 1).

• Basis: i = B∗ − 1. We have that vPE(B∗) = 0, while vDEE(B∗) > 0.
Thus vPE(B∗) < vDEE(B∗) and x∗PE(B∗ − 1) > x∗DEE(B∗ − 1).

• Induction Step: Suppose that x∗PE(i) > x∗SE(i) and vPE(i+1) < vDEE(i+
1). Then, by (4), vPE(i) < vDEE(i), which in turn implies that x∗PE(i −
1) > x∗DEE(i− 1) and completes the induction step.

If player C always prefers a pure equilibrium, and C is the one that specifies
which equilibrium will be played, then we will have a pure equilibrium. On the
other hand, pure equilibria often tend to arise as focal points because of their
simplicity (Myerson, 1997).
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Figure 2: D’s strategy at her preferred pure equilibrium (PE, shown with solid squares) and
the dominant extend equilibrium (DEE, shown with open circles) for perfect monitoring with
s = 0.95 and X following the uniform distribution on [0, 20]. Details are given in Example 6.

The following example illustrates the discussion on dominant extend equi-
libria.

Example 6. Assume that s = 0.95 and X follows the uniform distribution on
[0, 20]. We have seen in Example 1 that the maximum possible cutoff at a pure
equilibrium is B∗ = 4. At the best pure equilibrium for D, C trusts her when she
has fewer than 4 black marks, and D’s expected payoff is 60.18. However, there
also exists a dominant extend equilibrium where C trusts D with probability 0.15
when she has 4 black marks, yielding an expected payoff of 65.07 for D.

On the other hand, C’s expected payoff at the dominant extend equilibrium is
0.15, which is significantly smaller than his expected payoff at any (non-trivial
— with a non-zero cutoff) pure equilibrium. In particular, C’s payoff ranges
between 0.45 and 0.54 at the pure equilibria. Thus, if the truster is the one that
chooses which equilibrium will be played, then a pure equilibrium will be chosen.

The values of x∗(b) are shown in Figure 2 for both the pure and the dom-
inant extend equilibria. We observe that x∗(b) is increasing and convex for
b = 0, 1, ..., B∗ − 1. We already know that this is true for pure equilibria by
Proposition 1; a similar proof shows that this is always the case for dominant
extend equilibria.
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