### Self-Assembled TiSi<sub>x</sub> Nanostructures formed by Chemical Vapor Deposition

Ted Kamins, Doug Ohlberg, and Stan Williams Quantum Science Research Hewlett-Packard Laboratories Palo Alto, California

#### www.hpl.hp.com/research/qsr

with D. P. Basile and M. Wong of Agilent Technologies G. A. D. Briggs of Oxford University and T. Hesjedal of Stanford University

Electrochemical Society Meeting San Francisco, California September 2001





# **Outline**

- Motivation
- Ti deposition
- Island formation during deposition
- Island modification during annealing
- Nanowire growth
- Nanowire alignment





# Moore's (Second) Law and Self Assembly

- The **cost** of IC fabrication facilities continues to increase
- Much of cost relates to **lithography** of very small features
- Using **self-assembly** to form the smallest features can potentially reduce the escalating cost
- Coarser lithography can be used to position the fine features formed by self-assembly
- Features formed **thermodynamically** will have large numbers of defects
- Coupling self-assembly with a defect tolerant computer architecture is attractive





## **Deposition from TiCl**<sub>4</sub>





Lower Temperatures (T<700°C)













### **Islands after Deposition**

#### Large (7%) lattice mismatch $\rightarrow$ island formation





**Atomic-Force Micrographs** 









### Annealing of CVD TiSix Islands



#### **During annealing**

Amount of Ti on surface remains the same Island density decreases Islands take characteristic shapes





# Islands after Annealing TiSi<sub>2</sub> on Si(001)



3×10<sup>14</sup> Ti/cm<sup>2</sup>



 $1.5 \times 10^{14}$  Ti/cm<sup>2</sup> (1 µm × 1 µm images)



3×10<sup>15</sup> Ti/cm<sup>2</sup>

#### After annealing

Island size depends only weakly on the amount of Ti Island density increases with increasing amount of Ti





### **Island Density after Annealing**







# Plan-View TEM: TiSi<sub>2</sub>/Si(001) Three Island Types



Most numerous islands Flat-top Square or rectangular Mostly recessed into surrounding surface (C49 TiSi<sub>2</sub>)

Transmission electron micrograph courtesy of D. P. Basile and M. Wong of Agilent Technologies





### Cross-Section TEMs: TiSi<sub>2</sub>/Si(001) Embedded Islands







Islands mainly recessed into the surrounding Si surface The period of the structure at the TiSi<sub>2</sub>/Si interface corresponds to the difference in lattice constant.



Transmission electron micrographs courtesy of D. P. Basile and M. Wong of Agilent Technologies



### **Ti-Catalyzed Si Nanowires**

Possible interconnections for molecular electronics

# **Forming wires**

### 1) Form nuclei

Expose to vapor TiCl<sub>4</sub> at 600-700°C

TiSi<sub>x</sub> islands form on Si(001)

by strain energy from lattice mismatch

### 2) Form nanowires

Expose to vapor SiH<sub>4</sub> or SiH<sub>2</sub>Cl<sub>2</sub> at 600-700°C





### **Ti-Catalyzed Si Nanowires**



Shallow-angle scanning electron micrograph



High-resolution transmission electron micrograph

Micrographs courtesy of Tor Hesjedal Stanford University





## <u>Single-Crystal Si Wire</u> with TiSi<sub>x</sub> at Tip

**TiSi**<sub>x</sub>

Si



EDS analysis courtesy of Tor Hesjedal, Stanford University, and David Basile, Agilent Technologies











## **Surface-Reaction-Rate-Limited Growth**

#### Initial Stage of Wire Growth



#### **Subsequent Stage of Wire Growth**







## **Higher Temperature**

Uncatalyzed growth rate significant

#### Surface-Reaction-Rate Limited SiH<sub>2</sub>Cl<sub>2</sub> at 920°C



Mass-Transport Limited SiH<sub>4</sub> at 920°C







## **Positioning Islands and Nanowires**

#### **Oxide-Patterned Si Substrate**



Si TiSi<sub>2</sub> islands







/Si wires





### **Aligning Nanowires Using an Ion Beam**

Sparse array: after deposition



#### Sparse array: after alignment









### **Aligning Nanowires Using an Ion Beam**

#### **Shadowed wires**



Dense array after shadowed alignment







# **Summary**

#### Ti deposition

Rate decreases as temperature decreases

#### • Island formation during deposition

Size decreases as temperature decreases Density varies only weakly with temperature

#### Island modification during annealing Islands coarsen

### Nanowire growth

Ti catalyzes SiH<sub>4</sub> and SiH<sub>2</sub>Cl<sub>2</sub> decomposition Ti remains at tip of growing wire

• Nanowire alignment using an ion beam



