Advanced Device Concepts and Research: Self-Assembled Nanostructures

Presented by Ted Kamins Quantum Science Research Hewlett-Packard Laboratories

www.hpl.hp.com/research/qsr

MSE Colloquium Stanford University November 15, 2002

<u>Outline</u>

Limits of Device Scaling Alternative Device Concepts Self-Assembled Nanostructures

Forming small structures Putting them where we want them Zero- and one-dimensional structures Catalyzed nanowire growth Strain from lattice mismatch Nanowire transistor (speculation) Enabling Concept

Defect Tolerance

(Reference: Scott Adams "Dilbert," July 15, 1997)

Moore's Law Number of Transistors

Critical Issues

Device size and density

Physically small features Operation with small features Limited number of electrons Interconnections

Cost

Minimize expensive lithography Self (or directed) assembly Simpler architecture Defect-tolerant architecture

Potential Devices

Single-electron devices Quantum cellular automata Molecular electronics Quantum computing

Single-Electron Device

Quantum Cellular Automata

Cell with two possible polarizations

Electrostatic interaction between adjacent cells Don't need wires to individual cells Add energy to prevent "sticking" Clocking...perhaps through substrate or overlayer

invent

Two interacting cells High-energy state Input Output Electrostatic repulsion

Low-energy state Input

Molecular Electronics

Organic molecule with two states of different electronic conductivity

Switch small group of molecules on nanowires Eventually switch single molecule Switching time?

C. P. Collier, *et al,* Science **289**, 1172 (18 August 2000)

Molecular Electronics: Switching

Electronic reconfiguration of molecular structure Charging of internal node within molecule Possibly modify bonding of molecule to electrode

C P Collier, E W Wong, M Belohradsky, F M Raymo, J F Stoddart, P J Kuekes, R S Williams, and J R Heath, Science, vol. 285, p. 391, 16 July 1999

Potential Devices

Single-electron devices Quantum cellular automata Molecular electronics Quantum computing (Exciting, but speculative)

Critical Issues

Device size and density

Physically small features Operation with small features Limited number of electrons Interconnections

Cost

Minimize expensive lithography Self (or directed) assembly Simpler architecture Defect-tolerant architecture

Advanced Lithography

Near-term

Deep UV: I-line: 365 nm Excimer: 248, 193 nm Phase-shift masks Contrast enhancement

Future

Electron beam: Serial Scanned probe: Serial x-ray: Parallel (masks?) Extreme ultraviolet 13 nm Parallel Reflective optics Nanoimprinting

Nanoimprinting Technology

- Lower cost
- Define many elements simultaneously

1) Make reusable mold by electron-beam lithography

2) Form nanoscale feature in substrate (Si) All features formed in parallel

Self-Assembled Nanostructures 0D Islands and 1D Nanowires on Si

Conventional scaling will reach its limits

Use directed-assembly to extend Moore's law

- Determine critical dimensions by choice of materials and deposition kinetics ("self assembly"), not lithography
- Use lithography to position devices or arrays of devices ("directed assembly")

Use small-size effects to perform logic, storage, and computation

Coulomb blockade Quantum confinement

Self (or Directed) Assembly

Methods of self- or directed- assembly

Strain from lattice mismatch Catalytic wire growth on nanoparticle

Thermodynamically assembled structures

Several percent defects Need defect-tolerant architecture

Metal Catalyzed Nanowire Growth

Integration of Nanowires with CMOS

CMOS provides gain and interface circuitry Partially processed CMOS (700°C) Fully processed CMOS (400°C) Perhaps as interconnections for molecular electronics Perhaps place some modulating element within wire

Wire

Wire + molecular layer or insulator

Counter-

electrode

or gate

Metal-Catalyzed Si Nanowire Growth

With Xuema Li and Tan Ha, Hewlett-Packard Labs

Dense Si Nanowires from TiSi_x Islands

Micrographs by Thorsten Hesjedal, Stanford University

Ti-Nucleated Si Nanowire

Analysis by Thorsten Hesjedal (Stanford University) David Basile (Agilent Laboratories)

Surface Reaction Rate Limited Region of Growth

Initial Stage of Wire Growth

Subsequent Stage of Wire Growth

Higher temperature

Uncatalyzed growth rate significant

Surface Reaction Rate Limited Region SiH₂Cl₂ at 920°C

Mass Transport Limited Region SiH₄ at 920°C

Catalytic Nuclei: Material

Desired characteristics:

Not a deep energy level in Si bandgap Low solid solubility in Si Liquid eutectic below deposition temperature (for VLS growth) Au: Liquid eutectic: ~360°C for Si and Ge

 $E_t-E_i \sim 0$: Mid-gap g-r center

Need barrier layers if used with Si ICs

Catalytic Nuclei: Form

Si Nanowires on Ti

Reduce taper by limiting uncatalyzed deposition rate Reduce temperature Less reactive Si source: *eg*, SiH₂Cl₂ Add HCI

> Nanowires formed in 600°C temperature range: Compatible with partially processed CMOS

Lower Temperatures for CMOS Compatibility Ge Nanowires on Au Nanoparticles

Temperature range for wire growth: ~315– 370°C Wire diameter ~ 40 nm on ~20 nm Au nanoparticles

Stability of Si Nanowires

How stable are nanowires? Process integration easier if more stable Instability caused by surface diffusion Native oxide expected to stabilize Consider different ambients Inert vs. reducing Intermediate air-exposure (In-situ vs. ex-situ annealing)

> Inert ambient after air exposure: N₂: Stable to >950°C Slightly reducing ambient after air exposure: 4%H₂/N₂ Also stable to ~950°C Strongly reducing ambient after air exposure: H₂ Strongly reducing ambient - no air exposure: H₂

Stability of Si Nanowires

How stable are nanowires? Process integration easier if more stable Instability from surface diffusion Native oxide expected to stabilize Consider different ambients Inert vs. reducing Intermediate air-exposure (In-situ vs. ex-situ annealing)

> Inert ambient after air exposure: N_{2:} Stable to >950°C Slightly reducing ambient after air exposure: 4%H₂/N₂ Also stable to ~950°C Strongly reducing ambient after air exposure: H₂ Strongly reducing ambient - no air exposure: H₂

Stability (or lack of): 900°C in H₂ Si Nanowires on Ti

(Plan view)

(Cross section)

Step Bunching on Tapered Nanowire

1 µm

Rapid surface diffusion Limited by step detachment/attachment

Instability along Uniform Nanowire

1 µm

F. A. Nichols and W. W. Mullins, Trans. Met. Soc. AIME 233, 1840 (1965).
Lord Rayleigh, Proc. London Math. Soc. 10, 4 (1878).

Si wires

Forming Self-Assembled Islands (Quantum Dots)

Deposit one material on another

Different lattice constants --- strain Large strain --- islands Small islands --- quantum or Coulomb-blockade effects

Focus on Ge on Si

Why Ge on Si? Compatible with Si IC technology Deposition by Chemical Vapor Deposition

(or Physical Vapor Deposition)

Energy and Kinetics Influence Island Formation

Possible Device Applications

Random Arrangement

Long-wavelength photodetectors (or possibly emitters)

Aligned

MOS for logic

Possible barrier to short-channel (substrate) effects

Chemical Vapor Deposition Reactor

Layers deposited in two different single-wafer CVD reactors (and also by PVD)

Scanning-Probe Microscopy

Atomic-Force Microscope (AFM)

CVD and ex situ characterization

Scanning-Tunneling Microscope (STM)

PVD and in situ characterization

Very Small Ge Pyramid

Scanning Tunneling Micrograph by G. Medeiros-Ribeiro, HPL

Self-Assembled Nanostructures

Strain from lattice mismatch forms 3D structure

Small Ge "pyramid" on Si(001)

Scanning-tunneling micrograph Gio Medeiros-Ribeiro, HPL

Array of Ge islands: Pyramids, domes, superdomes

Atomic-force micrograph

Distribution of Island Heights

Positioning Islands: Self-Assembled Ge Islands on Patterned Si substrate Ge islands {110} planes 300 nm Si(001) plane Selective Si SiO₂ Si substrate 0 0.5 T.I. Kamins and R. Stanley Williams, 1.0 µm Appl. Phys. Lett. 71, 1201 (1997)

What Causes Alignment?

Surface Diffusion?

Anisotropic diffusion causes Ge accumulation near edge

Steps near Edge?

Small facet at corner provides steps Ge nucleates on steps

Strain?

Ge stretches Si lattice near edges

Relieves stress

Lowers energy barrier for nucleation

Anisotropic Stress

Ge on Si:

- Lattice mismatch same in x and y directions
- \Rightarrow equi-axed islands

Different lattice mismatch in different directions

 \Rightarrow anisotropic islands (ie, "wires")

Anisotropic lattice mismatch:

ErSi2 [0001] || Si<110>: +6.5%

ErSi2 [1120] || Si<110>: -1.3%

Constraint on growth in one direction

Elongated (wire) growth in perpendicular direction

Y. Chen, D. A. A. Ohlberg, G. Medeiros-Ribero, Y. A. Chang, and R. Stanley Williams, Applied Physics Letters **76**, 4004 (26 June 2000)

Self-Assembled Nanostructures

Anisotropic lattice strain forms 1D structure

ErSi₂ "wires" on Si(001)

Scanning tunneling micrographs

Yong Chen and Doug Ohlberg, HPL

Deposition Rate of Ti from TiCl₄

Deposition of Ti from TiCl₄

730⁰C

690[°]C

640[°]C

Annealing CVD Ti Islands

After Deposition at 640°C

Annealed at 920°C

Transmission Electron Microscopy of Annealed TiSi₂ Islands

Plan View

Cross Section

Transmission electron microscopy by David Basile and Margaret Wong of Agilent Laboratories

Nanowire: Integrated Device and Interconnection

Trade-off: Series resistance vs. Transistor Characteristics

Two cases: Uniform doping Selective doping

Nanowire: Uniform Doping

Normally ON transistor $D < 2 x_{dmax}$

Doping low enough so can deplete entire wire diameter Limits conductance of interconnect Voltage drop along wire Time to charge next gate Sensitive to size and doping

Induce channel Intrinsic: Not sensitive to dopant fluctuations Sensitive to wire diameter

Addressing Moore's Second Law Crossbar Array

Dense

Device at intersection of two wires

Structurally simple

Need well-defined threshold to avoid switching when "half selected"

Repetitive

Allows reconfiguration

Defect tolerance

Wires (perhaps)

Si nanowires or C nanotubes

Gain

In devices

In "wires"

In underlying CMOS

Cross-Bar Memory Array above Logic

Bit at crossing of wires

Nonvolatile (unlike DRAM)

Can be built above CMOS

Physically place elements closer together Minimize delay between logic and storage

Multiple layers possible (unlike Flash memory) "3D IC"

Increase density

Effective use of expensive CMOS area

Three-Dimensional Electronics

Increase density Physically place elements close together Shorter wires Wires and vias must not limit area available for devices

Defect Tolerance

Self-assembled, self-ordered system will not be perfect

Several percent defects

How to live with less-than-perfect parts in a system?

Structurally simple architecture (eg, crossbar array)

Self-assembled parallel straight wires

Map defects

Configure around defects

(Can also be applied to conventional fabrication to reduce costs)

Teramac (HP Labs Project)

Demonstration of configurable computer made with "known bad" parts (location of defects initially unknown)
Implemented with partially defective FPGAs
Mainly wires, crossbar switches, look-up tables
Normal computer: Design (configure), build, test
Teramac: Build, test (to locate defects), configure around defects

^{W.B. Culbertson, R. Amerson, R.J. Carter, P. Kuekes, and G. Snider,} Proc. 1997 IEEE Symp. On FPGAs for Custom Computing Machines J.R. Heath, P.J. Kuekes, G.S. Snider, and R.Stanley Williams, Science, vol. 280, pp. 1716-1720 (12 June 1998)

Summary

Limits of scaling Alternative devices

Single-electron transistor Quantum cellular automata Molecular electronics Quantum computing

Self-assembled nanostructures

Forming small structures Putting them where we want them Metal-catalyzed wire growth Ti-catalyzed Si nanowire growth Stability of wires Strain from lattice mismatch Zero-dimensional islands: Ge, Ti One-dimensional wires: ErSi₂ Patterned substrate to position features Speculation about nanowire transistor Defect-tolerant architecture

