<u>Nanowires:</u> <u>Speculation on Integrating</u> <u>Devices and Interconnections</u>

Ted Kamins Hewlett-Packard Laboratories Palo Alto, California

Presented at the Center for Integrated Systems Stanford University May 7, 2002

Multilevel Interconnection System

(Cross Section Transmission Electron Micrograph)

Courtesy Rudolph Technologies, Inc.

Capacitance between metal lines can limit circuit performance

Consider device as adjunct to interconnections Wires \rightarrow Nanowires

Nanowire: Integrated Device and Interconnection

Nanoimprinting

One-dimensional structure from anisotropic lattice strain

Yong Chen and Doug Ohlberg Hewlett-Packard Labs

Metal-Catalyzed Si Nanowire Growth

With Xuema Li and Tan Ha, Hewlett-Packard Labs

Dense Si Nanowires from TiSi_x Islands

Micrographs by Thorsten Hesjedal, Stanford University

Single-Crystal Si Nanowire with Metal Particle at Tip

Analysis by T. Hesjedal, Stanford University and D. Basile, Agilent Laboratories

Mechanism of Nanowire Growth

Aligning Nanowires Using an Ion Beam

Sparse array after deposition

Wires

With Y.-L. Chang, Agilent Laboratories

Aligning Nanowires Using an Ion Beam

Shadowed wires

Dense array after shadowed alignment

With M. Juanitas, Agilent Laboratories

Fabricate Nanowires on CMOS

(CMOS for Gain and Interface Circuitry)

Wire Wire + Insulator

Nanowire: Uniform Doping

Normally ON transistor

 $D < 2 x_{dmax}$

Doping low enough so can deplete entire wire diameter Limits conductance of interconnect Voltage drop along wire Time to charge next gate Sensitive to size and doping

Back-Of-Envelope Estimates

One-dimensional analysis Need 2 or 3-dimensional analysis Use equations for planar geometry Let L = D Assume no fabrication limits Assume no short-channel effects **Nonsense,** ...but should stimulate discussion

Uniformly Doped Nanowire Transistors

	<u>D = 20 nm</u>	<u>D = 5 nm</u>
$X_{dmax} = \sqrt{\frac{4 \epsilon_s \phi_B}{q N_D}} \sim \frac{D}{2}$	10 nm	2.5 nm
$N_{Dmax} \sim 5 \times 10^7 / D^2 \sim 1/D^2$	$1.3 imes 10^{19} \text{ cm}^{-3}$	$2.1 imes 10^{20} \text{ cm}^{-3}$
$N = \frac{\pi}{4} D^2 L_D N_{Dmax} \sim D$	81	21
$\frac{\Delta N}{N} \sim \sqrt{N} \sim 1/D^{1/2}$	11%	22%
$\rho = \frac{1}{ne\mu} \sim D^2$	$5 imes 10^{-3} \ \Omega$ -cm	$4 imes 10^{-4} \ \Omega$ -cm
$R = \frac{\rho L_{I}}{A_{x}} \sim \frac{D^{2}}{D^{2} \mu(N_{D})}$	$1.5 imes 10^5~\Omega$	$2 imes 10^5\Omega$
$I \sim \frac{V}{R} \sim O(D^0)$	6 μΑ	5 μΑ
Q = q N ~ D	$1.3 imes 10^{-17} \text{ C}$	$3 imes 10^{-18} \text{ C}$
τ = Q / I ~ D	2.2 ps	0.6 ps

Selectively Doped Nanowire Transistors

	<u>D = 20 nm</u>	<u>D = 5 nm</u>
$X_{dmax} >> \frac{D}{2}$	>>10 nm	>>2.5 nm
$C_{ox} = \frac{\varepsilon_{ox} A_{s}}{x_{ox}} = \frac{\varepsilon_{ox} \pi D L_{D}}{x_{ox}} \sim D^{2}$	$2.2 imes 10^{-17} \ \text{F}$	$1.4 imes 10^{-18} \text{ F}$
$N = C_{ox} V/q \sim D^2$	140	9
$\frac{\Delta N}{N} \sim \sqrt{N} \sim D^{-1}$	8%	33%
$\rho = \frac{1}{ne\mu} \sim D^0$	$1.5 imes 10^{-4} \ \Omega$ -cm	$1.5 imes 10^{-4} \ \Omega$ -cm
$R = \frac{\rho L_{l}}{A_{x}} \sim 1/D^{2}$	$5 imes 10^3~\Omega$	$8 imes 10^4~\Omega$
$I \sim \frac{V}{R}$	200 µA	12 μA
$\tau = R C \sim D^0$	0.1 ps	0.1 ps

Summary

Metal-catalyzed nanowires (D < 20 nm) Alignment possible Uniform doping limits performance Selective doping more flexible Detailed modeling needed (with realistic fabrication constraints)

