Metal-Catalyzed Nanowires for Integrated Devices and Interconnections

Ted Kamins, Xuema Li, Tan Ha, and R. Stanley Williams

Quantum Science Research Hewlett-Packard Laboratories Palo Alto, California

Presented at the American Vacuum Society Symposium November 2002

Partially supported by DARPA agreement MDA972-01-3-0005

Metal-Catalyzed Nanowires for Integrated Devices and Interconnections

> Si (and Ge) Nanowires Outline

- Metal-catalyzed growth Catalyst nanoparticles Wire growth
- Stability during further processing
- Speculation about integrating devices and interconnections

Integration of Nanowires with CMOS

CMOS provides gain and interface circuitry Partially processed CMOS (700°C) Fully processed CMOS (400°C) Perhaps as interconnections for molecular electronics Perhaps place some modulating element within wire

Wire

Wire + molecular layer or insulator

Counterelectrode or gate

Metal Catalyzed Nanowire Growth

Catalytic Nuclei: Material

Desired characteristics:

Not a deep energy level in Si bandgap Low solid solubility in Si Liquid eutectic below deposition temperature (for VLS growth) Au: Liquid eutectic: ~360°C for Si and Ge $E_t-E_i \sim 0$: Mid-gap g-r center $N_{ss} = 10^{17}$ cm⁻³

Need barrier layers if used with Si ICs

Ti: E_t-E_i ~ 0.34 eV
 N_{ss} ~ 10¹² cm⁻³
 Liquid eutectic: 1350°C —_____
 Deposition temperature: ~600°C √
 (probably not VLS growth)

Catalytic Nuclei: Form

Si Nanowires on Ti

Reduce taper by limiting uncatalyzed deposition rate Reduce temperature Less reactive Si source: *eg*, SiH₂Cl₂ Add HCI

Nanowires formed in 600°C temperature range:

Compatible with partially processed CMOS

Lower Temperatures for CMOS Compatibility Ge Nanowires on Au Nanoparticles

Temperature range for wire growth: ~315– 370°C Wire diameter ~ 40 nm on ~20 nm Au nanoparticles

Stability of Si Nanowires

How stable are nanowires? Process integration easier if more stable Instability caused by surface diffusion Native oxide expected to stabilize Consider different ambients Inert vs. reducing Intermediate air-exposure (In-situ vs. ex-situ annealing)

> Inert ambient after air exposure: N_{2:} Stable to >950°C Slightly reducing ambient after air exposure: 4%H₂/N₂ Also stable to ~950°C Strongly reducing ambient after air exposure: H₂

Strongly reducing ambient - no air exposure: H_2

Stability of Si Nanowires

How stable are nanowires? Process integration easier if more stable Instability from surface diffusion Native oxide expected to stabilize Consider different ambients Inert vs. reducing Intermediate air-exposure (In-situ *vs.* ex-situ annealing)

Inert ambient after air exposure: N_{2:} Stable to >950°C Slightly reducing ambient after air exposure: 4%H₂/N₂ Also stable to ~950°C Strongly reducing ambient after air exposure: H₂

Strongly reducing ambient - no air exposure: H_2

Stability (or lack of): 900°C in H₂ Si Nanowires on Ti

(Plan view)

(Cross section)

Step Bunching on Tapered Nanowire

Rapid surface diffusion Limited by step detachment/attachment

Instability along Uniform Nanowire

1 µm

F. A. Nichols and W. W. Mullins, Trans. Met. Soc. AIME 233, 1840 (1965).
Lord Rayleigh, Proc. London Math. Soc. 10, 4 (1878).

Nanowire: Nanowire:

Integrated Device and Interconnection

Trade-off: Series resistance vs. Transistor Characteristics

Two cases: Uniform doping Selective doping

Nanowire: Uniform Doping

Normally ON transistor

 $D < 2 x_{dmax}$

Doping low enough so can deplete entire wire diameter Limits conductance of interconnect Voltage drop along wire Time to charge next gate Sensitive to size and doping

Back-Of-Envelope Estimates

One-dimensional analysis Need 2 or 3-dimensional analysis Use equations for planar geometry Let L = D Assume no fabrication limits Assume no short-channel effects

Back-Of-Envelope Estimates

One-dimensional analysis Need 2 or 3-dimensional analysis Use equations for planar geometry Let L = D Assume no fabrication limits Assume no short-channel effects **Nonsense, of course,** ...but should stimulate discussion

Uniformly Doped Nanowire Transistors			
	<u>D = 20 nm</u>	<u>D = 5 nm</u>	
$X_{dmax} = \sqrt{\frac{4 \epsilon_s \phi_B}{q N_D}} \sim \frac{D}{2}$	10 nm	2.5 nm	
$N_{Dmax} \sim 5 \times 10^7 / D^2 \sim 1/D^2$	$1.3 imes 10^{19} \text{ cm}^{-3}$	$2.1 imes 10^{20} \text{ cm}^{-3}$	

Uniformly Doped Nanowire Transistors

	<u>D = 20 nm</u>	<u>D = 5 nm</u>
$X_{dmax} = \sqrt{\frac{4 \epsilon_s \phi_B}{q N_D}} \sim \frac{D}{2}$	10 nm	2.5 nm
$N_{Dmax} \sim 5 \times 10^7 / D^2 \sim 1/D^2$	$1.3 imes 10^{19} \text{ cm}^{-3}$	$2.1 imes 10^{20} \text{ cm}^{-3}$
$N = \frac{\pi}{4} D^2 L_D N_{Dmax} \sim D$	81	21
$\frac{\Delta N}{N} \sim \sqrt{N} \sim 1/D^{1/2}$	11%	22%
$\rho = \frac{1}{ne\mu} \sim D^2$	$5 imes 10^{-3} \ \Omega$ -cm	$4 imes 10^{-4} \ \Omega$ -cm
$R = \frac{\rho L_{I}}{A_{x}} \sim \frac{D^{2}}{D^{2} \mu(N_{D})}$ (L _I = 1 μ m)	$1.5 imes 10^5~\Omega$	$2 imes 10^5 \Omega$

Uniformly Doped Nanowire Transistors

<u>D = 20 nm</u>	<u>D = 5 nm</u>
10 nm	2.5 nm
$1.3 imes 10^{19} \text{ cm}^{-3}$	$2.1 imes10^{20}$ cm ⁻³
81	21
11%	22%
$5 imes 10^{-3} \ \Omega$ -cm	$4 imes 10^{-4} \ \Omega$ -cm
$1.5 imes 10^5~\Omega$	$2 imes 10^5~\Omega$
6 μΑ	5 μΑ
1.3 × 10 ⁻¹⁷ C	3 × 10 ⁻¹⁸ C
2.2 ps	0.6 ps
	D = 20 nm 10 nm $1.3 \times 10^{19} \text{ cm}^{-3}$ 81 11% $5 \times 10^{-3} \Omega$ -cm $1.5 \times 10^5 \Omega$ $6 \mu A$ $1.3 \times 10^{-17} C$ 2.2 ps

Induce channel Intrinsic: Not sensitive to dopant fluctuations Sensitive to wire diameter

Selectively Doped Nanowire Transistors

	<u>D = 20 nm</u>	<u>D = 5 nm</u>
$X_{dmax} >> \frac{D}{2}$	>>10 nm	>>2.5 nm

Selectively Doped Nanowire Transistors

	<u>D = 20 nm</u>	<u>D = 5 nm</u>
$X_{dmax} >> \frac{D}{2}$	>>10 nm	>>2.5 nm
$C_{ox} = \frac{\varepsilon_{ox} A_{s}}{x_{ox}} = \frac{\varepsilon_{ox} \pi D L_{D}}{x_{ox}} \sim D^{2}$	2.2 × 10 ⁻¹⁷ F	1.4 × 10 ⁻¹⁸ F
$N = C_{ox} V/q \sim D^2$	140	9
$\frac{\Delta N}{N} \sim \sqrt{N} \sim D^{-1}$	8%	33%
$\rho = \frac{1}{ne\mu} \sim D^0$	$1.5 imes 10^{-4} \ \Omega$ -cm	$1.5 imes 10^{-4}~\Omega$ -cm
$R = \frac{\rho L_{I}}{A_{x}} \sim 1/D^{2}$ (L _I = 1 µm)	$5 imes 10^3~\Omega$	$8 imes 10^4~\Omega$

Selectively Doped Nanowire Transistors

	<u>D = 20 nm</u>	<u>D = 5 nm</u>
$X_{dmax} >> \frac{D}{2}$	>>10 nm	>>2.5 nm
$C_{ox} = \frac{\varepsilon_{ox} A_{s}}{X_{ox}} = \frac{\varepsilon_{ox} \pi D L_{D}}{X_{ox}} \sim D^{2}$	$2.2 \times 10^{-17} \text{ F}$	1.4 × 10 ⁻¹⁸ F
$N = C_{ox} V/q \sim D^2$	140	9
$\frac{\Delta N}{N} \sim \sqrt{N} \sim D^{-1}$	8%	33%
$\rho = \frac{1}{ne\mu} \sim D^0$	$1.5 imes 10^{-4} \ \Omega$ -cm	$1.5 imes 10^{-4}~\Omega$ -cm
$R = \frac{\rho L_1}{A_x} \sim 1/D^2$ (L ₁ = 1 µm)	$5 imes 10^3~\Omega$	$8 imes 10^4~\Omega$
$I \sim \frac{V}{R}$	200 μΑ	12 μΑ
$\tau = R C \sim D^0$	0.1 ps	0.1 ps

Metal-Catalyzed Nanowires for

Integrated Devices and Interconnections

Si (and Ge) Nanowires Summary

- Metal-catalyzed growth Catalyst nanoparticles Wire growth
- Stability during further processing
- Speculation about integrating devices and interconnections

