Self-Assembled Nanostructures: Ge on Si

Presented by Ted Kamins Quantum Science Research Hewlett-Packard Laboratories Palo Alto, California

www.hpl.hp.com/research/qsr

Applied Materials Epitaxy Symposium Santa Clara, California September 19, 2002

Outline

Limits of Device Scaling

Alternative Device Concepts Self-Assembled Nanostructures

Forming small structures Putting them where we want them Zero-dimensional structures Strain from lattice mismatch

Enabling Concept

Defect Tolerance

(Reference: Scott Adams "Dilbert," July 15, 1997)

Moore's Law Number of Transistors

Critical Issues

Device size and density

Physically small features Operation with small features Limited number of electrons Interconnections

Cost

Minimize expensive lithography Self (or directed) assembly Simpler architecture Defect-tolerant architecture

Potential Devices

Single-electron devices Quantum cellular automata Molecular electronics Quantum computing

Critical Issues

Device size and density

Physically small features Operation with small features Limited number of electrons Interconnections

Cost

Minimize expensive lithography Self (or directed) assembly Simpler architecture Defect-tolerant architecture

Self-Assembled Nanostructures Zero Dimensional Islands on Si

Use directed-assembly to extend Moore's law

Determine critical dimensions by choice of materials and deposition kinetics ("self assembly"), not lithography Use lithography to position devices or arrays of devices ("directed assembly")

Use small-size effects to perform logic, storage, and computation Coulomb blockade or quantum confinement

Methods of self- or directed- assembly

Strain from lattice mismatch Catalytic wire growth on nanoparticle

Thermodynamically assembled structures

Several percent defects Need defect-tolerant architecture

Can Accommodate Moderate Strain Multilayer Si/SiGe Structure

- Average SiGe layer thickness: 3 nm + 0.2 nm
- Average Si layer thickness: 3.5 nm + 0.2 nm
- Si source: SiH₂Cl₂
- Temperatures: 625°C (SiGe), 690°C (Si)

Large Strain + Surface Diffusion Allows Surface Roughening

Deposit one material on another

Large strain → self-assembled islands (quantum dots) Small islands → quantum or Coulomb-blockade effects

Focus on Ge on Si

Why Ge on Si?

Compatible with Si IC technology Deposition by

Chemical Vapor Deposition

(or Physical Vapor Deposition)

Energy and Kinetics Influence Island Formation

Possible Device Applications

Random Arrangement

Long-wavelength photodetectors (or possibly emitters)

Aligned

MOS for logic

Possible barrier to short-channel (substrate) effects

Quantum Dot Computer

Artur Ekert

Key to Using Self-Assembled Islands

Forming and Positioning Islands

Applied Materials Centura

Layers deposited in two different single-wafer CVD reactors (and also by PVD)

Scanning-Probe Microscopy

Atomic-Force Microscope (AFM)

CVD and ex situ characterization

Scanning-Tunneling Microscope (STM)

PVD and in situ characterization

Ge/Si(001): 6 eq-ML at 600°C

Very Small Ge Pyramid

Scanning Tunneling Micrograph by G. Medeiros-Ribeiro, HPL

Self-Assembled Nanostructures

Strain from lattice mismatch forms 3D structure

Scanning-tunneling micrographs

Gio Medeiros-Ribeiro, HPL

Island Distribution

Pyramids do not

Pyramids

invent

Bounded by {105} facets only Proportional: Surface area Interface area Edge length

Bounded by several facets Area ratio can vary Need not be proportional: Surface area Interface area Edge length Can vary to minimize energy Harder to add atoms beyond this energy minimum Strain relaxation near top of island

Minimize Energy

Volume strain energy, facet surface energy, edge energy, (interface energy - surface energy)

 $\Delta E(n) = C n + B n^{2/3} + A n^{1/3} \ln(a_c/n^{1/3})$

- C (C< 0): volume strain energy
- B (B<>0): facet and interface energies
- A (A> 0): edge energies

 $\Delta E(n)/n = C + B n^{-1/3} + A n^{-2/3} ln(a_c/n^{1/3})$

Shape Determined by Energy Minimization

Manipulating Islands

How to get

- Uniform size distribution?
- Smaller islands?

Domes have narrower distribution Potentially more useful

How to get smaller domes? Change kinetics or thermodynamics

- •Add HCI during deposition: Primarily changes kinetics
- Etch with HCl after deposition Reduces island height, not base
- Use Ti (TiSi_x)
 Larger lattice mismatch

Using HCI to Control Islands

Adding HCI during Deposition

0 1.5 HCI Partial Pressure (Pa)

Adsorbed CI impedes Ge surface diffusion

Etching with Gaseous HCI after Deposition

Shorter, but not narrower

Manipulating Islands

How to get smaller domes? Change thermodynamics

Island shape determined by

- Volume energy
- Surface energy
- Interface energy
- Edge and corner energies

Add something that binds well to surface, changes surface energy (and perhaps ratio of energies of different surfaces)

Phosphorus or arsenic *n*-type dopants Initiation of arsenic incorporation slow Little in thin layer Phosphorus more useful as dopant

Doped Ge islands

$GeH_4 + PH_3 + H_2$

Temperature: 600° C Partial pressures: GeH₄: $3-6\times10^{-2}$ Pa (2.5-5×10⁻⁴ Torr) PH₃: 1.7×10^{-3} Pa (1.4×10⁻⁵ Torr) H₂: 1.3 kPa (10 Torr)

Island Shape Analysis

Undoped: Pyramids and Domes

Doped: Mini-domes

Points of one shape lie on line with slope = 2/3 Intercept different for different shapes

Phosphorus Also Changes Annealing Kinetics

6 eq-ML undoped Ge Mainly pyramids

Effect of annealing

H₂: Islands coarsen many convert to domesPH₃: Coarsening retarded

Phosphorus-Doped Ge Islands

- Island shape influenced by surface energy
- Phosphorus...
 - Modifies energies and <u>relative</u>
 energies of different surface planes
 - Changes favored island shape
 - Retards coarsening
- Additional method for controlling island size, shape, and uniformity
 Slow buildup of high surface phosphorus concentration over 10s of monolayers

Manipulating Islands

Ordering and aligning

Ordering in Successive Layers

Cross Section

<u>10 Layers of Si/Ge (Pyramids)</u> <u>Nano Picasso</u>

Top View

(100) Direction

Height scale: 20 nm

Positioning Islands: Self-Assembled Ge Islands on Patterned Si substrate

Positioning Islands: Self-Assembled Ge Islands on Patterned Si substrate

What Causes Alignment?

Facet provides steps for Ge nucleation

What Causes Alignment?

Shallow facet

Facet provides steps for Ge nucleation

Surface Diffusion?

Anisotropic diffusion causes Ge accumulation near edge

Ge stretches Si lattice near edges Relieves stress Lowers energy barrier for nucleation

Si-Capped Ge Islands on Patterned Si Substrate

In-plane orientation of Ge islands and Si cap are different: Ge || [100], Si || [110] directions

Anisotropic Stress

Ge on Si:

- Lattice mismatch same in x and y directions
- \Rightarrow equi-axed islands

Different lattice mismatch in different directions

 \Rightarrow anisotropic islands (ie, "wires")

Anisotropic lattice mismatch:

ErSi2 [0001] || Si<110>: +6.5%

ErSi2 [1120] || Si<110>: -1.3%

Constraint on growth in one direction

Elongated (wire) growth in perpendicular direction

Y. Chen, D. A. A. Ohlberg, G. Medeiros-Ribero, Y. A. Chang, and R. Stanley Williams, Applied Physics Letters **76**, 4004 (26 June 2000)

Self-Assembled Nanostructures

Anisotropic lattice strain forms 1D structure

Scanning tunneling micrographs

ErSi₂ "wires" on Si(001)

Yong Chen and Doug Ohlberg, HPL

Defect Tolerance

Self-assembled, self-ordered system will not be perfect

Several percent defects

How to live with less-than-perfect parts in a system?

Structurally simple architecture (eg, crossbar array)

Parallel straight wires

Map defects

Configure around defects

(Can also be applied to conventional fabrication

to reduce costs)

Normal computer:

Design (configure), build, test

Defect-tolerant computer:

Build, test (to locate defects), configure around defects

Summary

Limits of scaling Alternative devices **Self-assembled nanostructures** Forming small structures Putting them where we want them Strain from lattice mismatch Zero-dimensional islands: Ge, Ti One-dimensional wires: ErSi₂ Catalytic wire growth Ti-catalyzed Si nanowire growth Patterned substrate to position features **Defect-tolerant architecture**

