
Polynomial Texture Map (.ptm) File Format

Tom Malzbender
Dan Gelb

Hewlett-Packard Laboratories

11/01

Version 1.2

1.0 Background

Polynomial texture maps (PTM’s) are an extension to conventional texture maps that
allow enhanced image quality. As opposed to storing a color per pixel, these PTM’s store
second-order bi-quadratic polynomial coefficients per pixel. These polynomials model
the changes that appear to a pixel color based on either light source position or viewing
direction. For example, if Lu,Lv are the parameterized light source directions1 and a0-5 the
scaled and biased polynomial coefficients, a color channel intensity C are arrived at via:

C = a0Lu
2 + a1Lv

2 + a2LuLv + a3Lu + a4Lv + a5

This document describes the file format used for representing PTM’s. PTM files are
designated by the suffix .ptm.

IMPORTANT NOTE: The file assumes little endian format, meaning that the least
significant bit is stored first. In order to run on a big endian machine the file reader
has to be modified to assemble the integers in the correct order.

2.0 File Format

A PTM file consists of the following 5 sections, each separated by a newline character
(with an optional space before the newline):

2.1 Header String. The ASCII string ‘PTM_1.2’ appears on the first line of the
file. This identifies the file as a PTM file and provides the PTM version
number being supported.

2.2 Format String. One of the following ASCII strings appears on the next line

identifying the format of the file:

1 Parameterized lighting directions are arrived at by projecting the normalized light vector into the 2
dimensional texture space (u,v) to yield Lu,Lv.

PTM_FORMAT_RGB
PTM_FORMAT_LUM
PTM_FORMAT_LRGB
PTM_FORMAT_PTM_LUT
PTM_FORMAT_PTM_C_LUT
PTM_FORMAT_JPEG_RGB
PTM_FORMAT_JPEG_LRGB
PTM_FORMAT_JPEGLS_RGB
PTM_FORMAT_JPEGLS_LRGB

2.3 Image Size. The next line consists of an ASCII string containing the

width and height of the PTM map in pixels. It is legal to have a newline
separating the width and the height.

2.4 Scale and Bias. The PTM coefficients are stored in the file as a single byte

per coefficient. Since this limits the coefficients to be in the range of [0,1],
scale and bias values are provided that can map these values to arbitrary
values. A total of 6 bias and 6 scale values are provided, one for each of the 6
polynomial coefficients. The six ASCII floating point scale values appear in
the file first, follow by the six ASCII integer bias values, all separated by
spaces. A newline can be used between the scale values and the bias values. It
is legal to have a space character before the newlines. The final coefficient
values are arrived at by:

Cfinal = (Craw – bias) * scale

2.5 Lookup Table. This is only present for formats that use a lookup table,

namely PTM_FORMAT_PTM_LUT and PTM_FORMAT_PTM_C_LUT.
For PTM_FORMAT_PTM_LUT. First a specification of the number of
entries in the lookup table is given, where nentries is an integer:

 nentries N_LUT_ENTRIES

This is followed by the lookup table itself which is format dependent. Each of
the nentries of the lookup table are specified as a sequence of unsigned chars
with no characters between entries. For the PTM_FORMAT_PTM_LUT each
entry contains six PTM coefficients for a Luminance channel:

a0
I, a1

I, a2
I, a3

I, a4
I, a5

I

In this case the color values which are modulated by the evaluated luminance
polynomial are passed for each pixel later in the file.

For PTM_FORMAT_PTM_C_LUT both PTM coefficients and color reside in
the lookup table and are specified for each entry as

a0
I, a1

I, a2
I, a3

I, a4
I, a5

I
, R , G, B

2.6 Color Matrix. This is only present for PTM_FORMAT_LUM. The matrix is

stored as16 ASCII floating point values in the order such that it can be loaded
directly into OpenGL functions- this means in column-major order

 a00 a10 a20 Tx

 a01 a11 a21 Ty

 a02 a12 a22 Tz
 0 0 0 1

Note that this is the matrix by which the colors computed from the
coefficients have to be multiplied. The Tx , Ty and Tz values can be used as
translations in the color space.

2.7 Uncompressed Per Textel Data. When an uncompressed file format is used,
the rest of the file consists of information for each textel, typically the raw
polynomial coefficients themselves, specified as a single unsigned char per
coefficient. The arrangement of the coefficients is format dependent, and
taken from one of the following depending on the format string provided
earlier in the file:

2.7.1 PTM_FORMAT_RGB - In this case, an array of coefficients are

stored separately for each color channel. These are provided in the
following order for a single texel channel:

a0, a1, a2, a3, a4, a5

All red coefficients are stored in a block, followed by the green
channel coefficients, followed by the blue channel.

Coefficients are provided for all textels in this manner in simple
reversed scanline order (meaning from bottom to top). Note that no
separators such as <cr> are used between the individual
coefficients nor between the pixels or blocks.

2.7.2 PTM_FORMAT_LUM- Here we store only six polynomial

coefficients followed by two values for Cr and Cb which then
make up the CrYCb color space, where Y is computed from the
polynomial coefficients. Hence

 a0

Y, a1
Y, a2

Y, a3
Y, a4

Y, a5
Y

, Cr , Cb
Again, coefficients are provided for all textels in this manner in
simple reversed scanline order (meaning from bottom to top). Note

that no separators such as <cr> are used between the individual
coefficients nor between the pixels.

2.7.3 PTM_FORMAT_LRGB - Here we store only six polynomial
coefficients representing Luminance (normalized usually) followed
by three values for R,G,B which then make up LRGB for color
calculation. The coefficients are stored per texel in a block as:

 a0

I, a1
I, a2

I, a3
I, a4

I, a5
I

Followed by the RGB color values in a block ordered as:

 R , G, B
Again, coefficients are provided for all textels in this manner in
simple reversed scanline order (meaning from bottom to top). Note
that no separators such as <cr> are used between the individual
coefficients nor between the pixels.

2.8 Lookup Table Indicies. For formats that use a lookup table, one of the
following is present:

2.8.1 PTM_FORMAT_PTM_LUT – Here we store a lookup table
index for each textel. For a lookup table with 256 entries or less
this is an unsigned char per textel. For larger lookup tables this is
two bytes in little endian format.

i1,i2,i3,….

After these indicies are specified for all textels, color information
for each textel is provided as unsigned char’s per element:

 R1, G1, B1, R2, G2, B2, R3, G3, B3,…

2.8.2 PTM_FORMAT_PTM_C_LUT - Here we store a lookup table
index for each textel. For a lookup table with 256 entries or less
this is an unsigned char per textel. For larger lookup tables this is
two bytes in little endian format.

i1,i2,i3,….

For both of these cases, values are again provided for all textels in this
manner in simple reversed scanline order (meaning from bottom to top).

2.9 Compressed Data. When the file format is one of:
PTM_FORMAT_JPEG_RGB,PTM_FORMAT_JPEG_LRGB,
PTM_FORMAT_JPEGLS_RGB,PTM_FORMAT_JPEGLS_LRGB

the file contains the following:
2.9.1 Compression Parameter. It consists of an ASCII string that

contains the parameter being fed to the JPEG-LS or to the JPEG
encoder. When the file is encoded with JPEG-LS, the parameter
represents the lossless mode (if zero) or the maximum absolute
value of the loss for each pixel (if greater than zero). For JPEG, the
parameter represents an encoding quality factor ranging between
20 and 100 (best quality).

2.9.2 Transforms. It is a sequence of 18 (for RGB PTM’s) or 9 (for

LRGB PTM’s) ASCII integers. The (i+1)-st integer represents the
transforms that must be applied to the reference plane (see section
9) before prediction of the coefficient plane indexed by i. Each
transform is represented by a constant value that is a power of 2
(see table below), so in order to specify multiple transforms,
constants can simply be OR-ed together to form a single integer.
The following transforms are currently implemented:

Transform Constant Name Integer Value
No transform NOTHING 0
Plane Inversion PLANE_INVERSION 1
Motion Comp. MOTION_COMPENSATION 2

2.9.3 Motion Vectors. It is a sequence of 36 (for RGB PTM’s) or 18

(for LRGB PTM’s) ASCII signed integers. The first half represents
the x coordinates and the second half the y coordinates of the 18
(or 9) motion vectors. Since integers are used to represent half
pixel displacements, these values must be divided by 2 in order to
obtain the final displacements along the x and y dimensions.

2.9.4 Order. It is a sequence of 18 (for RGB PTM’s) or 9 (for LRGB

PTM’s) ASCII integers that represent the order in which the
corresponding coefficient plane must be decoded. This order
guarantees causality in the decoding process. If plane i is predicted
from plane j (called reference for i), order of j will be smaller than
order of i and decoding of j must precede decoding of i. To start
the decoding process, there is always (at least) a plane that is not
predicted from any other plane and whose order is 0.

2.9.5 Reference Planes. A sequence of 18 (for RGB PTM’s) or 9 (for

LRGB PTM’s) ASCII integers that represent the index of the
reference plane used for encoding the coefficient plane i.
Coefficient planes are indexed starting from zero: If plane i is
predicted from plane j, then the (i+1)-st integer in the sequence is j.
A special reference index “–1” is used to indicate a plane that is
intra coded (i.e., that it is not predicted from any other plane).

2.9.6 Compressed Size. A sequence of 18 (for RGB PTM’s) or 9 (for

LRGB PTM’s) ASCII integers in which the (i+1)-st integer is the
size, in bytes, of the i-th compressed coefficient plane. Since
coefficients are not interleaved and compressed planes may have
different sizes, this information (and the side information size, see
below) must be combined to extract properly the compressed
planes from the "Compressed Coefficient Planes" section.

2.9.7 Side Information Size. A sequence of 18 (for RGB PTM’s) or 9

(for LRGB PTM’s) ASCII integers in which the (i+1)-st integer
represents the size (in bytes) of the side information used to correct
possible overflows occurring during the (lossy) encoding of the i-
th coefficient plane (see below). If no overflow occurred during the
encoding of the i-th plane, the corresponding side information size
will be zero.

2.9.8 Compressed Coefficient Planes. Compressed coefficient planes

are stored plane by plane, in sequence, following the original plane
ordering. For RGB format the plane ordering is:

a0
r, a1

r, a2
r, a3

r, a4
r, a5

r
,

a0
g, a1

g, a2
g, a3

g, a4
g, a5

g
,

a0
b, a1

b, a2
b, a3

b, a4
b, a5

b

For LRGB format the plane ordering is:
a0

I, a1
I, a2

I, a3
I, a4

I, a5
I
,r,g,b

Coefficients are not interleaved and each plane must be extracted
by using the information provided in the sections “Compressed
Size” and “Side Information Size.” Each compressed plane is
stored according to the bit-stream format corresponding to the
compression algorithm used (JPEG or JPEG-LS). When a lossy
mode is used, each compressed plane is followed by a sequence of
zero or more bytes representing the side information necessary to
correct overflows resulting from modular arithmetic. This “Side
Information” section consists of a sequence of pairs (Pixel
Position, Pixel Value), represented with five consecutive bytes as
follows:

(Pixel Position, Pixel Value) = P3, P2, P1, P0, V.

Pixel position is a 4-byte integer (with the highest order byte stored
first), which represents a pixel position when the image is
linearized in row order scan, top to bottom, left to right. The pixel
value V is the original pixel value that must be substituted in the
decoded plane in that position in order to fix the overflow.
Overflows must be corrected before using the decoded plane as a
prediction reference.

