
0018-9162/01/$10.00 © 2001 IEEE April 2001 75

C O V E R F E A T U R E

Embedded Computer
Architecture and
Automation

W
ith the advent of system level integra-
tion (SLI)—the next level of integration
beyond VLSI—and system-on-chip
(SOC) capabilities, the computer indus-
try’s focus is shifting from personal to

embedded computing. The opportunities, needs, and
constraints of this emerging trend will lead to signif-
icantly different computer architectures at both the
system and processor levels as well as a rich diversity
of off-the-shelf (OTS) and custom designs. Embedded
computing will also stimulate automation of com-
puter architecture, which we illustrate using an archi-
tecture synthesis system called PICO—program in,
chip out—that we developed with our colleagues dur-
ing the past five years.

EMBEDDED COMPUTING
Driven by the accelerated pace of semiconductor

integration during the past three decades, the com-
puter industry has steadily moved from mainframes
and minicomputers to workstations and PCs. In accor-
dance with a corollary of Moore’s law, computing
power becomes half as expensive every 18 to 24
months. Over a decade, this reduces the cost by a fac-
tor of 30 to 100, making computing affordable to an
exponentially larger number of users and dramatically
changing the key applications of this computing
power.

Manufacturers have for several years incorporated
embedded computers in so-called smart products such
as video games, DVD players, televisions, printers,
scanners, cellular phones, and robotic vacuum clean-
ers. Using embedded computers in devices that previ-
ously relied on analog circuitry—such as digital
cameras, digital camcorders, digital personal re-

corders, Internet radios, and Internet telephones—
provides revolutionary performance and functional-
ity that merely improving analog designs could not
achieve. The increasing availability of SLI heralds a
vast array of even more innovative smart products.

Any computer architecture must balance the latest
technological opportunities with product, market, and
application requirements that together determine three
important features of embedded computing architec-
ture: specialization, customization, and automation.
Specialization increases the performance and reduces
the manufacturing cost of embedded computer sys-
tems. Customization permits specialization when no
adequately specialized OTS product is available.
Automation reduces the design costs incurred by cus-
tomization.

Product requirements
Smart products demand various combinations of

high performance, low cost, and low power. When
budgets allow only a few cents for critical chips, cost
can be more important than performance. In other
cases, the smart product’s functionality mandates high
performance. For example, data-intensive tasks such
as image, video, and signal processing require through-
put that significantly exceeds that of high-end work-
stations.

The challenge now is to lower cost to a level that
the market will accept. In certain instances, providing
more computing power can reduce cost. Many imag-
ing and video products require large amounts of
DRAM to hold their data sets. Using compression
techniques such as MPEG, JPEG, and MP3 for large
video, image, and audio data sets, respectively, reduces
the amount of DRAM required but introduces a sig-

The distinct requirements of embedded computing, coupled with emerging
technologies, will stimulate system and processor specialization,
customization, and computer architecture automation.

B. Ramakrishna
Rau
Michael S.
Schlansker
Hewlett-Packard
Laboratories

76 Computer

nificant amount of additional computation. The
reduction in memory cost more than pays for
the extra processing power.

Power is of great concern in many smart prod-
ucts. It is obviously important in mobile smart
products in which battery life is a primary fac-
tor, but it can also be important in office and
computer-room products in which electrical
operating and cooling costs are increasingly sig-
nificant.

Market requirements
The successful design and fabrication of an embed-

ded computer gives a new smart product its distin-
guishing high-value features and competitive
advantage. Time to market has a disproportionate
impact upon a product’s life-cycle profits and can
determine its success or failure. Because the consumer
market typically emphasizes short product life cycles,
designing rapidly is critical.

A second important market requirement is the need
to support a sharp increase in the number and com-
plexity of embedded system designs. The current
scarcity of talented designers threatens to cause a
design bottleneck as the need for smart product
designs increases. The lack of sufficient design talent
may result in an inability to design otherwise prof-
itable products.

Application characteristics
As the cost of their electronic content decreases, sin-

gle-function products with complex, high-perfor-
mance embedded systems are becoming increasingly
popular. Such embedded applications have relatively
small and well-defined workloads. Key kernels within
applications often represent the vast majority of
required compute cycles. For example, in video,
image, and digital signal processing, small loop nests
with a high degree of parallelism often dominate the
applications’ execution times. These applications typ-
ically have more determinacy than general-purpose
applications. Not only is the nature of the application
fixed, but physical product parameters such as imag-
ing sensor size predetermine loop trip counts, array
sizes, and other key parameters.

SPECIALIZATION
Developers design general-purpose embedded sys-

tems as OTS parts for reuse in numerous smart prod-
ucts. Because their specific applications are unknown,
these designs must incorporate both generality and
completeness. Specialization involves departures from
both characteristics with respect to structure and func-
tionality. Extreme specialization results in an appli-
cation-specific system or a processor designed for a
single application. A domain-specific system or proces-

sor, in contrast, has been specialized for an applica-
tion domain—for example, HDTV or set-top boxes—
but not for a specific application.

At one end of the spectrum, application-specific
architectures provide very high performance and high
cost performance, but reduced flexibility. At the other
end, general-purpose architectures provide much
lower performance and cost performance, but with
the flexibility and simplicity associated with software
programming. For a desired performance level on a
specified workload, specialization minimizes the logic
complexity and die size—and thus the fabrication
cost—of an embedded computer system or processor.

Limits of general-purpose systems
The widespread use of special-purpose architectures

greatly increases the need for new designs. General-
purpose systems typically consist of a conventional
bus-based architecture with one or more reduced
instruction set computer (RISC), complex instruction
set computer (CISC), or very long instruction word
(VLIW) processors.

While a single processor is feasible at lower per-
formance levels, meeting the demanding requirements
of high-performance embedded systems requires mul-
tiple processors. Because developers must design gen-
eral-purpose multiprocessors without knowledge of
the specific application, they must provide uniform
communication among symmetrically connected iden-
tical processors. Such architectures scale poorly; a
large-scale multiprocessor interconnection network
requires a lot of area and long transmission delays
that adversely affect cost and cycle time.

System specialization
The need therefore arises for tailoring every aspect

of a high-performance system to meet specific de-
mands.

• The system topology must be sparse and irregu-
lar, reflecting application requirements.

• Processors must be heterogeneous and special-
ized to their assigned tasks.

• Multiple low-cost, decentralized, low-bandwidth
RAMs must replace a single, expensive, central-
ized high-bandwidth memory system.

Especially for compute-intensive applications,
designers often can use synchronous parallelism to
specialize and simplify synchronization among mul-
tiple processors. This lockstep parallelism relies on
knowledge of the relative progress of interacting par-
allel processes. A compiler can accurately track
progress at compile time, and a hardware designer or
CAD tool can do so during hardware design.
Incorporating correct synchronization into the hard-

Specialization
minimizes the

fabrication cost of
an embedded

computer system
or processor.

operating out of an instruction cache or main
memory, a microprogrammed controller using
a microprogram RAM or ROM, or a hard-
wired controller implemented as a finite state
machine.

In principle, these data path and control
strategies can exist in any combination. Using
a symmetric and homogenous data path with
a full-fledged instruction unit satisfies the need
for ease of programming and a quality com-
piler. However, the entire set of combinations
is attractive when designing nonprogramma-
ble accelerators—hardware that can perform
just one function or one of a fixed set of functions.

CUSTOMIZATION
Customization refers to a level of specialization

beyond OTS availability that a smart-product vendor
undertakes to meet its product’s specific needs. As far
as time to market, engineering effort, and project risk
are concerned, an OTS design is preferable whenever
possible. Nevertheless, smart-product vendors rou-
tinely design custom systems, processors, and accel-
erators when three conditions jointly occur:

• The smart product has challenging requirements
that can only be met by specializing the system
or processor architecture.

• The benefits—in product cost, performance,
power, or usability—of specialization beyond
those of existing OTS designs are so great that
they justify the development cost in dollars, time
to market, and risk.

• It has not been economically attractive for a semi-
conductor vendor to previously develop an OTS
design adequately specialized to the smart prod-
uct’s needs. This often occurs because the prod-
uct has proprietary algorithms or a low anti-
cipated unit volume or because the diversity of
special-purpose solutions that smart-product
vendors collectively demand inhibits individual
OTS solutions.

Customization enables even better cost performance
but necessitates a complicated design process, thereby
increasing the product’s nonrecurring expenses
(NRE). Smart-product vendors must amortize this
increased NRE over the product volume, which adds
to product cost.

Customization strategies
Customization incurs three types of NRE design

costs. Architectural design costs include designing the
custom system and any custom processors, hardware-
software partitioning, logic synthesis, design verifica-
tion, and postfabrication system integration. Physical

April 2001 77

ware or software design eliminates the need for
explicit runtime synchronization among synchro-
nously operating processors.

Even when complete synchronicity is impossible,
developers can specialize the hardware to exploit
knowledge of the communication pattern. For exam-
ple, if a data set’s production and consumption exhibit
a consistent order and rate, a simple, small FIFO
buffer capable of stalling the producer or consumer
can replace a more general RAM structure with soft-
ware-implemented synchronization.

General-purpose processor limits
High-performance general-purpose processors pro-

vide symmetric access between function units (FUs)—
which can execute commonly needed operations—and
storage. This flexibility, however, comes at the cost of
expensive and slow, multiported registers and RAMs.
Also, control for general-purpose processors is instruc-
tion based and, for multiple-issue processors, requires
wide instruction-memory access and complex, expen-
sive shifting and alignment networks. RISC, CISC,
DSP (digital signal processor), and even VLIW archi-
tectures consequently do not scale efficiently beyond
relatively narrow architectural limits.

Processor specialization
Specialization maximizes cost performance by min-

imizing the number of opcodes, the number and width
of data paths, the number and width of registers, and
the size and width of caches. Data path topology spe-
cialization becomes crucial at high-performance lev-
els of tens or hundreds of operations per cycle.

Data path sparseness and asymmetry. Embedded pro-
cessors must incorporate instruction-level parallelism
(ILP) as multiple FUs in each processor. Because a
complete and symmetric interconnection between
FUs and register files would be prohibitively expen-
sive, the processor’s interconnect topology must be
sparse and irregular to reflect application require-
ments. Data paths specifically designed for an appli-
cation connect arithmetic units and registers.
Specialized arithmetic, logical, and data-transfer FUs
are used, often chained into sequences of FUs to
squeeze out additional circuitry.

Control strategies. Processor specialization can also
reduce control cost. Instruction-based control permits
control signals to be specified on a cycle-by-cycle basis.
If certain control signals change relatively infrequently,
specifying them from a residual control register with
contents set either by an instruction or during hard-
ware initialization can conserve code size. Fixing cer-
tain control signals during hardware optimization can
eliminate part of the data path. Instruction-based con-
trol is possible at various levels of generality and flex-
ibility, including a full-fledged instruction unit

Customization
enables better

cost performance
than an OTS design
but necessitates a
complicated design

process.

78 Computer

design costs include floor planning, placement,
and routing. Designers must also contend with
the substantial costs associated with creating
the one or more mask sets needed to complete
a design.

Reducing architectural design costs. One way to
reduce architectural design costs is to reuse pre-
existing soft IP or virtual components for the
constituent subsystems. When appropriate soft
IP is unavailable, incurring the architectural
design cost for that subsystem is unavoidable.
For example, the system architecture may con-

sist of a specific interconnect topology containing one
or more OTS microprocessors and one or more accel-
erators.

Since defined by the application, the accelerators
must be custom designs. Only the architectural design
cost of these accelerators is incurred. This strategy
can be applied one level down to the processors. Most
of a processor’s architecture can be kept fixed, but
certain FUs, for example, can be customized.1

Reducing physical design costs. Every customized part
of an SOC imposes placement and routing costs.
However, using hard IP—subsystems taken through
physical design—can minimize this cost. Although
performing the floor planning, placement, and rout-
ing for the entire SOC is necessary, treating the hard
IP blocks as atomic components greatly reduces these
steps’ complexity.

Avoiding mask set costs. An SOC can greatly reduce
the expense of a complex embedded system, but cus-
tomizing even part of a chip requires creating a new
mask set for the entire SOC, which costs hundreds
of thousands of dollars. This provides a powerful
incentive for completely avoiding SLI design in favor
of OTS, customizable SOCs containing reconfig-
urable hardware. Rather than using standard cells
to implement the custom accelerators and FUs,
the strategy calls for performing logic synthesis
and mapping them onto field-programmable gate
arrays.2

FPGAs, along with their associated configurable
RAM blocks, allow custom, special-purpose proces-
sors or FUs to be implemented as programmable logic.
FPGA libraries now also provide general-purpose
processor cores programmed as FPGA logic that can
be modified or enhanced for specific application
needs. Other functionality, such as support for periph-
eral interfaces and programmable I/Os, further
increases FPGA utility.

The OTS, customizable SOC contains the fixed por-
tions of the system architecture—including general-
purpose processors, DSP processors, certain
accelerators, memory, and peripheral interfaces—
implemented using full custom or standard cell logic,
but provides FPGAs to implement the customized sub-

systems. This strategy eliminates the expensive, risky,
and slow chip-design process.

By programming the FPGAs appropriately, design-
ers can customize the OTS SOC to implement many
different system architectures. This approach incurs
the costs of the custom subsystems’ architectural
design as well as programming the FPGAs. The inher-
ent hardware costs for supporting programmable
logic make FPGAs an order of magnitude worse than
equivalent custom, standard cell designs in both sili-
con area and cycle time. Nevertheless, FPGA-based
designs for high-performance accelerators are more
cost-effective than designs relying solely on general-
purpose processors.

If the desired custom system does not fit the OTS,
customizable SOC’s system-level architecture, the
smart-product vendor must design a custom SOC.
For high-volume products with well-understood
application needs that can tolerate high design cost
and time, custom SOCs provide higher performance
at a lower cost than OTS SOCs.

AUTOMATION
The architectural design costs of implementing

either custom SOCs or OTS, customizable SOCs often
dominate NRE costs. Along with the need for mass
customization, this has led to the automation of com-
puter architecture. At least three circumstances argue
for automation:

• Not enough designers exist to meet the explosive
demand for unique embedded designs. Auto-
mation addresses this problem—which shrink-
ing product life cycles exacerbate—by increasing
design productivity.

• Time to market or time to prototype is crucial. If
developers can’t anticipate product requirements
early enough to permit traditional manual
design—perhaps because no relevant standard
exists or because they do not yet understand
product functionality—the speed of automated
design is extremely valuable.

• The expected volume of custom-designed prod-
ucts is too small for manual design to be econom-
ical. Automation reduces design costs, thereby
making low-volume customized products viable.

We call this automation architecture synthesis to dis-
tinguish it from behavioral synthesis3,4 and logic syn-
thesis.5

Automation philosophy
Skeptics commonly argue that automating com-

puter system design is unrealistic because it would
require emulating human designers, who typically
invent new solutions to the design problems they

Automation reduces
design costs,

thereby making
low-volume

customized products
viable.

April 2001 79

encounter. Rather than attempting to emulate a
human’s ability to invent, the approach we developed
within the PICO project, described in the “PICO
Architecture Synthesis System” sidebar, selects the
design that most closely matches the application’s
needs out of a large, denumerable design space. This
space must be large enough and diverse enough to
ensure a sufficient repertoire of good designs so that
a best design, selected from this space, will closely
match application needs.

Framework and parameters. Because explicitly enu-
merating every feasible design is impractical, a frame-
work of rules and constraints defines the design space.
The framework predetermines some aspects of the
design, such as the presence of certain modules and
how they are connected, while leaving others unspec-
ified. Of these, some aspects can be derived algorith-
mically once the rest have been specified. The latter,
termed parameters, provide a terse and abstract way
of uniquely specifying a design. A design specification
consists of a binding of values to parameters.
Construction is the process of algorithmically deriv-
ing the remaining design details from the specified
parameters.

Components. Designs are assemblies of lower-level
components selected from a library. In the case of
parameterized components, the constructor uses the
specified parameters to instantiate a detailed compo-
nent design. The components fit into the framework
and collectively provide all the building blocks needed
to construct any design within the framework. Each

component also has associated information necessary
to interface components into a system design context.
Information includes descriptions of a component’s
functionality, inputs and outputs, and externally vis-
ible timing and resource needs. Components them-
selves can be a network of lower-level components
forming a design hierarchy.

An automation paradigm. The best design optimizes
multiple evaluation metrics such as cost, perfor-
mance, and power. A design is Pareto optimal if no
other design is at least as good with respect to every
evaluation metric and better than it with respect to
at least one evaluation metric. The Pareto set includes
all the Pareto-optimal designs.

As Figure 1 shows, PICO uses three interacting
modules to automatically find a Pareto set.

• A spacewalker searches for Pareto-optimal
designs in the design space that is the Cartesian
product of the sets of values for the various para-
meters. At each step in the search, the space-
walker specifies a design by binding the
parameters.

• A constructor constructs a hardware realization
of the design specification as an assembly of com-
ponents from the library.

• An evaluator determines the suitability of the
spacewalker’s design choice.

Accurate evaluation involves first executing the con-
structor to produce a detailed design, which the eval-

Spacewalker
(design
space

explorer)

Workload
and

requirements
specification

Parameter
ranges

Architecture
framework

Constructor
Hardware,
software,

simulators,
and so on

Design
specification
(parameters)

Component
library

Evaluator

Design

Parameterized
design space

Area

Ex
ec

u
ti

o
n

 t
im

e

Pareto optimal
designs

Figure 1. Program in, chip out (PICO) automation philosophy. PICO operates within a parameterized design framework. To
define a parameterized design space, the user specifies a set of values that each parameter can assume. The spacewalker
explores this space to find good designs for the specified workload and requirements by repeatedly binding the values of the
parameters. A constructor can build any design within the framework from a corresponding component library.

80 Computer

Our research prototype of an architecture
synthesis system, PICO (program in, chip out),
automatically designs custom embedded com-
puter systems. For an application written in
C, it automatically architects a set of Pareto-
optimal system designs and emits the struc-
tural VHDL for the hardware components as
well as the compiled software code. Two met-
rics—cost as measured by gate count or chip
area and performance as measured by execu-
tion time—currently define optimality.

At the system level, PICO identifies the
Pareto-optimal set of custom system designs
for a given application. Within PICO’s
framework, shown in Figure A, a system
design consists of a custom EPIC (explicitly
parallel instruction computing) or VLIW
(very long instruction word) processor,1 a
custom cache hierarchy and, optionally, one
or more custom nonprogrammable acceler-
ators (NPAs). PICO exploits this hierarchi-
cal structure by decomposing the system
design space into smaller individual spaces,
one for each subsystem. The system-level
spacewalker invokes subsystem-level space-
walkers to get the Pareto-optimal sets of

subsystem designs and then composes
Pareto-optimal systems.2 Figure B illustrates
the PICO design flow.

In the process, PICO does hardware-soft-
ware codesign, partitioning the application
between custom NPAs and software on the
custom VLIW processor. For each loop nest
in the application that is a candidate for
hardware implementation, the spacewalker
executes the loop nest either on the VLIW
processor or on a custom NPA. Because the
spacewalker retains only the Pareto-opti-
mal choices, the system designs that the sys-
tem-level spacewalker selects represent the
most effective hardware-software partition
at a given level of cost or performance.

PICO-VLIW, the PICO subsystem that
designs custom, application-specific VLIW
processors,3 also retargets Elcor, PICO’s
VLIW compiler, to each new processor so
that it can compile the C application to that
processor.4 The processors currently in-
cluded within PICO-VLIW’s framework
encompass a broad class of VLIW proces-
sors with a number of sophisticated archi-
tectural and microarchitectural features.1,5

Typically, the design space includes numer-
ous VLIW designs. Furthermore, evaluat-
ing the performance of each VLIW design
is time-consuming because it involves com-
piling a potentially large application. The
spacewalker therefore uses heuristic search
strategies to prune the design space based
on previously evaluated processor designs.
Examples of similar work are the MOVE
project6 at the Technical University of Delft
and the custom-fit processor work7 at
Hewlett-Packard Laboratories.

The PICO-N subsystem designs NPAs for
a given loop nest.8 The NPA framework
design consists of a synchronous, one- or
two-dimensional array of customized pro-
cessing elements (PEs) with local memories
and interfaces to global memory, a controller
for the PEs, and a host processor interface.
Each PE forms a data path with a distrib-
uted register file structure implemented using
FIFOs with random-read access.

Interconnections between the FIFOs and
FUs exist only where needed, resulting in a
sparse and irregular interconnect structure.
PICO-N transforms a sequential C repre-

NPA
controller

Nonprogrammable acceleratorVLIW processor

Cache hierarchy

commands

timing

done

commands

done

NPA
control

interface

NPA data pathLocal
memory
interfaceFloating-

point
register file

Predicate register file

Floating-
point

functional
units

Memory
ports

Integer
register file

Integer
functional

units

Integer
fetch,

decode

L1
data
cache

L2
cache

Main
memory

L1
instruction

cache

System bus

Figure A. Program in, chip out (PICO) framework. A VLIW processor is connected to a cache hierarchy consisting of an instruction cache, a data cache, and a uni-
fied second-level cache that, in turn, connects to the system bus. The control interface of each nonprogrammable accelerator (NPA) is mapped into a local mem-
ory address space; the NPA’s data interface connects to the second-level cache. The processor contains an integer cluster and optional floating-point cluster,
each consisting of a register file and set of functional units (FUs), and memory ports connected to one or both register files. Each NPA contains an array of identi-
cal processing elements—a network of FUs, register FIFOs, and interconnected memories—that operate in a synchronously parallel fashion.

PICO Architecture Synthesis System

April 2001 81

sentation of the loop nest into multiple
sequential invocations of multiple identi-
cal, synchronous parallel computations
working out of a distributed address
space. It synthesizes a PE for each of these
parallel computations as well as the VLIW
interface code required to use the NPA.

The third major PICO subsystem auto-
matically generates the Pareto sets for cache
hierarchies customized to the given appli-
cation.9 A design within the cache hierar-
chy framework consists of a first-level data
cache, first-level instruction cache, and sec-
ond-level unified cache. As at the system
level, PICO decomposes the cache hierar-
chy design space into smaller spaces for the
data cache, instruction cache, and unified
cache, respectively, and employs a further
level of hierarchical spacewalking.

References
1. M.S. Schlansker and B.R. Rau, “EPIC:

Explicitly Parallel Instruction Comput-

ing,” Computer, Feb. 2000, pp. 37-45.
2. S.G. Abraham and B.R. Rau, “Efficient

Design Space Exploration in PICO,” Proc.
Int’l Conf. Compilers, Architecture Syn-
thesis for Embedded Systems (CASES
2000), ACM Press, New York, 2000, pp.
71-79.

3. S. Aditya, B.R. Rau, and V. Kathail,
“Automatic Architectural Synthesis of
VLIW and EPIC Processors,” Proc. Int’l
Symp. System Synthesis (ISSS 99), IEEE
CS Press, Los Alamitos, Calif., 1999, pp.
107-113.

4. B.R. Rau, V. Kathail, and S. Aditya,
“Machine-Description Driven Compilers
for EPIC and VLIW Processors,” Design
Automation for Embedded Systems, vol.
4, no. 2/3, 1999, pp. 71-118.

5. V. Kathail, M. Schlansker, and B.R. Rau,
HPL-PD Architecture Specification: Ver-
sion 1.1, tech. report HPL-93-80 (R.1),
Hewlett-Packard Laboratories, Palo Alto,
Calif., Feb. 2000.

6. H. Corporaal, Microprocessor Architec-
tures: From VLIW to TTA, John Wiley
& Sons, Chichester, England, 1997.

7. J.A. Fisher, P. Faraboschi, and G. Desoli,
“Custom-fit Processors: Letting Applica-
tions Define Architectures,” Proc. 29th
Ann. Int’l Symp. Microarchitecture
(MICRO-29 1996), IEEE CS Press, Los
Alamitos, Calif., 1996, pp. 324-335.

8. R. Schreiber et al., “High-level Synthe-
sis of Nonprogrammable Hardware
Accelerators,” Proc. Int’l Conf. Appli-
cation-Specific Systems, Architectures,
and Processors (ASAP 2000), IEEE CS
Press, Los Alamitos, Calif., 2000, pp.
113-124.

9. S.G. Abraham and S.A. Mahlke, “Auto-
matic and Efficient Evaluation of Mem-
ory Hierarchies for Embedded Systems,”
Proc. 32nd Ann. Int’l Symp. Microarchi-
tecture (MICRO-32 2000), IEEE CS
Press, Los Alamitos, Calif., 1999, pp.
114-125.

Nonprogrammable
accelerator

Cache spacewalker

Cache synthesis

NPA compiler

9
Cache

parameters

VLIW synthesis

VLIW spacewalker

6

7

8

Abstract
architecture
specification

Machine-
description
database

NPA synthesis

NPA spacewalker

3

4

5
2

1

NPA
parameters

VLIW
processor

Cache
hierarchy

Executable

Control
interface

VLIW compiler

Compute-
intensive

kernel

PICO-generated system

Input C
code

VLIW
code

10

Figure B. PICO design flow. (1) The input C application contains compute-intensive loop nests or kernels, (2) each of which PICO identifies and extracts. (3) The
PICO-N spacewalker specifies an NPA. (4) PICO-N transforms the kernel to have the requisite level of parallelism, introduces local memories to minimize main
memory bandwidth, and generates the register-transfer level (RTL) for an NPA along with the needed code. (5) For each kernel to be implemented as an NPA,
the synthesized code replaces the original kernel code in the application. (6) The PICO-VLIW spacewalker specifies a VLIW processor. (7) PICO-VLIW designs
the VLIW processor’s architecture and microarchitecture, emits an RTL design, and generates a machine-description database that describes this processor to
Elcor, the VLIW compiler. (8) Elcor is automatically retargeted to the newly designed VLIW processor and compiles the modified application. (9) The cache
spacewalker specifies and evaluates cache hierarchy configurations. (10) The system-level PICO spacewalker composes compatible, Pareto-optimal VLIW,
cache, and NPA designs into valid system designs and determines which kernels to implement as NPAs rather than as software on the VLIW.

82 Computer

uator then uses to compute the evaluation met-
rics. When the cost of constructing candidate
detailed designs proves excessive, the evaluator
can instead estimate the evaluation metrics
approximately, without construction, directly
from the design parameters. Evaluators use
multiple tools including compilers, simulators,
and gate-count estimators.

At each step in the search, the spacewalker
invokes constructors and evaluators to deter-
mine whether the latest design is Pareto opti-
mal. If the design space is small, the spacewalker
can use exhaustive search. Otherwise, it uses the
evaluation metrics, other design statistics, and
heuristics to guide its search. In this case, the

spacewalker seeks to find many Pareto-optimal designs
while examining just a small fraction of the design
space. Spacewalking is hierarchical if a spacewalking
search designs an optimized system and also uses
lower-level spacewalking searches to optimize the sys-
tem components as subsystems.

A framework restricts designs to a subset of all pos-
sible designs, but this accounts for the framework’s
power; it is not possible to create constructors and eval-
uators capable of treating all possible designs. The chal-
lenge is to choose a framework large and diverse enough
to contain a sufficient repertoire of good designs.
Designs within the framework need not be optimal—
to be useful, automation need only produce designs that
are competitive with manually produced designs.

Technologies for architecture synthesis
Automatic architecture synthesis relies on both com-

piler and computer-aided design technologies. Com-
pilers analyze and transform software, providing a
framework for processing programs with complex
branching and sequencing, while CAD technology ana-
lyzes, optimizes, and transforms hardware.

Compilers. Nonprogrammable accelerator synthesis
uses compiler technology to process an input loop nest
specified as a software program. The compiler ana-
lyzes the loop nest to obtain critical program opti-
mization information. Data flow, control flow, and
memory dependence analyses provide information
that allows the compiler to expose available paral-
lelism and to optimize and transform the loop nest.

Compilers use high-level transformations such as
function inlining, loop interchange, and loop unrolling
to increase program parallelism. Traditional scalar
optimizations—including common subexpression
elimination, dead code elimination, strength reduc-
tion, and loop-invariant code removal—improve input
code quality after the application of transformations
that necessitate further optimizations.

Compilers also let programs written with unlimited
virtual resources execute with limited physical

resources. For example, the compiler transforms code
that references an unlimited number of virtual regis-
ters into code that references as few physical registers
as possible, facilitating the generation of inexpensive
hardware by the hardware synthesis step.

Software programs reference a single shared memory
that holds all the data structures. Compilers can ana-
lyze programs to recognize noninteracting data struc-
tures that separate local memories can hold. Using such
memories requires changing the address computation
code as well as the code that initializes local memories
or retrieves final values from them. After the compiler
identifies potential local memory use, hardware syn-
thesis determines how many physical memories to use.
When advantageous, multiple data structures can exist
within a single local memory.

CAD. The architecture synthesis phase that gener-
ates hardware performs a function similar to high-
level synthesis, drawing upon both back-end compiler
and behavioral synthesis technologies. Back-end com-
pilers schedule code and allocate registers in the con-
text of arbitrary program structure. However, the
technology has traditionally focused on developing
the best code for a given processor. Because the hard-
ware in this case is unspecified, jointly performing
these allocation decisions minimizes the required FU
and interconnect hardware, which is precisely the
object of behavioral synthesis.

Although behavioral synthesis packages have adopted
techniques originally developed for ILP compilers, such
as software-pipeline scheduling, the class of computa-
tions they can deal with and the code optimizations they
can perform are relatively limited. This architecture syn-
thesis phase is a fertile research area in which new tech-
niques will enhance the applicability and quality of
automatically produced embedded architectures.

Architecture synthesis is complementary to, and
relies upon, the lower-level CAD steps of logic syn-
thesis, circuit synthesis, and physical design. After
architecture synthesis produces a register-transfer-level
(RTL) design, commercially available CAD packages
translate the design to the logic and circuit levels, fur-
ther optimize it at each of these levels, and transform
it into a form suitable for creating the mask sets. These
lower-level steps are largely independent of architec-
ture synthesis. However, architectural decisions can
interact with important lower-level design properties
such as the ability to meet timing specifications.
Whether and how architecture synthesis should create
RTL design to improve the success of these lower-level
CAD steps remains a topic for further investigation.

The functionality of innovative smart products
relies on the availability of extremely high per-
formance, low-cost embedded computer systems.

Designing successful computer architectures requires

The functionality
of innovative

smart products
relies on the

availability of
extremely

high performance,
low-cost embedded
computer systems.

carefully balancing the opportunities the latest tech-
nologies offer with market, product, and application
requirements. We believe that the distinctive require-
ments of embedded computing will lead to a renais-
sance in system and processor architecture, which will
be far more special-purpose, heterogeneous, and irreg-
ular. The need for custom and customizable architec-
tures will also lead to increased automation that our
experience with PICO indicates is both practical and
effective. The resulting designs are competitive with
their manual counterparts but are obtained one to two
orders of magnitude faster. ✸

Acknowledgments
Our present and past colleagues in the Compiler and

Architecture Research group at Hewlett-Packard
Laboratories who worked with us in developing the
PICO system have greatly influenced the ideas and
opinions expressed in this article: Rob Schreiber, Shail
Aditya, Vinod Kathail, Scott Mahlke, Darren
Cronquist, Mukund Sivaraman, Santosh Abraham,
Greg Snider, Sadun Anik, and Richard Johnson.

References
1. R.E. Gonzalez, “Xtensa: A Configurable and Extensible

Processor,” IEEE Micro, Mar./Apr. 2000, pp. 60-70.

2. A.K. Sharma, Programmable Logic Handbook: PLDs,
CPLDs, and FPGAs, McGraw-Hill, New York, 1998.

3. D.W. Knapp, Behavioral Synthesis: Digital System
Design Using the Synopsys Behavioral Compiler, Pren-
tice Hall, Upper Saddle River, N.J., 1996.

4. J.P. Elliot, Understanding Behavioral Synthesis: A Prac-
tical Guide to High-Level Design, Kluwer Academic,
Boston, 1999.

5. W.F. Lee, VHDL: Coding and Logic Synthesis with Syn-
opsys, Academic Press, San Diego, Calif., 2000.

B. Ramakrishna Rau is an HPL fellow and manager
of the Compiler and Architecture Research group at
Hewlett-Packard Laboratories. His research interests
include computer architecture, compilers, operating
systems, and the automated design of computer sys-
tems. Rau received a PhD from Stanford University.
He is a Fellow of the IEEE and a member of the ACM.
Contact him at rau@hpl.hp.com.

Michael S. Schlansker is a principal scientist at
Hewlett-Packard Laboratories. His research interests
include computer architecture, compilers, and high-
level synthesis of computer systems. Schlansker
received a PhD from the University of Michigan. He
is a member of the IEEE and the ACM. Contact him
at schlansk@hpl.hp.com.

The MIS and
LAN Managers
Guide to Advanced
Telecommunications

$50 for Computer Society members
Regular price $99. Offer expires 14 August

Find out in

How will it
all connect?
How will it
all connect?

Now available from the Computer Society Press

